
Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Open Multi-Processing: Basic Course

Jerry Eriksson, Mikael Rännar and Pedro Ojeda

HPC2N,
Ume̊aUniversity,

901 87, Sweden.

May 26, 2015

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Table of contents

1 Overview of Paralellism
Parallelism Importance
Partitioning Data
Distributed Memory
Working on Abisko

2 OpenMP
Pragmas/Sentinels in OpenMP

3 Workshare constructs
Constructs, Parallel, For/Do, Section, Single

4 Synchronization constructs
Master, Critical, Barrier, Atomic

5 Data sharing
Runtime library

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Parallelism Importance
Partitioning Data
Distributed Memory
Working on Abisko

Application of Parallel algorithms

Molecular Dynamics

Figure : AdK enzyme in water.

Simulations of Galaxies proper-
ties

Figure : Galaxies [Nat., 509, 177

(2014)].

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Parallelism Importance
Partitioning Data
Distributed Memory
Working on Abisko

Working with arrays

F = −∇U Newton′s Law (1)

solution of this equation requires the knowledge of an array of
particles’ positions and velocities

X = (x1
1 , x

1
2 , x

1
3 , x2

1 , x
2
2 , x

2
3 . . . xN1 , xN2 , xN3) (2)

V = (v1
1 , v

1
2 , v

1
3 , v2

1 , v
2
2 , v

2
3 . . . vN1 , vN2 , vN3) (3)

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Parallelism Importance
Partitioning Data
Distributed Memory
Working on Abisko

Working with arrays

F = −∇U Newton′s Law (1)

solution of this equation requires the knowledge of an array of
particles’ positions and velocities

X = (x1
1 , x

1
2 , x

1
3 , x2

1 , x
2
2 , x

2
3 . . . xN1 , xN2 , xN3) (2)

V = (v1
1 , v

1
2 , v

1
3 , v2

1 , v
2
2 , v

2
3 . . . vN1 , vN2 , vN3) (3)

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Parallelism Importance
Partitioning Data
Distributed Memory
Working on Abisko

Distributed Memory vs. Share Memory Systems

Each process has a separate address space

Processes communicate by explicitly sending and receiving
messages

Figure : Distributed memory. Figure : Shared memory.

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Parallelism Importance
Partitioning Data
Distributed Memory
Working on Abisko

Running jobs on Abisko

Load Modules

Compiling and linking

Testing MPI programs

Job submission

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Parallelism Importance
Partitioning Data
Distributed Memory
Working on Abisko

Modules

OpenMPI for the PathScale compiler

module load psc

OpenMPI for the GCC compiler

module load gcc

OpenMPI for the Portland compiler

module load pgi

OpenMPI for the Intel compiler

module load intel

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Parallelism Importance
Partitioning Data
Distributed Memory
Working on Abisko

Compiling and linking

Compile with the appropriate OpenMP flag

Example:

Executable: run.x

gcc/gfortran -fopenmp -o run.x main.c

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Parallelism Importance
Partitioning Data
Distributed Memory
Working on Abisko

Job submission

Template for a job script (script.sbatch):

#!/bin/bash

#SBATCH -A SNIC2015-7-15

#SBATCH --reservation SNIC2015-7-15

#SBATCH -n 1

#SBATCH --time=00:30:00

#SBATCH --error=job-%J.err

#SBATCH --output=job-%J.out

echo "Starting at ‘date‘"

srun ./run.x

echo "Stopping at ‘date‘"

Job submission:

sbatch script.sbatch

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Parallelism Importance
Partitioning Data
Distributed Memory
Working on Abisko

Querying and cancelling jobs

Get the status of all your jobs

squeue -u <user>

Get the predicted start of your queued jobs

squeue -u <user> --start

Cancel a job

scancel <jobid>

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Pragmas/Sentinels in OpenMP

OpenMP

A portable fork-join parallel model for architectures with shared
memory

Portable, Fortran, C/C++ bindings

Many implementations

Fork-join model

Shared memory

Ease of use, significant improvement with 3 or 4 directives

Task parallelism and loop parallelism

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Pragmas/Sentinels in OpenMP

OpenMP Resources

www.openmp.org

www.openmp.org/presentations/miguel/F95 OpenMPv1 v2.pdf

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Pragmas/Sentinels in OpenMP

OpenMP Directive Format

#pragma omp name [clause [[,] clause]...]

Each directive begins with #pragma omp

followed by the name of the directive

and a possibly empty list of clauses.

The directive must end with a new line.

Long directives may be split into multiple source lines by
appending a backslash to continued lines.

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

OpenMP Constructs

Definition (Construct)

A construct consists of an executable directive and the
associated loop, statement, or structured block.

