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Abstract. We discuss a new implementation of the inverse iteration
method for computing eigenvectors of real symmetric tridiagonal ma-
trices with guaranteed accuracy. The new method is an improved vari-
ant of the Godunov-inverse iteration method [Mat05], in which we use
‘incomplete spectral deflation’ [Mat04] in tight clusters, reducing the
amount of reorthogonalization necessary when an orthogonal system of
eigenvectors is required. We modify inverse iteration step to guarantee
that computed eigenvector is a ‘pseudoeigenvector’ corresponding to the
shift, chosen from the ε-pseudospectrum of the matrix. In many test
cases C-implementation of this method exhibits performance, compara-
ble and even superior to the LAPACK 3.0 [ABB+99] implementations of
the bisection and inverse iteration, divide and conquer, MRRR and QR
methods for the symmetric tridiagonal eigenvalue problem.

1 Inverse Iteration with Guaranteed Accuracy

Suppose Rn is a real n-dimensional Euclidean subspace with fixed orthonormal
basis, suppose x ∈ Rn, A is a real tridiagonal n × n matrix, and A = AT . Let
d0, d1, . . . , dn−1 represent elements of the main diagonal of A, and b0, b1, . . . , bn−2

represent elements of the co-diagonals and bi 6= 0, i = 0, . . . , n− 2. Let (x, x) =∑n−1
k=0 |xk|2, ‖x‖ =

√
(x, x) and ‖A‖ = maxk |λk(AT A)|, where λk denotes k-th

eigenvalue of a matrix, that is, ‖A‖ denotes spectral norm of A. We require that
approximate solution (x̃i, λ̃i), 1 ≤ i ≤ n to the eigenvalue problem

A xi = λi xi

is such that maxi ‖A x̃i− λ̃i x̃i‖ = O(εmach ‖A‖) and maxi 6=j |x̃T
i x̃j | = O(εmach),

where εmach is the unit roundoff. Suppose we already found eigenintervals
[αi, βi] 3 λi(A) and it is guaranteed that

εi
def= |βi − αi| ≤ max {εmach, 3.0 ‖A‖∞ εmach}.

We can then set λ̃i = (αi + βi)/2.0. In order to find a few λ̃i we can compute
eigenintervals [αi, βi] 3 λi(A) using ‘interval’ implementation of the bisection
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method [GAKK93], [Mat05]. To find a large number of λ̃i we apply ‘interval’
bisection to the intervals [λ̄i − ε, λ̄i + ε], where ε = 5.0 ‖A‖∞ εmach and λ̄i is an
eigenvalue approximation found applying LAPACK implementation of the root-
free QR procedure (xSTERF). In order to determine approximate eigenvector
x̃i we apply inverse iteration with the shift σi ∈ [αi, βi] and rescaling parameter
τi > 0 to the initial iterate x̃0

i ∈ Rn according to the following algorithm

Algorithm 1 (Inverse Iteration with Guaranteed Accuracy)
z0
i = x̃0

i /‖x̃0
i ‖, k = 0

while ‖zk
i ‖ < τi/εi do

renormalize x̃k
i = τi zk

i /‖zk
i ‖

factor A− σi I = Li Di LT
i

solve Li Di LT
i zk+1

i = x̃k
i

k = k + 1
x̃i = zk

i /‖zk
i ‖.

In the algorithm 1 shift, rescaling parameter and termination criterion are cho-
sen in accordance with the following proposition, based on the backward error
analysis of the inverse iteration method [Ips97].

Proposition 1. Suppose shift σi in the algorithm 1 is chosen such that ‖(A −
σi I)−1‖ ≥ 1/εi, that is, σi belongs to the ε-pseudospectrum of A, and εi ≤ τi ≤
c ‖A‖. If ‖zk

i ‖ ≥ τi/εi, we can guarantee that ‖rk
i ‖ = ‖(A−σi I) x̃k

i ‖ ≤ τi εi, and
‖(A − σi I)−1‖ ≥ τi/‖rk

i ‖ ≥ 1/εi, that is, we can guarantee that iterate zk
i is a

‘pseudoeigenvector’, corresponding to the pseudoeigenvalue σi of the matrix A.

Proof. Since A − σi I is nonsingular and x̃k
i = (A − σi I)−1 (A − σi I) x̃k

i =
(A − σi I)−1 rk

i , we establish that ‖x̃k
i ‖ ≤ ‖(A − σi I)−1‖ ‖rk

i ‖. But ‖x̃k
i ‖ = τi,

which means that
‖(A− σi I)−1‖ ≥ τi/‖rk

i ‖.

Noticing that ‖rk
i ‖ = ‖(A − σi I) xk

i ‖ = τi/‖zk
i ‖ ‖(A − σi I) zk

i ‖ =
τi ‖xk−1

i ‖/‖zk
i ‖ = τ2

i /‖zk
i ‖, we establish that ‖zk

i ‖ = τ2
i /‖rk

i ‖. This means that,
as soon as ‖zk

i ‖ ≥ τi/εi, we can guarantee that residual rk
i is small, that is,

‖rk
i ‖ ≤ τi εi, and

‖(A− σi I)−1‖ ≥ τi/‖rk
i ‖ ≥ 1/εi,

that is, we can guarantee that iterate zk
i is a ‘pseudoeigenvector’, corresponding

to the pseudoeigenvalue σi of the matrix A. 4

In our C-implementation of the algorithm 1 we set τi = εi in order to prevent
overflow, while using σi = αi as a shift. When computing a few eigenvectors we
use choose σi = αi if |αi−αi−1| ≥ εmax, where εmax = max εi, otherwise, in order
to guarantee that σi ∈ [αi, βi], we set σi = min (max (βi−1 + εi, αi), βi). When
an orthogonal system of approximate eigenvectors is required, we reorthogo-
nalize x̃i against approximate eigenvectors x̃k, k < i, already in the basis,
applying Modified Gram-Schmidt reorthogonalization if |λ̃i − λ̃k| ≤ γ, where
γ = max |λi|

