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Abstract. Classically, several numerical linear algebra problems are
solved by means of tridiagonal (symmetric) and Hessenberg (unsymmet-
ric) matrices. In this talk, it will be shown that a similar role can be
played by semiseparable matrices. A matrix is called semiseparable if all
submatrices that can be taken out of the lower triangular part (the main
diagonal included) have maximum rank one. We will study how several
matrix operations can be performed on such semiseparable, as well as
more general rank structured matrices in an efficient and accurate way.
We will illustrate the algorithms by means of several numerical examples.

1 Eigenvalue problems

When all eigenvalues (and eigenvectors) have to be computed for a given sym-
metric matrix of not too large size, the classical QR-algorithm is used, i.e., the
symmetric matrix is transformed into a symmetric tridiagonal one by orthog-
onal similarity transformations and then the QR-algorithm is applied to this
tridiagonal matrix. This transformation is performed because each step of the
QR-algorithm applied to an n × n tridiagonal matrix only requires O(n) flops.
Moreover, the eigenvalues of the leading principal submatrices of the tridiagonal
matrix are the Lanczos-Ritz values.

One could ask the question if there are other classes of matrices having in-
teresting structures that have similar properties as the tridiagonal matrices.
In [9], the necessary and sufficient conditions are derived such that the k × k
leading principal submatrix of the matrix during the orthogonal similarity trans-
formation process contains the Lanczos-Ritz values as eigenvalues just as in the
tridiagonal case. These conditions lead naturally to other classes of structured
matrices (semiseparable and diagonal-plus-semiseparable matrices). Moreover it
turns out that each step of the QR-algorithm also needs only O(n) operations.

In this talk, we will give an overview of the use of (symmetric) semisepara-
ble matrices as an alternative to tridiagonal ones. There is a close relationship
between the set of tridiagonal and semiseparable matrices. Indeed, the inverse
of a nonsingular tridiagonal matrix is semiseparable and vice-versa.
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Using orthogonal similarity transformations any symmetric matrix can be
reduced into a symmetric semiseparable one [8]. The computational complex-
ity of this reduction is of the same order as for the tridiagonal reduction. The
implicit QR-algorithm on a semiseparable matrix can then be applied by a chas-
ing technique [12]. Similar algorithms have been developed for the unsymmetric
eigenproblem [11] and the singular value problem [10]. Also divide-and-conquer
techniques [7], Lanczos-type algorithms [6], . . . were designed using semisepa-
rable matrices. Currently we are investigating how similar techniques can be
applied to solve the generalized eigenvalue problem.

2 Using diagonal-plus-semiseparable matrices

When we allow more freedom in the reduction to rank structured form, one of the
immediate choices is the introduction of a diagonal. The choice of the diagonal
elements will influence the convergence behaviour when executing the reduction
into diagonal-plus-semiseparable form [14].

3 More general rank structured matrices

We call a matrix rank structured if the ranks of certain submatrices starting
from the lower-left matrix corner, as well as the ranks of certain submatrices
starting from the upper-right matrix corner, are small compared to the matrix
size. The class of rank structured matrices contains as special cases the classes
of semiseparable matrices, unitary Hessenberg matrices, quasiseparable matrices
and so on.

3.1 Representation

In order to specify algorithms for the class of rank structured matrices, we will
first need an efficient representation. To this end we will use the Givens-weight
representation: this is a generalization of the Givens-vector representation for
semiseparable matrices [13], which is generalized to the case of an arbitrary rank
structure.

3.2 Hessenberg reduction

Using the Givens-weight representation, we can devise an efficient algorithm to
transform a rank structured matrix into a Hessenberg matrix by the use of uni-
tary similarity transformations. The algorithm is important since the Hessenberg
reduction process is commonly used as a first step to determine the eigenvalue
spectrum of a matrix. We also show how the algorithm can be modified to trans-
form the given matrix to bidiagonal form, by means of possibly different unitary
row and column operations, i.e. by a reduction of the form A 7→ UAV . This re-
duction can be used as a first step to compute the singular value decomposition
of a matrix.
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3.3 QR-factorization and QR-algorithm

When investigating matrix structures preserved under the QR-algorithm, un-
der matrix inversion, under Schur complementation, the class of rank structured
matrices turns out to maintain its structure under these operations [3, 4, 1, 2].
Taking the structure of the Q and R factor of the QR-factorization of a rank
structured matrix into account, an efficient algorithm can be designed to com-
pute this QR-factorization and solve the corresponding system of linear equa-
tions. These properties can also be used to devise a QR-algorithm where each
step of the algorithm needs O(n) floating point operations on a rank structured
matrix of size n. Also a rank structured representation for the inverse can be
computed in an efficient way.

4 Related topics

4.1 Zeros of polynomials

The zeros of a polynomial are classically computed as eigenvalues of the corre-
sponding companion, comrade, . . . matrix. Such a matrix belongs to the class of
symmetric/unitary rank structured matrices plus a low rank matrix. This struc-
ture is maintained under the QR-algorithm. Hence, the implicit QR-algorithm
for rank structured plus low rank matrices can be used to solve this problem
efficiently and accurately.

4.2 Orthogonal rational functions

As the recurrence relation for orthogonal polynomials on the real line is related to
symmetric tridiagonal matrices, the recurrence relation for orthogonal rational
functions is connected to diagonal-plus-semiseparable matrices. The parameters
of these relations can be computed by solving an inverse eigenvalue problem [5].

Notes and Comments. The aim of this extended abstract is to give an overview
of the work of the MaSe-team (Matrices having Structure) that is done and still
being done in the field of rank structured matrices. Hence, all the references are
publications of members of the MaSe-team. This domain of research is very active
over the last couple of years. One can also have a look at the work of Y. Eidelman
and I. Gohberg; D. Bini and L. Gemignani; D. Fasino; S. Chandrasekaran, M.
Gu, P. Dewilde and A.-J. van der Veen; R. Bevilacqua and G. Del Corso; E.
Tyrtyshnikov; R. Nabben; L. Elsner; M. Fiedler; G. Meurant, . . . . There are also
strong connections with hierarchical matrices, especially H2-matrices, developed
by W. Hackbusch et al.
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