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Abstract. Routines exist in LAPACK for computing the Cholesky factor-
ization of a symmetric positive definite matrix and in LINPACK there is a
pivoted routine for positive semidefinite matrices. We present new higher
level BLAS LAPACK-style codes for computing this pivoted factorization.
We show that these can be many times faster than the LINPACK code.
Also, with a new stopping criterion, there is more reliable rank detection
and smaller normwise backward error.
We also present algorithms that update the QR factorization of a matrix
after it has had a block of rows or columns added or deleted. This is achieved
by updating the factors Q and R of the original matrix. We present some
LAPACK-style codes and show these can be much faster than computing the
factorization from scratch, and the backward error of our updated factors is
comparable to that of a standard QR factorization.

1 Pivoted Cholesky Factorization

1.1 Introduction

The Cholesky factorization of a symmetric positive definite matrix A ∈ Rn×n has
the form

A = LLT ,

where L ∈ Rn×n is a lower triangular matrix with positive diagonal elements. If A is
positive semidefinite, of rank r, there exists a Cholesky factorization with complete
pivoting ([4, Thm. 10.9], for example). That is, there exists a permutation matrix
P ∈ Rn×n such that

PTAP = LLT ,

where L is unique in the form

L =

[
L11 0
L12 0

]
,

with L11 ∈ Rr×r lower triangular with positive diagonal elements.

1.2 Algorithms

In LAPACK [1] there are Level 2 BLAS and Level 3 BLAS routines for comput-
ing the Cholesky factorization in the full rank case and without pivoting. In LIN-
PACK [2] the routines xCHDC perform the Cholesky factorization with complete
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pivoting, but effectively uses only Level 1 BLAS. For computational efficiency we
would like a pivoted routine that exploits the Level 2 or Level 3 BLAS.

In this section of the talk we describe a pivoted ‘Gaxpy’ Level 2 BLAS algo-
rithm for positive semidefinite matrices. We describe the existing LAPACK Level 3
code and explain why this code cannot be altered to include pivoting. We give an
alternative Level 3 algorithm and show that this can include pivoting. This is given
by writing the semidefinite matrix A(k−1) ∈ Rn×n and nb ∈ R [3]

A(k−1) =

[
A

(k−1)
11 A

(k−1)
12

AT
(k−1)

12 A
(k−1)
22

]
=

[
L11 0
L21 In−nb

] [
Inb 0
0 A(k)

] [
L11 0
L21 In−nb

]T
,

where L11 ∈ Rnb×nb and L21 ∈ R(n−nb)×nb form the first nb columns of the Cholesky
factor L of A(k−1). Now to complete our factorization of A(k−1) we need to factor
the reduced matrix

A(k) = A
(k−1)
22 − L21L

T
21,

which we can explicitly form, taking advantage of symmetry.
We also discuss possible stopping criteria and their effect on the computed

Cholesky factor.
Finally we report on the following numerical experiments.

1.3 Numerical Experiments

We tested and compared four Fortran subroutines: LINPACK’s DCHDC, DCHDC al-
tered to use a different stopping criteria and implementations of a level 2 pivoted
Gaxpy algorithm and level 3 pivoted Gaxpy algorithm.

We report on the following tests:

– We first compare the speed of the factorization of the LINPACK code and our
Level 2 and 3 routines for different sizes of A ∈ Rn×n.

– We also compare the speed of the unpivoted LAPACK subroutines against our
Level 2 and Level 3 pivoted codes, using full rank matrices, to demonstrate the
pivoting overhead.

– Finally we look at the four subroutines acting on a set of random positive
semidefinite matrices with pre-determined eigenvalues to assess the rank detec-
tion properties and backward error of the computed factor.

1.4 Results

The tests show that our codes are much faster than the existing LINPACK codes.
We also show that the pivoting overhead is negligible for large n.

