
Specialized Spectral Division Algorithms

for Generalized Eigenproblems

via the Matrix Disk Function⋆

Mercedes Marqués1, Enrique S. Quintana-Ort́ı1, and Gregorio Quintana-Ort́ı1

Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I,
12.071–Castellón, Spain; {mmarques,quintana,gquintan}@icc.uji.es.

Abstract. We describe two implementations of the inverse-free iteration
for the matrix disk function that reduce the computational cost of the
traditional algorithm. One of the implementations is mainly composed of
efficient BLAS-3 operations, and can be employed for spectral division of
large-scale generalized eigenproblems on current computer architectures.

Keywords: Spectral division, generalized eigenproblem, matrix pencil, ma-
trix disk function, orthogonal transformation.

1 Introduction

Consider the matrix pencil A−λE, where A, E ∈ R
n×n, and let Λ(A, E) denote

the set of generalized eigenvalues of the pencil. In the spectral division problem
we are interested in finding a pair of (orthogonal) matrices U , V ∈ R

n×n such
that

UT AV =

[

A11 A12

0 A22

]

, UT EV =

[

E11 E12

0 E22

]

, (1)

and Λ(A11, E11), Λ(A22, E22) are disjoint sets containing certain parts of Λ(A, E).
The spectral division has important applications in matrix diagonalization, com-
putation of deflating subspaces, and related problems in control.

There are several methods to compute the decomposition in (1). In this paper
we consider a spectral division approach via the matrix disk function, and we
propose two variants of Malyshev’s iteration [2] for the matrix disk function that
significatively reduce its computational cost while maintaining the numerical
accuracy. The first variant employs Givens rotations and results in an algorithm
composed of BLAS-1 computations. We also propose a block generalization of
this scheme that employs efficient (BLAS-3) Householder transformations.

The rest of the paper is structured as follows. In Section 2 we review the
inverse-free iteration for the matrix disk function. Next, in Section 3 we expose
the two variants of the iterative scheme that reduce the (theoretical) computa-
tional cost. We conclude the paper with some final remarks in Section 4.

⋆ This research was partially supported by the DAAD programme Acciones Integradas
HA2005-0081, the CICYT project TIN2005-09037-C02-02 and FEDER, and project
No. P1B-2004-6 of the Fundación Caixa-Castellón/Bancaixa and UJI.



2 Malyshev’s Inverse-Free Iteration for the Disk Function

In [2] Malyshev proposed the following “inverse-free” iteration to obtain the disk
function of a matrix pencil A− λE:

A0 ← A, Ak+1 ← QT
12Ak,

E0 ← E, Ek+1 ← QT
22Ek, k = 0, 1, . . . ,

(2)

where, at each iteration, Q12 and Q22 are obtained from the QR factorization
of the 2n× n matrix Mk

Mk :=

[

Ek

−Ak

]

= QkR̄k =

[

Q11 Q12

Q21 Q22

] [

Rk

0

]

. (3)

The QR factorization in (3) is usually computed by applying n Householder
reflectors, H1, H2, . . . , Hn, to Mk, so that Qk = H1 ·H2 · · ·Hn. Let In/0n denote,
respectively, the (square) identity/zero matrix of order n. The appropriate part
of Qk can then be formed by “accumulating” the reflectors in reverse order as

H1 ·H2 · · ·Hn

[

0n

In

]

= Qk

[

0n

In

]

=

[

Q12

Q22

]

.

Further practical details on the inverse-free iteration can be found in [1],
where the iteration was modified to made it truly inverse-free. A new strategy
for subspace extraction was formulated in [3] which provides both U and V in (1)
from a single iteration, thus halving the cost of the algorithm proposed in [1].

The computational cost in flops (floating-point arithmetic operations) of the
iteration is reported in the column labeled as “Traditional” in Table 1. The
computation of the generalized real Schur form via the QZ algorithm roughly
requires 81n3 flops (plus the cost of the reordering procedure). Thus, in theory, 6
inverse-free iterations are about as expensive as the QZ algorithm. In practice the
number is quite higher as the QZ algorithm is composed of fine-grain operations
which do not attain the highest execution rate of current computer platforms.

Step Traditional Givens- Blocked
based Householder

QR fact. 3n3 + n3/3 3n3 3n3

Accumulate Qk 6n3 3n3 3n3

Ak+1 ← QT

12Ak 2n3 n3 n3

Ek+1 ← QT

22Ek 2n3 2n3 2n3

Total 13n3 + n3/3 9n3 9n3

Table 1. Computational costs (in flops) of the different algorithms for the inverse-free
iteration. For the blocked Householder algorithm, the block size b is assumed to satisfy
b≪ n.



Mk =

»

Ek

−Ak

–

=

2

6

6

6

6

6

6

4

× × ×
× × ×
× × ×

× × ×
0 × ×
0 0 ×

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

× × ×
3 × ×
2 6 ×

1 5 9
0 4 8
0 0 7

3

7

7

7

7

7

7

5

»

Q12

Q22

–

=

2

6

6

6

6

6

6

4

× 0 0
× × 0
× × ×

× × ×
× × ×
× × ×

3

7

7

7

7

7

7

5

Fig. 1. Structure of the augmented matrix Mk before the elimination proceeds (left),
order in which elements are annihilated (middle), and trailing blocks of the orthogonal
matrix resulting from the factorization.

