
Questions for “The future of HPC programming - a Modern

Fortran workshop”, 2022-11-(24-25)

You are welcome to ask questions in the Zoom chat as well, but it easily gets cluttered when

many are using it at the same time. You can instead write your question here, and the helpers

will then either answer it or read it to the presenter so he can answer.

Please note the following:

● Add your questions below, numbering them continuously.

● Be careful in case someone else is writing at the same time.

● Please DO NOT delete your questions even when they have been answered, as we are

planning to use them to improve our material.

● Do not share any sensitive information as this document is accessible to anyone with the

correct link.

● You can start a new line by pressing <SHIFT> + <ENTER>.

Day 1 / Thursday

1) General information / summary:

https://umeauniversity.sharepoint.com/:w:/s/HPC2N630/Ec8-IoVmUCNKuhj_-

QuLYqUBW_cuOz_CY_QP_wya3fBMgA?e=krjKrC

2) For those that are using HPC2N’s resources

a) Hostnames for kebnekaise login nodes:

i) SSH: kebnekaise.hpc2n.umu.se

ii) ThinLinc: kebnekaise-tl.hpc2n.umu.se

b) How to change the password?

i) After logging in, type passwd. It will first ask your current password and

then your new password twice. There might be a small delay before the

new password has been communicated across the system.

c) In order to access the Fortran compilers, you need to load a module. We

recommend the module foss/2021b (contains GCC 11.2) or foss/2022a (contains

GCC 11.3). Either module can be loaded directly (do a “module purge” in

between if you are switching between them).

i) To load foss/2021b, type: ml foss/2021b

ii) To load foss/2022a, type: ml foss/2022a

iii) When the chosen module is loaded, you can access the compilers, like

gfortran.

3) [BalintAradi]: Will the slides eventually be available for download?

a) We haven’t discussed that yet – we will get back.

b) Update: Jonas will make slides and codes available. Expecty email from

Birgitte.

https://umeauniversity.sharepoint.com/:w:/s/HPC2N630/Ec8-IoVmUCNKuhj_-QuLYqUBW_cuOz_CY_QP_wya3fBMgA?e=krjKrC
https://umeauniversity.sharepoint.com/:w:/s/HPC2N630/Ec8-IoVmUCNKuhj_-QuLYqUBW_cuOz_CY_QP_wya3fBMgA?e=krjKrC

4) [BA] Is it not a “dangerous” practice to make the initi() method type bound? As in Fortran

everything is virtual, you won’t be able to override its signature in any extending types.

a) Did this answer your question?

b) Partially yes, thanks. But the problem is, that the signature remains the same. If

an extending type would need to pass further arguments init(), it will not be

possible.

c) But isn’t this against the grain of object orientation?

d) Depends on your framework. Think about Circle and Rectangle. CIrcle needs

only a radius to get initialized, while Rectangle two lenghts, a & b.

e) But then you would not build circle on rectangle or vice versa. You would take a

point (e.g. centre of gravity) and build the circle or the rectange ontop of the point

with the extra attribute.

f) That's true, but then you need two calls to initialize an object, which is error

prone. What happens,

g) Jonas suggested to call the initialiser to the point from the initialiser of e.g. the

square. So if I want to initialise the square I call the initialiser of the square,

that’s it.

h) Yes, you’re absolutelty right. THe problem is noly, that you can not pass any

other data to the init() of square, as to the init() of point. But square may need

also additional data to initalize itself, so you would have pass it with an extra

additional call.:

i) My understanding is, that square init and point init are different routines and can

have different arguments.

j) Unfortunately, that does not work in Fortran. Extending type must override the

procedures with the same signature (apart of the first class(...)) argument. /

k) I try to catch Jonas on this later ...

l) I think he is demonstrating this now ...

m) Exactly: You can not change the signature of a call in extending types. This is

why we usually make the initialization not a class-method in our Fortran projects.

/

5) [MD] Why do you use “type(...) :: this” and sometimes “Class(...) :: this” inside the

subroutines.

When should I use Class and when type?

a) [BA] In all type bound procedures, you use class(), unless in the finalizer, where

you must use type(). /

6) Practical question: will there be any breaks before lunch?

a) There will be a break around 10:00 or 10:15. The break will be about 15 min

7) An example is GPU computing.

8) I think, there is no casting. If c_int can not be represented in Fortran (if there is no

corresponding type in Fortran), the compiler would stop with an error message. /

9) If you want to see what happens when types are not compatible try passing Logical from

Fortran to boolean in C/C++.

a) What would you use in Fortran to match on a C/C++ boolean?

b) Don’t, pass integers instead

10) Are you on a windows system? Could you share, after the class, a note on how to get

the environment for mixed (Fortran and C/C++) programming up and running?

11) Very, very nice for the GUI capabilities, thanks a lot for demonstrating, but if I didn’t miss

it, you had no multidimensional arrays in the Fortran code, which arguably would be a

main reason to code the “number crunching” part in Fortran. How to pass

multidimensional arrays from C++ to Fortran? In general a Fortran library would require

multidimensional arrays as inputs.

a) Fortran multidimensional arrays are passed as flat arrays to C/C++ and then

back. A (N, M) Fortran array becomes a C/C++ array with N*M elements.