Furthermore, with a new stopping criterion the rank is revealed much more
reliably, and this leads to a smaller normwise backward error.

2 Updating the QR Factorization

2.1 Introduction

We wish to update the QR factorization

A = QR ∈ Rm×n,

where Q ∈ Rn×n is orthogonal and R ∈ Rm×n is upper trapezoidal, efficiently. That
is we wish to find Ã = Q̃R̃, where Ã is the updated A, it has had rows or columns
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added or deleted. We seek to do this without recomputing the factorization from
scratch. We will assume that A and Ã have full rank.

Where possible we derive blocked algorithms to exploit the Level 3 BLAS and
existing Level 3 LAPACK routines. We present LAPACK style code for updating
the QR factorization in the cases of adding and deleting blocks of columns.

In the following section we will talk about all the cases where rows and columns
are added to or deleted from the QR factorization. We derive algorithms for up-
dating and finding a suitable orthogonal matrix H. This matrix is a product of
Househlder and/or Givens matrices.

2.2 Deleting a Block of Rows

If we delete a block of p rows, A(k: k+p−1, 1:n), from A we have for a permutation
matrix, P ,

PA =

[
A(k: k + p− 1, 1:n)

Ã

]
.

Thus we require an orthogonal matrix H such that

[
A(k: k + p− 1, 1:n)

Ã

]
= (PQH)HTR =

[
I 0
0 Q̃

] [
V
R̃

]
.

2.3 Adding a Block of Rows

If we add a block of p rows, U ∈ R(p×n), in the kth to (k + p− 1)st positions of A
we can write

Ã =



A(1: k − 1, 1:n)

U
A(k:m, 1:n)


 , P Ã =

[
A
U

]
,

for a permutation matrix, P , and

[
QT 0
0 Ip

]
PÃ =

[
R
U

]
.

Thus we seek an orthogonal matrix H such that

Ã =

(
PT
[
Q 0
0 Ip

]
H

)
HT

[
R
U

]
= Q̃R̃.

2.4 Deleting a Block of Columns

If we delete a block of p columns, from the kth column onwards, from A, we can
write

Ã = [A(1:m, 1: k − 1) A(1:m, k + p:n) ]

then

QT Ã = [R(1:m, 1: k − 1) R(1:m, k + p:n) ] .

Thus we require an orthogonal matrix H such that

Ã = (QH)HT [R(1:m, 1: k − 1) R(1:m, k + p:n) ] = Q̃T R̃.
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2.5 Adding a Block of Columns

If we add a block of p columns, U ∈ Rm×p, in the kth to (k + p− 1)st positions of
A, we can write

Ã = [A(1:m, 1: k − 1) U A(1:m, k:n) ]

then
QT Ã = [R(1:m, 1: k − 1) V R(1:m, k:n) ] ,

where V = QTU , and we require an orthogonal matrix H such that

Ã = (QH)HT [R(1:m, 1: k − 1) V R(1:m, k:n) ] = Q̃R̃.

2.6 Numerical Experiments

Here we look at implementations of algorithms for the latter two cases above, and
report on the following tests:

– We compare the speed of our double precision Fortran 77 codes against LA-
PACK’s DGEQRF, a Level 3 BLAS routine for computing the QR factorization of
a matrix. We timed our codes acting on QT Ã, the starting point for computing
R̃, and in the case of adding columns we included the computation of QTU in
our timings. We also timed DGEQRF acting on only the part of QT Ã that needs
to be updated, the nonzero part from row and column k onwards.

– We also look at the computed backward error of an updated factorization after
repeatedly adding and deleting columns.

2.7 Results

The speed tests show that our updating algorithms are faster than computing the
QR factorization from scratch or using the factorization to update columns k on-
ward.

Furthermore, the normwise backward error tests show that the errors are within
the bound for computing the Householder QR factorization of Ã. Thus, within the
parameters of our experiments, the increase of speed is not at the detriment of
accuracy.
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