
A scalable parallel Monte Carlo method for free
energy simulations of molecular systems

Malek O. Khan1, Gareth Kennedy2,, and Derek Y. C. Chan2

1 Uppsala University, Dept. of Physical Chemistry, Box 579, 751 23 Uppsala, Sweden
malek.khan@fki.uu.se,

WWW home page: http://www.anst.uu.se/~malkh812/
2 The University of Melbourne, Department of Mathematics & Statistics, Parkville,

Victoria 3010, Australia

Abstract. We present a method of parallelising flat histogram Monte
Carlo simulations, which give the free energy of a molecular system as
an output. In the serial version, a constant probability distribution, as a
function of any system parameter, is calculated by updating an external
potential which is added to the system Hamiltonian. This external po-
tential is related to the free energy. In the parallel implementation, the
simulation is distributed on to different processors. With regular intervals
the modifying potential is summed over all processors and distributed
back to every processor, thus spreading the information of which parts
of parameter space have been explored. This implementation is shown to
decrease the execution time linearly with added number of processors.
. . .

1 Introduction

In this paper we present a general way to effectively parallelise a Monte Carlo
(MC) algorithm which also gives the free energy of the system as a direct output
of the simulation. Traditional Metropolis MC samples phase space weighted by
the Boltzmann probability distribution p ∼ exp(−U/kT ), where k is the Boltz-
mann constant, T is the temperature and U is the Hamiltonian of the system.
In the canonical ensemble, conventional simulations do not give the free energy
(or the underlying partition function) directly, but rather derivatives of the free
energy. Recently, so-called flat histogram techniques have evolved as a technique
to calculate the free energy directly in a MC simulation [1–3]. Flat histogram
techniques resemble umbrella sampling in that an external potential is added
to the system energy. In contrast to umbrella sampling the external potential
is not given as an input to the simulation but is modified throughout the sim-
ulation to achieve an equal probability (flat histogram) of visiting all values of
any chosen parameters. At the end of the simulation the external potential is
directly related to the free energy. As with umbrella sampling this method is



2

most useful for systems which have a complex free energy landscape, i.e. for
systems where traditional Boltzmann guided sampling would lead to extremely
long convergence time.

The concept introduced in this report is to let every processor perform cal-
culations in any region of parameter space. With regular intervals the processors
communicate and the algorithm decides where more calculations need to be per-
formed. This is propagated out to the processors. A weight function (histogram)
directs the calculations towards the areas of parameter space that need to be
explored. Fixed parameter boundaries are not given in which every processor
performs its calculations, rather the calculation of a global (over all the proces-
sors) histogram ensures that the parallelisation is done effectively.

To illustrate the method we have chosen to calculate the free energy as a
function of the end-to-end distance of charged polymers. After a description of
the model and method, we report results of parallel simulations scaling up above
32 processors.

2 Simulation method

The polymer model is a simple bead and stick model with Nmon hard sphere
monomers, with a diameter of 4Å connected by fixed length bonds (6Å), see
reference for further technical details. The polymer is moved with a pivot move
and the small ions by simple translation. The simulations are carried out in the
canonical ensemble and all moves are accepted according to the normal Metropo-
lis MC rules. Here we define one MC iteration as 10 × Nmon(1 pivot+Nmon/2
translations). As a measure of the polymer conformation, the end-to-end dis-
tance Ree, defined as the distance between the first and last monomer on the
chain, is used.

A straight-forward way of calculating the free energy or potential of mean
force (PMF), w(Ree), in a normal simulation, is to simply calculate the probabil-
ity of finding the system at a certain end-to-end distance p(Ree), since the PMF
is related to this probability by w(Ree) = −kT ln p(Ree). But since the probabil-
ity of visiting high energy states is low, configurations far from the average Ree,
i.e. the extended or compressed configurations, will be sampled infrequently if
at all during a simulation. However, by adding an appropriate penalty function
U∗ to the normal, undisturbed Hamiltonian U it is possible to sample all states
of interest with equal probability [1, 2]. Generating a uniform probability results
in [1–3] w(Ree) = −U∗(Ree) + C, where C is a physically unimportant constant
setting the zero level of the free energy. More details of the model and the serial
algorithm can be found in earlier work concerning polyelectrolyte behaviour [3].