> ok, thanks, but that scales bad for higher dimensions, like rank 4, 5, 6... I mean

from the coding point of view, you need to take care manually of all the strides?

i) In C/C++ yes, that sucks.

> So eigen, boost, etc. do not provide “official” ISO bindings?

ii) C++23 will include mdspan, which should make this easier.

b) One has to watch out for column major or row major formatting of multi

dimensional arrays in Fortran/C

c)

12) , Do you lose noticeable performance running this simulation in C++ and Fortran over

just writing all in C++? Or is it even faster?

13) It is possible to combine MPI-codes. You just pass the MPI-communicator handle

around, converting it between the Fortran and the C++ representation using the

appropriate MPI-routines. /

a) I think this is a question towards the MPI standard.

b) It is explicitly supported by the MPI standard.

14) We have break until 13:00!

15) [BA] Amazing and very nice! Are there any plans to make the notation less verbose,

before being standardized? Currently it feels to be a lot of typing.

16) Did you already say which Fortran compiler is giving all this facility (Generic

Programming)?

a) https://lfortran.org/ is doing proto-typing

17) [BA]: Also the NAG compiler takes 1, 2, 3 by default as kinds for the real kinds.

a) Tack.

18) I am confused here. If we have to instantiate ourselves, what is the point? Isn’t the idea

of templates that the compiler instantiates the right types for us? ^^

a) We will get to that ;)

19) Perhaps, start with something simple? Just addition ? We can continue..

20) Exercise:

Answering:

21) I believe this is the link to the YouTube video about GraphBLAS:

https://youtu.be/wqjRzC2fPUo

22) [BA] Actually, the current NAG compiler supports co-arrays (with thread parallel

execution).

23) We reconvene at 16:10

https://youtu.be/wqjRzC2fPUo

24) Exercise:

Answering/some ideas:

25) [BA] A follow-up technical question: Would one be able to distribute the templates in a

library as binary file, or does one have to distribute the template source code? Thx, very

cool!

26) Start tomorrow at 8:30 CET

27) PLACEHOLDER

28) PLACEHOLDER

29) PLACEHOLDER

30) PLACEHOLDER

Day 2 / Friday

1. [BA] I think, you could also invent automatic reindexing arrays during the transformation,

to map information, which is not present for all entries... (as Magne explained....)

2. So is the compiler like modern gfortran versions doing the transformation AoS to SoA

and the code is almost same speed? I did not understand if it is a real problem.

a. It is a real problem. Current compilers do not do the transformation.

b. Ok thanks for the answer. I am not very experienced, does anyone know if this is

an issue in c++ or python as well, or is it fortran specific, since for example the

c++ compiler does this optimization?

c. [JH]I it a general problem with derived data types in OO. I am not aware of any

major compiler/runtime engine helping you.

d. [BA] Compiler use the data layout you tell them. They are not reoptimizing your

approach. That would be one level up above current compilers. /

e. Also, different operations call for different optimal memory layouts. So what

should the compiler do, reshape memory every time? It doesn’t sound so optimal

neither... I believe it’s highly nontrivial of a task.

3. The sound quality is dramatically better when Magne is nearer to the laptop :-)

4. Exercise time until 10:40 ...

5. Will we get the slides?

a. Magne will be sharing some slides later, most likely via Birgitte

6. How about CUDA and modern Fortran in the future?

7. [BA] Non-initilaized data is bug indeed. However, the question is: do you prefer a buggy

program with indeterministic behavior (when no default initiialization is done) or a buggy

program with deterministic behavior (if default initialization is done). Reproducable

results would for sure need latter.

8. [LV] For automatic storage duration, can't you initialize with f.ex. int a[200] = {0}, even in

C? Data ought to be consistent between the stack memory and cache lines, I've never

seen it depend on whether it was hot or cold.

9. [LV] (more of a comment) On the discussion on the C++ list, there’s a suggestion to

zero-initialize memory on the stack for automatic variables and it is shown to often even

improve performance (https://wg21.link/P2723R0)!

10. [LV] You have an OS guarantee on pretty much every OS to get memory backed by zero

pages when allocating fresh memory. Allocators inside the process like malloc gets you

old values if reusing previously freed but not returned memory.

11. [BA] Does it mean, that libraries would be distributed as ASRs, you would combine

ASRs during build and then create machine code?

12. I came back late from lunch – when will these recordings be posted?

a. Depends on Birgitte’s laptop doing the mangling

b. Either later today or during the weekend. Should definitely be up before Monday

13. For anyone to join who might want to take part of the discussion on the Fortran

language, on development, future, etc.:

a. https://fortran-lang.discourse.group/

14. [BA] Thank you for organizing this very interesting workshop!

15. PLACEHOLDER

16. PLACEHOLDER

17. PLACEHOLDER

18. PLACEHOLDER

19. PLACEHOLDER

20. PLACEHOLDER

21. PLACEHOLDER

22. PLACEHOLDER

23. PLACEHOLDER

24. PLACEHOLDER

25. PLACEHOLDER

https://fortran-lang.discourse.group/

	Questions for “The future of HPC programming - a Modern Fortran workshop”, 2022-11-(24-25)
	Day 1 / Thursday
	Day 2 / Friday