3 Reducing the Cost

Consider the QR factorization A = UARA, where UA is orthogonal and RA is
upper triangular, and the matrix pencil A0−λE0 = RA−λ(UT

AE), which shares
its eigenspectrum with A − λE. The key to reducing the cost of the iteration
lies in exploiting and preserving the upper triangular structure of the sequence
of matrices {Ak}k=0,1,... during the iteration. We next explain how to do so
by using Givens rotations for a simple example involving a matrix pencil of
dimension n = 3. During the exposition, we will use G

i,j
l to denote a certain

(l-th) Givens rotation which, applied to rows i−1 and i, serves to annihilate the

(i, j) entry of Mk =
[

ET
k , −AT

k

]T
.

Before the computations in iteration k commence, the augmented matrix
Mk presents the structure in Fig. 1 (left). There, the symbol ‘×’ is used to
denote a nonzero entry. Although using Givens rotations we can reduce Mk to
upper triangular form in many different orders, we are particularly interested in
QT

12 being upper triangular, so that Ak+1 ← QT
12Ak remains upper triangular.

Therefore, we apply the sequence of Givens rotations G
4,1
1 , G

3,1
2 , G

2,1
3 , G

5,2
4 , G

4,2
5 ,

G
3,2
6 , G

6,3
7 , G

5,3
8 , and G

4,3
9 , which introduce zeros in Mk in the order specified in

Fig. 1 (middle).
In order to construct the appropriate blocks of Qk, we next proceed to apply

the rotations in reverse order to the matrix [0n, In]
T
. The structure of the result,

(G4,3
9 G

5,3
8 G

6,3
7 G

3,2
6 G

4,2
5 G

5,2
4 G

2,1
3 G

3,1
2 G

4,1
1 )T

[

0n

In

]

= Qk

[

0n

In

]

=

[

Q12

Q22

]

,

is shown in Fig. 1 (right).
The previous procedure yields a reduction of 32% of the computational cost

when compared with that of the traditional algorihtm (see the column labeled
as “Givens-based” in Table 1). However, even with these savings, we do not
expect the Givens-based algorithm to outperform the traditional implementa-
tion. This is so because the application of Givens rotations is a Level-1 BLAS
operation, while the traditional algorithm employs much faster Level-3 BLAS
kernels. Therefore, the effect of the decrease in theoretical cost is hidden by the



use of a type of operation which attains much lower performance on current
architectures.

We next describe a second algorithm intended for large-scale problems, which
is a blocked variant of the Givens-based algorithm. The new algorithm presents
a theoretical cost similar to that of the Givens-based algorithm, but performs
most of its computations in terms of Level-3 BLAS operations.

Consider the augmented matrix Mk, partitioned into 6×3 blocks of dimension
b× b each, Mk =

[

M̄i,j

]

, i = 1, . . . , 6, j = 1, 2, 3. (For simplicity, we assume n to
be an exact multiple of b.) The matrix presents the structure in Fig. 1 (left) where
the symbols “×” represent each a block of dimension b×b. Let us now use U

i,j
l to

denote the (l-th) orthogonal factor from the QR factorization of
[

M̄T
i−1,j , M̄T

i,j

]T
.

Then, we can compute and apply a sequence of orthogonal matrices U
4,1
1 , U

3,1
2 ,

U
2,1
3 , U

5,2
4 , U

4,2
5 , U

3,2
6 , U

6,3
7 , U

5,3
8 , and U

4,3
9 , so that zeros are introduced in the

blocks of Mk in the order specified in Fig. 1 (middle). Finally, by embedding
each U

i,j
l into an orthogonal matrix Q

i,j
l of the appropriate dimensions, we can

accumulate the transposed orthogonal transformations in reverse order as

(Q4,3
9 Q

5,3
8 Q

6,3
7 Q

3,2
6 Q

4,2
5 Q

5,2
4 Q

2,1
3 Q

3,1
2 Q

4,1
1 )T

[

0n

In

]

= Qk

[

0n

In

]

=

[

Q12

Q22

]

,

so that we obtain a block lower triangular matrix as that shown in Fig. 1 (right).
The (rough) overall cost of this algorithm, provided b≪ n, is reported in the

column labeled as “Blocked Householder” in Table 1. Thus, the cost is (asymp-
totically) as low as that of the Givens-based algorithm, but we now enable the use
of Level-3 BLAS (at least) in the application of the orthogonal transformations.

4 Concluding Remarks

We have described two variants of the inverse-free iteration for the matrix disk
function that reduce the theoretical cost of the traditional iterative scheme by
32%. The first implementation employs Givens rotations to compute the QR
factorization, and results in a fine-grain computation. Preliminary results show
this approach does not achieve a noticeable reduction in the execution time of the
algorithm. The second variant, however, carries out most of its computation in
terms of Level-3 BLAS operation and is expected to outperform the traditional
algorithm.

References

1. Z. Bai, J. Demmel, and M. Gu. An inverse free parallel spectral divide and conquer
algorithm for nonsymmetric eigenproblems. Numer. Math., 76(3):279–308, 1997.

2. A.N. Malyshev. Parallel algorithm for solving some spectral problems of linear
algebra. Linear Algebra Appl., 188/189:489–520, 1993.

3. X. Sun and E.S. Quintana-Ort́ı. Spectral division methods for block generalized
Schur decompositions. Math. Comp., 73:1827–1847, 2004.


