Introduction to HPC2N, Kebnekaise and High Performance Computing

Mirko Myllykoski mirkom@cs.umu.se and others at HPC2N

Department of Computing Science and HPC2N Umeå University

22. January 2020

HPC2N

High Performance Computing Center North (HPC2N) is a national center for Scientific and Parallel Computing

Provides state-of-the-art resources and expertise:

- Provides state-of-the-art resources and expertise:
 - Scalable and parallel HPC

- Provides state-of-the-art resources and expertise:
 - Scalable and parallel HPC
 - Large-scale storage facilities (PFS-Lustre, SweStore, Tape)

- Provides state-of-the-art resources and expertise:
 - Scalable and parallel HPC
 - Large-scale storage facilities (PFS-Lustre, SweStore, Tape)
 - Grid and cloud computing (WLCG NT1, SNIC Cloud)

- Provides state-of-the-art resources and expertise:
 - Scalable and parallel HPC
 - Large-scale storage facilities (PFS-Lustre, SweStore, Tape)
 - Grid and cloud computing (WLCG NT1, SNIC Cloud)
 - Software and advanced support

- Provides state-of-the-art resources and expertise:
 - Scalable and parallel **HPC**
 - Large-scale storage facilities (PFS-Lustre, SweStore, Tape)
 - Grid and cloud computing (WLCG NT1, SNIC Cloud)
 - Software and advanced support
 - International network for research and development

 HPC2N is a part of Swedish National Infrastructure for Computing (SNIC)

- HPC2N is a part of Swedish National Infrastructure for Computing (SNIC)
- Five partners:
 - Luleå University of Technology
 - Mid Sweden University
 - Swedish Institute of Space Physics
 - Swedish University of Agricultural Sciences SLU
 - Umeå University

- HPC2N is a part of Swedish National Infrastructure for Computing (SNIC)
- Five partners:
 - Luleå University of Technology
 - Mid Sweden University
 - Swedish Institute of Space Physics
 - Swedish University of Agricultural Sciences SLU
 - Umeå University
- Funded by Swedish Research Council (VR), SNIC and various partners.

- HPC2N is a part of Swedish National Infrastructure for Computing (SNIC)
- Five partners:
 - Luleå University of Technology
 - Mid Sweden University
 - Swedish Institute of Space Physics
 - Swedish University of Agricultural Sciences SLU
 - Umeå University
- Funded by Swedish Research Council (VR), SNIC and various partners.

- Involved in several projects and collaborations
 - EGI, PRACE, EISCAT, eSSENCE, NOSEG, SNIC Science Cloud, NLAFET, ...

User support (primary, advanced, tailored)

- Research group meetings @ UmU
- Also the partner sites

User support (primary, advanced, tailored)

- Research group meetings @ UmU
- Also the partner sites

User training and education program

- 0.5 3 days; ready-to-run exercises
- Introduction to HPC2N and Kebnekaise
- Parallel programming and tools (e.g., OpenMP, MPI, debugging, performance analyzers, Matlab, R, MD simulation, Deep Learning, GPU, ...)

User support (primary, advanced, tailored)

- Research group meetings @ UmU
- Also the partner sites

User training and education program

- 0.5 3 days; ready-to-run exercises
- Introduction to HPC2N and Kebnekaise
- Parallel programming and tools (e.g., OpenMP, MPI, debugging, performance analyzers, Matlab, R, MD simulation, Deep Learning, GPU, ...)
- NGSSC / SeSE & university courses

User support (primary, advanced, tailored)

- Research group meetings @ UmU
- Also the partner sites

User training and education program

- 0.5 3 days; ready-to-run exercises
- Introduction to HPC2N and Kebnekaise
- Parallel programming and tools (e.g., OpenMP, MPI, debugging, performance analyzers, Matlab, R, MD simulation, Deep Learning, GPU, ...)
- NGSSC / SeSE & university courses
- Workshops and seminars

Management

- Bo Kågström, director
- Lena Hellman, administrator
- Björn Torkelsson, technical coordinator