√
εmax if max εi <

√
εmach, and γ = max |λi| 4

√
εmax otherwise.
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If only one eigenvector, or an orthogonal system of eigenvectors, correspond-
ing to well separated eigenvalues is required, we compute initial iterates x̃0

i using
the same recursion as in the Godunov-inverse iteration algorithm [Mat05], that
is,

x̃0
i,0 = 1, x̃0

i,k = −signbk−1

x̃0
i,k−1

Pk−1(αi, βi)
, k = 0, 1, . . . , n− 1,

where P0(αi, βi), . . . , Pn−2(αi, βi)
def= P+

0 (αi), . . . , P+
j−1(αi), P−j (βi), . . . , P−n−2(βi)

is a two-sided Sturm sequence [GAKK93], [Mat05]. We use a variant of the
’incomplete spectral deflation’ method [Mat04] to compute x̃0

i in tight clusters,
as follows:

x̃0
i,0 = c−1 s0 s1 · · · sn−2−m,

x̃0
i,k = ck−1 sk sk+1 · · · sn−2−m, k = 1, 2, . . . , n− 2−m,

x̃0
i,n−1−m = cn−2−m,

x̃0
i,n−1−m+j

def= rj , 1 ≤ j ≤ m− 1,

(1)

where m = 0, 1, . . . , n − 2 and rj represent numbers from the random uniform
distribution on (0, 1). Parameters ck, sk are Givens rotation parameters, com-
puted using two-sided Sturm sequences P (αi, βi) as follows [GAKK93]: ctgk =
−signbk ck−1/Pk(αi, βi), sk = 1/

√
1 + ctg2

k, ck = ctgk sk, c−1 = 1, k =
0, 1, . . . , n−2−m. We can rewrite (1) in matrix form as follows: x̃0

i = ỹ0
i +un−m,

where ỹ0
i = Cm en−m, Cm = Cn−2−m Cn−3−m · · ·C0 is a chain of elementary

Givens rotations Ck = Ck(ck, sk), en−m = (0, . . . , 0, 1︸︷︷︸
n−m

, 0, . . . , 0)T is a unit vec-

tor, and un−m = (0, . . . , 0, r1, . . . , rm−1)T . On each step m matrix A is replaced
with the n−1−m×n−1−m tridiagonal matrix Am such, that that partial vec-
tor ȳ0

i = (ỹ0
i,0, . . . , ỹ

0
i,n−1−m) is an approximate eigenvector of the n−m×n−m

matrix [GAKK93]

Ām =
(

Am

λ̃i

)
,

CmT Am Cm = CmT Cm−1T · · ·C0T
A C0 · · ·Cm−1 Cm =


Am

λi0

. . .
λip

 ,

where λn−1−m ≤ λi0 ≤ λip ≤ λn−1.

2 Example

Consider one-dimensional Poisson equation −∂2u/∂x2 = f ∈ [0, π] with Dirich-
let boundary conditions u(0) = 0, u(π) = π. Finite difference approximation of
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this equation on a uniform mesh with step h = π/N has symmetric tridiago-
nal n × n matrix Th (n = (N − 1)2), with main diagonal 1/h2(2, 2, . . . , 2) and
co-diagonals 1/h2(−1,−1, . . . ,−1). Analytical spectrum of Th can be expressed
explicitly as follows: λk(Th) = 2.0/h2 (1.0 − cos[k π/(n + 1)]), k = 1, 2, . . . , n.
In the table below we present results of computing full spectral decomposi-
tion Th xk = λk xk, k = 1, 2, . . . , n for h = π/96 (n = 9025), using LA-
PACK 3.0 routines dstedc (Divide and Conquer method), dstein (Inverse Iter-
ation method) and dsteqr (QR method), development-LAPACK routine dstegr
(MRRR method), and our C-implementation of the algorithm 1, which we call
ginvit in the table below. The programs were tested on a four Intel Xeon 3.20
GHz CPU with total 4.0 GB of memory in Red Hat Linux 3.2.3 (gcc 3.2.3 com-
piler, default optimization). In the table tλ̃ and tx̃ represent processor time
(in seconds) to compute respectively approximate eigenvalues and eigenvec-
tors, R(λ̃k, x̃k) = max ‖Th x̃k − λ̃k x̃k‖ ‖Th‖−1, O(x̃k) = max ‖x̃T

k x̃k − 1‖ and
δ(λ̃k) = max |λ̃k − λk|.

R(λ̃k, x̃k) O(x̃k) δ(λ̃k) tλ̃ tx̃ tλ̃ + tx̃

ginvit 2.05e− 15 2.94e− 14 2.04e− 15 9.54 34.57 44.11
dstegr 3.77e− 14 5.22e− 12 5.22e− 14 3.75 51.51 55.26
dstedc 2.61e− 15 4.49e− 14 2.39e− 15 4.23 1630.41 1634.64
dstein 2.35e− 15 1.37e− 14 3.65e− 16 65.39 4816.92 4882.31
dsteqr 9.44e− 15 3.69e− 14 5.72e− 15 5.74 5379.14 5384.88

Table 1. Full spectral decomposition of the matrix Th, h = π/96 (n = 9025).
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