
Exploiting the Performance of 32 bit Floating
Point Arithmetic in Obtaining 64 bit Accuracy

(Revisiting Iterative Refinement for Linear Systems)

Julie Langou1, Julien Langou1, Piotr Luszczek1, Jakub Kurzak1, Alfredo
Buttari1, and Jack Dongarra1

University of Tennessee, Knoxville TN 37996, USA,
julie,langou,luszczek,kurzak,buttari,dongarra@cs.utk.edu

Extended abstract: more information, data, codes available at

http://www.cs.utk.edu/~julie/iter-ref/

Abstract. Recent versions of microprocessors exhibit performance char-
acteristics for 32 bit floating point arithmetic (single precision) that is
substantially higher than 64 bit floating point arithmetic (double preci-
sion). Examples include the Intels Pentium IV and M processors, AMDs
Opteron architectures and the IBMs Cell processor. When working in
single precision, floating point operations can be performed up to two
times faster on the Pentium and up to ten times faster on the Cell over
double precision. The performance enhancements in these architectures
are derived by accessing extensions to the basic architecture, such as
SSE2 in the case of the Pentium and the vector functions on the IBM
Cell. The motivation for this paper is to exploit single precision opera-
tions whenever possible and resort to double precision at critical stages
while attempting to provide the full double precision results. The results
described here are fairly general and can be applied to various problems
in linear algebra such as solving large sparse systems, using direct or it-
erative methods and some eigenvalue problems. There are limitations to
the success of this process, such as when the conditioning of the problem
exceeds the reciprocal of the accuracy of the single precision computa-
tions. In that case the double precision algorithm should be used.

1 Introduction

The motivation behind this work is the observation that a number of recent
processor architectures exhibit single precision performance that is significantly
higher than for double precision arithmetic. An example of this include the
IBM Cell multiprocessor which was announced with a theoretical peak of 204.8
GFLOPS in single precision (32 bit floating point arithmetic) and a peak of only
20 GFLOPS in double precision (64 bit floating point arithmetic). Even the Intel
x87 processor with the use of the Streaming SIMD Extensions (SSE) unit on the
Pentium III does 4 flops/cycle for single precision, and SSE2 does 2 flops/cycle
for double. Therefore, for any processor with SSE and SSE2 (e.g. Pentium IV),
the theoretical peak of single is twice that of double, and on a chip with SSE



2

and without SSE2 (e.g. some Pentium III), the theoretical peak of single is four
times that of double. AMD processors share the same relation between SSE and
SSE2, the only difference being that their x87 units can do 2 flops/cycle for any
precision. Appendix 1 contains additional information on the extensions to the
IA-32 instruction set.

Another advantage of computing in single versus double precision is that data
movement is cut in half. This helps performance by reducing memory traffic
across the bus and enabling larger blocks of users data to fit into cache. In
parallel computations, the total volume of communication is reduced by half
and the number of initiated communication is reduced as well (if block sizes are
doubled). The effect is that the communication behaves as if the bandwidth is
multiplied by two and latency halved by two.

The use of extensions to the ISA of x86-x87 has been put into practice in
a number of implementations of the BLAS. This provides a speed improvement
of a factor of two in single precision compared to double precision for basic
operations such as matrix multiply. Some experimental comparisons of SGEMM
versus DGEMM on various architectures are given in Table 2.

The motivation for this paper is to exploit single precision operations when-
ever possible and resort to double precision at critical stages while attempting
to provide the full double precision results.

2 Some Numerical Experiments

The first set of experiments show the performance of the sequential algorithm
on a number of systems. In the third and fourth columns of Table 1, for each
system, we report the ratio of the time to perform SGEMM (Single precision
Matrix-Matrix multiply for GEneral matrices) over the time to perform DGEMM
(Double precision Matrix-Matrix multiply for GEneral matrices) and the ratio
of the time to perform SGETRF (Single precision LU Factorization for GEneral
matrices) over the time to perform DGETRF (Double precision LU Factoriza-
tion for GEneral matrices). As claimed in the introduction this ratio is often 2
(Katmai, Coppermine, Northwood, Prescott, Opteron, UltraSPARC, X1), which
means single are twice as fast as double. Then in the fifth and sixth columns
we report the results for DGSEV over DSGESV. The results from Table 1 show
that this method can be very effective on a number, but not all, architectures.
The Intel Pentium, AMD Opteron, Sun UltraSPARC, Cray X1, and IBM Power
PC architectures, all exhibit a significant benefit from the use of single precision.
Systems such as the Intel Itanium, SGI Octane, and IBM Power3 do not show
the benefits.