Management

- Bo Kågström, director
- Lena Hellman, administrator
- Björn Torkelsson, technical coordinator

Application experts

- Jerry Eriksson
- Mirko Myllykoski
- Pedro Ojeda May

Management

- Bo Kågström, director
- Lena Hellman, administrator
- Björn Torkelsson, technical coordinator

Application experts

- Jerry Eriksson
- Mirko Myllykoski
- Pedro Ojeda May

Others

- Mikael Rännar (WLCG coord)
- Anders Backman
- Kenneth Bodin
- Claude Lacoursière (Algoryx)

Management

- Bo Kågström, director
- Lena Hellman, administrator
- Björn Torkelsson, technical coordinator

Application experts

- Jerry Eriksson
- Mirko Myllykoski
- Pedro Ojeda May

Others

- Mikael Rännar (WLCG coord)
- Anders Backman
- Kenneth Bodin
- Claude Lacoursière (Algoryx)

System and support

- Erik Andersson
- Birgitte Brydsö
- Niklas Edmundsson (Tape coord)
- Ingemar Fällman
- Magnus Jonsson
- Roger Oscarsson
- Åke Sandgren
- Mattias Wadenstein (NeIC, Tier1)
- Lars Viklund

HPC2N provides advanced level support (tier-3 and tier-4) in the form of application experts:

Jerry Eriksson Profiling, Machine learning (DNN), MPI, OpenMP, OpenACC

Jerry Eriksson	Profiling,	Machine	learning	(DNN),	MPI,
	OpenMP, OpenACC				
Mirko Myllykoski	High performance computing, numerical linear algebra, CUDA, OpenCL, task parallelism				

Jerry Eriksson	Profiling, Machine learning (DNN), MPI,			
	OpenMP, OpenACC			
Mirko Myllykoski	High performance computing, numerical linear			
	algebra, CUDA, OpenCL, task parallelism			
Pedro Ojeda May	Molecular dynamics, Profiling, QM/MM,			
	NAMD, Amber, Gromacs, GAUSSIAN, R			

Jerry Eriksson	Profiling, Machine learning (DNN), MPI,				
	OpenMP, OpenACC				
Mirko Myllykoski	High performance computing, numerical linear				
	algebra, CUDA, OpenCL, task parallelism				
Pedro Ojeda May	Molecular dynamics, Profiling, QM/MM,				
	NAMD, Amber, Gromacs, GAUSSIAN, R				
Åke Sandgren	General high level programming assistance,				
	VASP, Gromacs, Amber				

HPC2N provides advanced level support (tier-3 and tier-4) in the form of application experts:

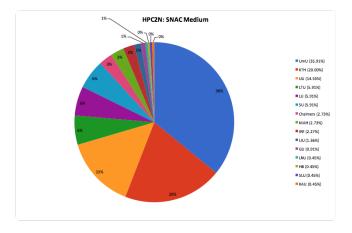
Jerry Eriksson	Profiling, Machine learning (DNN), MPI,				
	OpenMP, OpenACC				
Mirko Myllykoski	High performance computing, numerical linear				
	algebra, CUDA, OpenCL, task parallelism				
Pedro Ojeda May	Molecular dynamics, Profiling, QM/MM,				
	NAMD, Amber, Gromacs, GAUSSIAN, R				
Åke Sandgren	General high level programming assistance,				
	VASP, Gromacs, Amber				

 Contact through support at HPC2N (create a ticket, tier-3 and tier-4 tickets are forwarded to suitable application experts)

HPC2N (users by discipline)

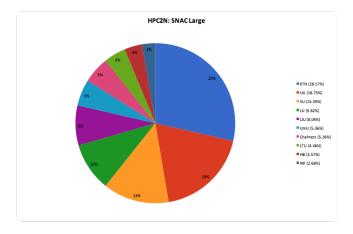
Users from several scientific disciplines:

- Biosciences and medicine
- Chemistry
- Computing science
- Engineering
- Materials science
- Mathematics and statistics
- Physics including space physics
- Deep Learning and AI in general (several new projects)