In order to construct a U∗ that will give rise to an uniform distribution of
end-to-end distances the function U∗(Ree) is discretized over Ree into equal size
intervals. The number of bins used is between 100 and 1000. At the start of the
simulation the penalty function U∗ is taken to be uniform. Every time the end-
to-end distance falls within a particular interval of Ree the corresponding U∗

is increased by a certain value δU∗. This ensures that the distribution function



3

p∗ ∼ exp[−β(U +U∗)] will approach a constant [1–3]. Following the prescription
of Wang and Landau [2] the simulation is run until p∗(Ree) is ”flat”, when δU∗

is updated according to δU∗
new = δU∗/2.

In the parallel version of the free energy algorithm, Ncpu processors run
identical versions of the program but with different initial configuration (ac-
tually only the initial random number seed is different). Every process runs
independently except that at certain intervals the processor summed PMF,∑Ncpu

i=1 wi(Ree), is distributed to all processors. Each process then continues in-
dependently, but with the global PMF. The idea is that every process does not
have to explore the full PMF as a function of Ree, but together they will since
every now and then the processes tell each other which Ree they have visited.

In the same manner the processor averaged distribution function 〈p∗(Ree)〉Ncpu

is gathered and this average is checked against the flatness criteria.

3 Results and discussion

The update of δU∗ is a measure of how fast the simulation converges since the
update only occurs when U∗(Ree) has evolved enough to give a flat p∗(Ree). To
illustrate the efficiency of the parallel algorithm, Figure 1 shows the updates as
a function of number of MC iterations for simulations with different number of
processors. In order to collect statistical material, simulations have been run 11
times for every Ncpu.

0 2 4 6 8 10

no. of δU
*
 updates

0

200

400

600

800

(it
er

at
io

ns
/C

P
U

)1/
2

Ncpu=2

4

8

16
24
32

(a)

0 2 4 6 8 10

no. of δU
*
 updates

0

200

400

600

800

1000

1200

(it
er

at
io

ns
)1/

2

(b)

Fig. 1. (a) The number of iterations per CPU before an update of δU∗ is made. For each
Ncpu, 11 simulations have been performed and the mean is shown. The error bars show
the standard deviation. It should be noted that the lines are just a guide to the eye, since
δU∗ is actually constant between the points. (b) Same as (a) except that the y-axis now
shows the total number of iterations before an update of δU∗ is made. The curves for
different Ncpu have not been labelled, since they all are on top of each other within the
statistical errors. The system simulated is a polyelectrolyte with Nmon = 63 and trivalent
counterions.

It is clear that when more processors are used, the faster this criteria is
reached. In Figure 1b the total number of iterations needed before an update of



4

p∗(Ree) is shown to be the same for 2 ≤ Ncpu ≤ 32, thus running the problem on
32 processors completes the simulation with 16 times less iterations/processor
than running the simulation on 2 processors.

Even though the number of iterations/processor needed to complete the sim-
ulations decrease linearly with added processors, it does not necessarily mean
that the simulations runs equally fast. It is obvious that for every problem there
is a number of processors that eventually will make the parallelisation inefficient
due to communication overhead. The relatively small problem of a 63 monomer
polyelectrolyte with 21 trivalent counterions, scales up to about 32 processors
on a cluster type machine as seen in Figure 2. In the implementation used, com-
munication is performed after every iteration. This is often enough to maintain
the Ncpu independent convergence shown in Figure 1, but infrequent enough to
not slow down the simulation. Further trials may show that communication can
be made less frequently, which would be important when using a large amount
of processors. In any case, for larger and more complex problems, we anticipate
that this method will scale to far more processors, since more calculations are
performed in between processor communication.

0 10 20 30 40 50
N

cpu

0

10

20

30

40

50

sp
ee

d-
up

, t
(N

cp
u=

2)
/t(

N
cp

u)

ideal s
peed-up

Fig. 2. The speed-up, in comparison with the Ncpu = 2 case, found by using the parallel
method. The curve is normalised to 2 for Ncpu = 2. The system simulated is the same
as accounted for in Figure 1 and the machine is the Victorian Partnership of Advanced
Computing 97 node, 194 CPU Linux Cluster based on Xeon 2.8 GHz CPUs with a Myrinet
interconnect.

References

1. Engkvist, O., Karlström, G.: A method to calculate the probability distribution for
systems with large energy barriers. Chem. Phys. 213 (1996) 63–76

2. Wang, F., Landau, D.P.: Efficient, multiple-range random walk algorithm to calcu-
late the density of states. Phys. Rev. Lett. 86 (2001) 2050–2053

3. Khan, M.O., Chan, D.Y.C.: Monte Carlo simulations of stretched charged polymers.
J. Phys. Chem. B 107 (2003) 8131–8139