It is to note that single precision computation is significantly slower than
double precision computation on Intel Intanium 2.

The next set of experiments is for a parallel implementation along the lines
of ScaLAPACK. In this case n is in general fairly large and, as we can observe
in Table 2, the cost of the iterative refinement becomes negligible with respect



3

Architecture (BLAS) n DGEMMR DGETRF DGESV # iter
/SGEMM /SGETRF /DSGESV

Intel Pentium III Coppermine (Goto) 3500 2.10 2.24 1.92 4
Intel Pentium III Katmai (Goto) 3000 2.12 2.11 1.79 4
Sun UltraSPARC IIe (Sunperf) 3000 1.45 1.79 1.58 4
Intel Pentium IV Prescott (Goto) 4000 2.00 1.86 1.57 5
Intel Pentium IV-M Northwood (Goto) 4000 2.02 1.98 1.54 5
AMD Opteron (Goto) 4000 1.98 1.93 1.53 5
Cray X1 (libsci) 4000 1.68 1.54 1.38 7
IBM Power PC G5 (2.7 GHz) (VecLib) 5000 2.29 2.05 1.24 5
Compaq Alpha EV6 (CXML) 3000 0.99 1.08 1.01 4
IBM SP Power3 (ESSL) 3000 1.03 1.13 1.00 3
SGI Octane (ATLAS) 2000 1.08 1.13 0.91 4
Intel Itanium 2 (Goto and ATLAS) 1500 0.71
Table 1. Ratio of execution times (speedup) for DGEMM/SGEMM (m = n = k),
DGETRF/SGETRF and DGESV/DSGESV on various architectures, the number of
iterations of iterative refinement in DSGESV is given in the last column.

to PDGETRF . Using PDSGESV is almost twice (1.83) as fast as opposed to
using PDGESV for the same accuracy.

Architecture (BLAS-MPI) # procs n PDGETRF PDGESV # iter
/PSGETRF /PDSGESV

AMD Opteron (Goto OpenMPI MX) 32 22627 1.85 1.79 6
AMD Opteron (Goto OpenMPI MX) 64 32000 1.90 1.83 6
Table 2. Performance comparison between PDGETRF/PSGETRF and
PDGESV/PDSGESV on an AMD Opteron cluster with Myrinet interconnects,
the number of iterations of iterative refinement in PDSGESV is given in the last
column.

As an extension to this study, we present in this section results for itera-
tive refinement in quadruple precision on an Intel Xeon 3.2GHz. The iterative
refinement code computes a condition number estimate; the input matrices are
random matrices with uniform distribution. For quadruple precision arithmetic,
we use the reference BLAS compiled with ifort -O3 the Intel Fortran compiler
(with -O3 optimization flags on) since we do not have an optimized BLAS in
quadruple precision. Results are presented in Table 3. The obtained accuracy
is of about 10−32 for QGETRF and QDGETRF as expected. No more than 3
steps of iterative refinement are needed. The speedup goes from 10 for a matrix
of size 100 to 100 for a matrix of size 1000. In Table 4, we give the time for the
different kernels used in QGESV and QDGESV. Interestingly enough the time
for QDGESV is dominated by QGEMV and not DGETRF!



4

QGESV QDGESV
n time (s) time (s) speedup

100 0.29 0.03 9.5
200 2.27 0.10 20.9
300 7.61 0.24 30.5
400 17.81 0.44 40.4
500 34.71 0.69 49.7
600 60.11 1.01 59.0
700 94.95 1.38 68.7
800 141.75 1.83 77.3
900 201.81 2.33 86.3

1000 276.94 2.92 94.8
Table 3. Iterative refinement in quadruple precision on a Intel Xeon 3.2GHz.

routine time (s) kernel name time (s)
QGESV 201.81 QGETRF 201.1293

QGETRS 0.6845
QDGESV 2.33 DGETRF 0.3200

DGETRS 0.0127
DLANGE 0.0042
DGECON 0.0363
ITERREF 1.9258

Table 4. Detailed of the time for the various operations involved in QDGESV and
QGESV for a matrix of size n = 900.