HPC2N (users by discipline)

Users from several scientific disciplines:

- Biosciences and medicine
- Chemistry
- Computing science
- Engineering
- Materials science
- Mathematics and statistics
- Physics including space physics
- Deep Learning and AI in general (several new projects)


HPC2N (medium users by university)

Projects with allocations at HPC2N: 2014-01-01 to 2016-05-30

HPC2N (large users by university)

Projects with allocations at HPC2N: 2014-01-01 to 2016-05-30

Kebnekaise is the latest supercomputer at HPC2N

It is named after the massif of the same name, which has some of Sweden's highest mountain peaks

- It is named after the massif of the same name, which has some of Sweden's highest mountain peaks
- Kebnekaise was
 - delivered by Lenovo and
 - installed during the summer 2016

- It is named after the massif of the same name, which has some of Sweden's highest mountain peaks
- Kebnekaise was
 - delivered by Lenovo and
 - installed during the summer 2016
- Kebnekaise was opened up for general availability on November 7, 2016

- It is named after the massif of the same name, which has some of Sweden's highest mountain peaks
- Kebnekaise was
 - delivered by Lenovo and
 - installed during the summer 2016
- Kebnekaise was opened up for general availability on November 7, 2016
- In 2018, Kebnekaise was extended with
 - ▶ 52 Intel Xeon Gold 6132 (Skylake) nodes, as well as
 - 10 NVidian V100 (Volta) GPU nodes

Kebnekaise (compute nodes)

	Name	#	Description
-	Compute	130	Intel Xeon E5-2690v4, 2 x 14 cores,
Compute	432	128 GB, FDR Infiniband	

Kebnekaise (compute nodes)

Name	#	Description
Compute	432	Intel Xeon E5-2690v4, 2 x 14 cores,
		128 GB, FDR Infiniband
Compute-skylake	52	Intel Xeon Gold 6132, 2 x 14 cores,
		192 GB, EDR Infiniband, AVX-512

Kebnekaise (compute nodes)

Name	#	Description
Compute	432	Intel Xeon E5-2690v4, 2 x 14 cores,
		128 GB, FDR Infiniband
Compute-skylake	52	Intel Xeon Gold 6132, 2 x 14 cores,
		192 GB, EDR Infiniband, AVX-512
Large Memory	20	Intel Xeon E7-8860v4, 4 x 18 cores,
		3072 GB, EDR Infiniband

Kebnekaise (compute nodes)

Name	#	Description
Compute	432	Intel Xeon E5-2690v4, 2 x 14 cores,
		128 GB, FDR Infiniband
Compute-skylake	52	Intel Xeon Gold 6132, 2 x 14 cores,
		192 GB, EDR Infiniband, AVX-512
Large Memory	20	Intel Xeon E7-8860v4, 4 x 18 cores ,
		3072 GB, EDR Infiniband
KNL	36	Intel Xeon Phi 7250 (Knight's Landing),
		68 cores, 192 GB, 16 GB MCDRAM,
		FDR Infiniband

Kebnekaise (GPU nodes)

Name	#	Description
2xGPU	32	Intel Xeon E5-2690v4, 2 x 14 cores, 128 GB, FDR Infiniband, 2 x NVidia K80 4 x 2496 CUDA cores, 4 x 12 GB VRAM

Kebnekaise (GPU nodes)

Name	#	Description
2xGPU		Intel Xeon E5-2690v4, 2 x 14 cores,
	วา	128 GB, FDR Infiniband,
	32	2 x NVidia K80
		4×2496 CUDA cores, 4×12 GB VRAM
4xGPU		Intel Xeon E5-2690v4, 2 x 14 cores,
		128 GB, FDR Infiniband,
	4	4 x NVidia K80
		8 x 2496 CUDA cores, 8 x 12 GB VRAM

Kebnekaise (GPU nodes)

