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Abstract. We outline the principles behind the design of the new Jacobi–
type algorithm for accurate computation of the SVD, and its applications
as kernel procedure in computation of various generalizations of the SVD
(PSVD, QSVD, (H,K)-SVD, canonical correlations) as well as for diago-
nalization of positive definite matrices and matrix pencils. New LAPACK
style software, and future plans are presented.

1 Introduction

Our contribution presents the current state of affairs in the development of
LAPACK style software for computation of the SVD and its generalizations
to high relative accuracy. From the numerical point of view, our codes have
important property: the backward error is structured, which means that the
forward error is governed by better condition number. All singular values and
eigenvalues are computed to the level of relative accuracy warranted by the data.

We discuss the main principles and ideas of recent development, as well as
future development toward reliable and efficient numerical software.

2 Dense SVD

The new Jacobi–type (serial) SVD algorithm [4], [5] outperforms the best pre-
vious implementations of the Jacobi SVD algorithm with factor as big as ten!
In case of computing the full SVD it outperforms the QR algorithm (SGESVD
from LAPACK) and, depending on the distribution of the spectrum, it comes
close the currently fastest divide and conquer SGESDD code from LAPACK.

It is important to note that this efficiency is not traded for numerical accu-
racy: If the input matrix A can be factored as A = BD (or A = D1CD2) with
diagonal D (D1, D2) and well–conditioned B (C), then our algorithm (its variant
following [1]) computes the SVD of A to high relative accuracy, independent of
the scaling diagonal matrices. This high level of accuracy cannot be guaranteed
by the methods which first bidiagonalize A.

This means that the new algorithm is currently the fastest known SVD al-
gorithm capable of reaching numerical stability guaranteed by the state of the
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art perturbation theory. If applied to the Cholesky factor of symmetric posi-
tive definite H, then it delivers the eigenvalues and eigenvectors of H + δH
with maxi,j |δHij |/

√
HiiHjj ≤ O(n)ε. (For tridiagonalization-based methods,

the backward error can be bounded only in norm, ‖δH‖/‖H‖ ≤ O(n)ε.)

The results of numerical testing of our new software give us reasons to believe
that the barrier between accuracy and speed is not unbreakable. We know that
our algorithm has even more potential for speedup, while retaining high relative
accuracy properties. For instance, in our current LAPACK style code, the most
expensive part are Jacobi iterations for SVD computation of a preconditioned
lower triangular matrix. We expect to have much more efficient code, using the
fast scaled block Jacobi rotations and ideas of Hari [6].

Further, the initial preprocessing/preconditioning is a rank revealing decom-
position based on pivoted QR factorization(s). This stage is open for improve-
ments, and will benefit from any advance in QR factorization software. We ex-
plore some new objective functions for pivot strategies in the QRF.

Moreover, the new algorithm can run in the ”classical mode” of accuracy and
in the cases of matrices with low numerical rank, for which only the dominant
singular triplets are of interest (which is very often the case in applications of
the SVD), it can even outperform the SGESDD procedure from LAPACK.

3 Generalized decompositions

This efficiency of the kernel procedure is basis for accurate and efficient com-
putation of the generalized SVD decompositions (PSVD, QSVD, (H,K)-SVD,
canonical correlations). Let us illustrate the power of this approach:

We already know that e.g. SVD of the product AB can be computed with
high relative accuracy via reduction to the SVD of a single matrix, see [2], [3].
This reduction, combined with the new Jacobi SVD procedure, results in nu-
merically reliable, efficient, and simple software. A modification of the algorithm
computes the eigenvalues of HM − λI (H, M positive definite) with entry–wise
small backward errors |δHij | ≤ ε

√
HiiHjj , |δMij | ≤ ε

√
MiiMjj , 1 ≤ i, j ≤ n.

Finally, we will present the results of rigorous numerical testing of the new
LAPACK–style software for the above mentioned decompositions.
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