Example:

#pragma omp parallel

{

// .. inside parallel construct ..

subroutine();

}

void subroutine(void)

{ // .. outside parallel construct .. }

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Parallel Constructs

Example (Fortran):

PROGRAM HELLO

!$OMP PARALLEL

PRINT *, ’Hello World ’

!$OMP END PARALLEL

END

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Parallel Constructs

Example (C):

#include <stdio.h>

#include <stdlib.h>

int main (int argc , char *argv [])

{

#pragma omp parallel

{

printf("Hello World\n");

}

}

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Parallel For/Do construct

#pragma omp for [clauses]

for(init -expr ; test -expr ; inc -expr)

{ // ..loop body.. }

Parallelizes a for loop or a for loop nest

Restrictions apply to the three for loop expressions (Hint:
The iteration count must be possible to compute before the
loop (nest) is entered)

The iterations must be independent (assumed and not
checked)

The mapping of iterations to threads can be influenced using
the schedule clause. Schedules:

static, dynamic, guided, auto, and runtime

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Parallel Constructs: Pi calculation (wrong)

Example (C):

int main(void){

double pi ,x;

int i,N;

pi =0.0;

N=1000;

#pragma omp parallel for private(x)

for(i=0;i<N;i++){

x=(double)i/N;

pi +=4/(1+x*x);

}

pi=pi/N;

printf("Pi is %f\n",pi);

}

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Parallel Constructs: Pi calculation correct

Reduction option of ”For/Do” loop Example (C):

int main(void){

double pi ,x;

int i,N;

pi =0.0;

N=1000;

#pragma omp parallel for private(x) reduction (+:pi)

for(i=0;i<N;i++){

x=(double)i/N;

pi +=4/(1+x*x);

}

pi=pi/N;

printf("Pi is %f\n",pi);

}

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Parallel Constructs: Do loop

Example (C):

X=0.0D0

!$OMP PARALLEL

!$OMP DO

DO I=1,NLIN

DO J=1,NLIN

X(I)=X(I)+I*J*1.0D0

ENDDO

ENDDO

!$OMP END DO

!$OMP END PARALLEL

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Parallel Constructs: Do loop wrong

Example (Fortran):

!$OMP PARALLEL

!$OMP DO

DO I=2,NLIN

A(I)=2.0D0*A(I-1)

PRINT *, ’EL.NR.’,I,A(I)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Parallel Constructs: Do loop correct

Example (Fortran):

!$OMP PARALLEL

!$OMP DO ORDERED

DO I=2,NLIN

!$OMP ORDERED

A(I)=2.0D0*A(I-1)

!$OMP END ORDERED

PRINT *, ’EL.NR.’,I,A(I)

ENDDO

!$OMP END DO

!$OMP END PARALLEL

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Parallel Constructs: SAXPY

Example (Fortran):

A=1.0; Y=1.0

DO I=1,N

X(I)=1.0*I

ENDDO

!$OMP PARALLEL DO

DO I=1,N

Z(I)=A*X(I)+Y

ENDDO

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

DO I=1,N

WRITE (6,*) Z(I)

ENDDO

!$OMP END PARALLEL DOJerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Nested parallel regions

Parallel regions can be nested in the sense that one parallel
region is contained within another.

Some implementations support it and some don’t.

One major application of nested parallelism is to support
parallel libraries in parallel programs.

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Nested Parallel

Example (Fortran):

PROGRAM HELLO

!$OMP PARALLEL

PRINT *, ’Hello ’

!$OMP PARALLEL

PRINT *, ’Hi ’

!$OMP END PARALLEL

!$OMP END PARALLEL

END

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Nested Parallel

Example (C):

#include <stdio.h>

#include <stdlib.h>

int main (int argc , char *argv [])

{

#pragma omp parallel

{

printf("Hello\n");

#pragma omp parallel

{ printf("Hi\n"); }

}

}

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Sections

Each thread can do an independent task for each section
Example (Fortran):

PROGRAM HELLO

!$OMP SECTIONS clauses ...

!$OMP SECTION

... task

!$OMP SECTION

... task

!$OMP SECTION

... task

!$OMP END SECTIONS end_clauses

END

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Constructs, Parallel, For/Do, Section, Single

Single

Only one thread can execute the task enclosed by this directive
Example (Fortran):

PROGRAM HELLO

!$OMP SINGLE clauses ...

... task

!$OMP END SINGLE end_clauses

END

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Master, Critical, Barrier, Atomic

Master

To serialize some part of a parallel region, use the master

directive.

Examples:

#pragma omp master

{

// ..only the master thread ..

}

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Master, Critical, Barrier, Atomic

Critical sections

OpenMP provides a construct for critical sections (mutual
exclusion)

Two forms: Unnamed and named

Two critical sections with different names are unordered.

All critical sections of the unnamed form use the same hidden
lock and are ordered.

Directive format:

#pragma omp critical [name]

{

// .. critical section ..