Name	#	Description
2xGPU	32	Intel Xeon E5-2690v4, 2 x 14 cores,
		128 GB, FDR Infiniband,
		2 x NVidia K80
		4×2496 CUDA cores, 4×12 GB VRAM
4xGPU	4	Intel Xeon E5-2690v4, 2 x 14 cores,
		128 GB, FDR Infiniband,
		4 x NVidia K80
		8 x 2496 CUDA cores, 8 x 12 GB VRAM
GPU-volta	10	Intel Xeon Gold 6132, 2 x 14 cores,
		192 GB, EDR Infiniband,
		2 x NVidia V100,
		2×5120 CUDA cores, 2×16 GB VRAM,
		2 x 640 Tensor cores

602 nodes in 15 racks

602 nodes in 15 racks

▶ 19288 cores (of which 2448 cores are KNL-cores)

18840 available for users (the rest are for managing the cluster)

602 nodes in 15 racks

▶ 19288 cores (of which 2448 cores are KNL-cores)

18840 available for users (the rest are for managing the cluster)

More than 136 TB memory

602 nodes in 15 racks

- ▶ 19288 cores (of which 2448 cores are KNL-cores)
 - 18840 available for users (the rest are for managing the cluster)
- More than 136 TB memory
- 71 switches (Infiniband, Access and Managment networks)

602 nodes in 15 racks

- ▶ 19288 cores (of which 2448 cores are KNL-cores)
 - 18840 available for users (the rest are for managing the cluster)
- More than 136 TB memory
- 71 switches (Infiniband, Access and Managment networks)
- ▶ 728 TFlops/s Peak performance (expansion not included)

- 602 nodes in 15 racks
- ▶ 19288 cores (of which 2448 cores are KNL-cores)
 - 18840 available for users (the rest are for managing the cluster)
- More than 136 TB memory
- 71 switches (Infiniband, Access and Managment networks)
- 728 TFlops/s Peak performance (expansion not included)
- 629 TFlops/s Linpack (all parts, except expansion)
 - 86% of Peak performance

Basically five types of storage are available at HPC2N:

Home directory

Only accessible from the login nodes, backed up regularly

- Home directory
 - Only accessible from the **login nodes**, backed up regularly
- Center Storage Parallel file system (fast discs)
 - Accessible from login and compute nodes

- Home directory
 - Only accessible from the login nodes, backed up regularly
- Center Storage Parallel file system (fast discs)
 - Accessible from login and compute nodes
- SweStore disk based (dCache)
 - part of SNIC Storage, nationally accessible storage

- Home directory
 - Only accessible from the **login nodes**, backed up regularly
- Center Storage Parallel file system (fast discs)
 - Accessible from login and compute nodes
- SweStore disk based (dCache)
 - part of SNIC Storage, nationally accessible storage
- Tape Storage
 - Backup
 - Long term storage

- Home directory
 - Only accessible from the login nodes, backed up regularly
- Center Storage Parallel file system (fast discs)
 - Accessible from login and compute nodes
- SweStore disk based (dCache)
 - part of SNIC Storage, nationally accessible storage
- Tape Storage
 - Backup
 - Long term storage
- Per node local scratch space
 - about 170GB, SSD, only during the lifetime of the batch job

High Performance Computing (definition)

"High Performance Computing most generally refers to the practice of **aggregating computing power** in a way that delivers much **higher performance** than one could get out of a typical desktop computer or workstation in order to **solve large problems** in science, engineering, or business."¹

¹https://insidehpc.com/hpc-basic-training/what-is-hpc/

High Performance Computing (opening the definition)

Aggregating computing power

- 602 nodes in 15 racks totalling 19288 cores
- Compared to 4 cores in a modern laptop

High Performance Computing (opening the definition)

Aggregating computing power

- 602 nodes in 15 racks totalling 19288 cores
- Compared to 4 cores in a modern laptop

Higher performance

- 728 000 000 000 000 arithmetical operations per second
- Compared to 200 000 000 000 Flops in a modern laptop

High Performance Computing (opening the definition)

Aggregating computing power

- 602 nodes in 15 racks totalling 19288 cores
- Compared to 4 cores in a modern laptop

Higher performance

- 728 000 000 000 000 arithmetical operations per second
- Compared to 200 000 000 Flops in a modern laptop

Solve large problems

- When does a problem become large enough for HPC?
- Are there other reasons for using HPC resources?

High Performance Computing (large problems)

A problem can be large for two main reasons:

- 1. Execution time: The time required to form a solution to the problem is very long
- 2. Memory / storage use: The solution of the problem requires a lot of memory and/or storage

High Performance Computing (large problems)

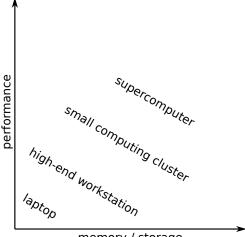
A problem can be large for two main reasons:

- 1. Execution time: The time required to form a solution to the problem is very long
- 2. Memory / storage use: The solution of the problem requires a lot of memory and/or storage
- ► The former can be remedied by **increasing the performance**
 - More cores, more nodes, GPUs, ...

High Performance Computing (large problems)

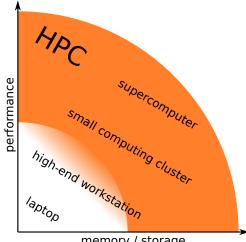
A problem can be large for two main reasons:

- 1. Execution time: The time required to form a solution to the problem is very long
- 2. Memory / storage use: The solution of the problem requires a lot of memory and/or storage
- The former can be remedied by increasing the performance
 - More cores, more nodes, GPUs, ...
- The latter by adding more memory / storage
 - More memory per node (including large memory nodes), more nodes, ...
 - Large storage solutions, ...


High Performance Computing (what counts as HPC)

performance

memory / storage


High Performance Computing (what counts as HPC)

memory / storage

High Performance Computing (what counts as HPC)

memory / storage

Specialized (expensive) hardware

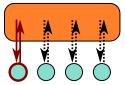
GPUs, Nvidia Tesla V100 GPUs are optimized for AI

- GPUs, Nvidia Tesla V100 GPUs are optimized for AI
- Intel Xeon Phi

- GPUs, Nvidia Tesla V100 GPUs are optimized for AI
- Intel Xeon Phi
- High-end CPUs (AVX-512 etc) and ECC memory

- GPUs, Nvidia Tesla V100 GPUs are optimized for AI
- Intel Xeon Phi
- High-end CPUs (AVX-512 etc) and ECC memory
- Software
 - HPC2N holds licenses for several softwares
 - Software is pre-configured and ready-to-use

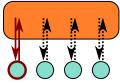
- GPUs, Nvidia Tesla V100 GPUs are optimized for AI
- Intel Xeon Phi
- High-end CPUs (AVX-512 etc) and ECC memory
- Software
 - HPC2N holds licenses for several softwares
 - Software is pre-configured and ready-to-use
- Support and documentation


High Performance Computing (memory models)

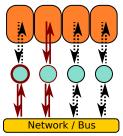
► Two memory models are relevant for HPC:

High Performance Computing (memory models)

- Two memory models are relevant for HPC:
 - Shared memory: Single memory space for all data.

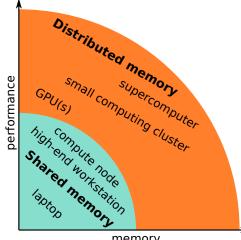


- Everyone can access the same data
- Straightforward to use


High Performance Computing (memory models)

- Two memory models are relevant for HPC:
 - Shared memory: Single memory space for all data.

- Everyone can access the same data
- Straightforward to use


Distributed memory: Multiple distinct memory spaces.

- Everyone has direct access only to the local data
- Requires communication

High Performance Computing (memory models)

memory

The programming model changes when we aim for extra performance and/or memory:

The programming model changes when we aim for extra performance and/or memory:

- 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations

The programming model changes when we aim for extra performance and/or memory:

- 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
- 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations

- The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - **Work distribution**, **coordination** (synchronization, etc),

- The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - **Work distribution**, **coordination** (synchronization, etc),
 - 3. Distributed memory: MPI,
 - Multiple streams of operations
 - Work distribution, coordination (synchronization, etc), ...