}

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Master, Critical, Barrier, Atomic

Critical sections: Example

task_t dequeue(void);

void run(void)

{

#pragma omp parallel

{ while(true) {

task_t task;

#pragma omp critical

task = dequeue();

execute(task); }

}

}

Critical construct synchronize accesses to a shared queue.

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Master, Critical, Barrier, Atomic

Barrier

It is a construct to synchronize explicitly all the threads

!$OMP BARRIER (Fortran)

#pragma omp barrier (C)

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Master, Critical, Barrier, Atomic

Atomic operations

The atomic construct ensures atomic accesses to a specific
storage location.

Lightweight alternative to critical sections via critical or
explicit locks in some situations.

Probably mapped by the OpenMP implementation directly
onto fast hardware atomic operations.

Directive format (alt 1 of 2):

#pragma omp atomic [type]

expression -statement

where the optional type is one of:

read , write , update , capture

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Master, Critical, Barrier, Atomic

Atomic operations: Expression statements

An expression statement takes the form:

// If type=read

v = x;

// If type=write

x = expr;

// If type=update

x++; ++x; x--; --x;

x binop= expr; x = x binop expr;

// If type=capture

v = x++; v = x--; v = ++x; v = --x;

v = x binop= expr;

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Master, Critical, Barrier, Atomic

Atomic operations: Semantics

The atomic construct guarantees atomic operations
regardless of the native word size. Expected to map to fast
hardware atomic operations when available.

atomic read performs an atomic read

atomic write performs an atomic write

atomic update performs an atomic read-modify-write update

atomic capture performs an atomic read-modify-write
update while also capturing the old or new value of the
variable

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Master, Critical, Barrier, Atomic

Atomic operations: Examples

#pragma omp atomic read

private = shared;

#pragma omp atomic update

counter += 1;

#pragma omp atomic capture

new_count = counter += 1;

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Master, Critical, Barrier, Atomic

Atomic example

Example (Fortran):

PROGRAM ATOMIC

IMPLICIT NONE

INTEGER :: I

INTEGER , PARAMETER :: NLIN =10000000

REAL*8 :: X

X=0.0D0

!$OMP PARALLEL DO

DO I=1,NLIN

!$OMP ATOMIC

X= X + I*1.0

ENDDO

!$OMP END PARALLEL DO

WRITE (*,*) ’SUM=’, X

END

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Runtime library

Data sharing: Shared and private variables

Variables are either shared, private, or thread-private (but
more on thread-private variables later)

The default can be specified using the default clause

A shared variable is accessible to all threads and accesses
must be synchronized if the shared variable is modified.
Concurrent reads are okay.

A private variable is accessible only to one thread.

A private variable can be reduced to a new value in the
master thread at the end of a region.

A private variable can be initialized from the enclosing data
environment with the firstprivate clause.

A private variable can update the enclosing data environment
with the lastprivate clause.

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Runtime library

Data sharing: Example

int k;

#pragma omp for

for(k = 0; k < 10; ++k)

{

// ..k implied private by parallel for..

}

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Runtime library

Data sharing: Example

int k = 42;

#pragma omp parallel firstprivate(k)

{

// ..k = 42 and private ..

}

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Runtime library

Data sharing: Example

int k = 0;

#pragma omp parallel reduction (+: k)

{

// ..k = 0 and implied private ..

k = omp_get_thread_num();

}

// ..k = sum from 0 to nth -1..

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Runtime library

Thread-private variables

A thread-private variable provides one instance of a variable
for each thread.

The variable refers to a unique storage block in each thread.

Enables persistent private variables.

Directive syntax:

int a, b;

#pragma omp threadprivate(a, b)

// ..a and b are thread -private ..

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Runtime library

Thread-private variables: Example
Example A.27.1.c from OpenMP 3.1 spec

//

// Provides a per -thread counter.

//

int counter = 0;

#pragma omp threadprivate(counter)

int increment_counter(void)

{

++ counter;

return counter;

}

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Runtime library

OpenMP run-time library

Execution environment routines

OMP SET NUM THREADS

OMP GET NUM THREADS

OMP GET MAX THREADS

OMP GET THREAD NUM

OMP GET NUM PROCS

OMP SET DYNAMIC

OMP SET NESTED

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Runtime library

OpenMP run-time library

Environment variables

OMP NUM THREADS

OMP SCHEDULE

OMP DYNAMIC

OMP NESTED

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

Overview of Paralellism
OpenMP

Workshare constructs
Synchronization constructs

Data sharing

Runtime library

The End!

Jerry Eriksson, Mikael Rännar and Pedro Ojeda Open Multi-Processing: Basic Course

	Overview of Paralellism
	Parallelism Importance
	Partitioning Data
	Distributed Memory
	Working on Abisko

	OpenMP
	Pragmas/Sentinels in OpenMP

	Workshare constructs
	Constructs, Parallel, For/Do, Section, Single

	Synchronization constructs
	Master, Critical, Barrier, Atomic

	Data sharing
	Runtime library