- The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - **Work distribution**, **coordination** (synchronization, etc),
 - 3. Distributed memory: MPI,
 - Multiple streams of operations
 - Work distribution, coordination (synchronization, etc),
 - Data distribution and communication

- The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - **Work distribution**, **coordination** (synchronization, etc),
 - 3. Distributed memory: MPI,
 - Multiple streams of operations
 - Work distribution, coordination (synchronization, etc),
 - Data distribution and communication
- ▶ GPUs: CUDA, OpenCL, OpenACC, OpenMP, ...

- The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - **Work distribution**, **coordination** (synchronization, etc),
 - 3. Distributed memory: MPI,
 - Multiple streams of operations
 - Work distribution, coordination (synchronization, etc),
 - Data distribution and communication
- GPUs: CUDA, OpenCL, OpenACC, OpenMP, ...
 - Many lightweight streams of operations

- The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - **Work distribution**, **coordination** (synchronization, etc),
 - 3. Distributed memory: MPI,
 - Multiple streams of operations
 - Work distribution, coordination (synchronization, etc),
 - Data distribution and communication
- ▶ GPUs: CUDA, OpenCL, OpenACC, OpenMP, ...
 - Many lightweight streams of operations
 - Work distribution, coordination (synchronization, etc),

- The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - **Work distribution**, **coordination** (synchronization, etc),
 - 3. Distributed memory: MPI,
 - Multiple streams of operations
 - Work distribution, coordination (synchronization, etc),
 - Data distribution and communication
- ▶ GPUs: CUDA, OpenCL, OpenACC, OpenMP, ...
 - Many lightweight streams of operations
 - Work distribution, coordination (synchronization, etc),
 - Data distribution across memory spaces and movement

Complexity grows when we aim for extra performance and/or memory/storage:

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK, ...
 - Load correct toolchain etc

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK,
 - Load correct toolchain etc
 - 2. Multi-core: LAPACK + parallel BLAS, ...
 - Load correct toolchain etc

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK, ...
 - Load correct toolchain etc
 - 2. Multi-core: LAPACK + parallel BLAS, ...
 - Load correct toolchain etc
 - Allocate correct number of cores, configure software to use correct number of cores, ...

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK, ...
 - Load correct toolchain etc
 - 2. Multi-core: LAPACK + parallel BLAS, ...
 - Load correct toolchain etc
 - Allocate correct number of cores, configure software to use correct number of cores, ...
 - 3. Distributed memory: ScaLAPACK, ...
 - Load correct toolchain etc

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK, ...
 - Load correct toolchain etc
 - 2. Multi-core: LAPACK + parallel BLAS, ...
 - Load correct toolchain etc
 - Allocate correct number of cores, configure software to use correct number of cores, ...
 - 3. Distributed memory: ScaLAPACK, ...
 - Load correct toolchain etc
 - Allocate correct number of nodes and cores, configure software to use correct number of nodes and cores,

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK, ...
 - Load correct toolchain etc
 - 2. Multi-core: LAPACK + parallel BLAS, ...
 - Load correct toolchain etc
 - Allocate correct number of cores, configure software to use correct number of cores, ...
 - 3. Distributed memory: ScaLAPACK, ...
 - Load correct toolchain etc
 - Allocate correct number of nodes and cores, configure software to use correct number of nodes and cores,
 - Data distribution, storage, ...

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK, ...
 - Load correct toolchain etc
 - 2. Multi-core: LAPACK + parallel BLAS, ...
 - Load correct toolchain etc
 - Allocate correct number of cores, configure software to use correct number of cores, ...
 - 3. Distributed memory: ScaLAPACK, ...
 - Load correct toolchain etc
 - Allocate correct number of nodes and cores, configure software to use correct number of nodes and cores, ...
 - Data distribution, storage, . . .
- ► GPUs: MAGMA, TensorFlow, ...
 - Load correct toolchain etc
 - Allocate correct number of cores and GPUs, configure software to use correct number of cores and GPUs,

End (questions?)

Questions?

