Heterogeneous computing with performance
modelling

More GPU programming basics

Mirko Myllykoski

mirkom@cs.umu.se

Department of Computing Science and HPC2N
Umea University

4-5. November 2020

ﬂ PRACF
UMEA
UNIVERSITY

1/38

Compute capability

» Different GPUs have different architecture and capabilities.

» Nvidia uses Compute Capabilities to enumerate the
differences:

>
>
>
>
>

>

» During this course, we are consentrating on 7.0 (Volta).

>

3.x — Kepler, GTX 700 series, Tesla K80
5.x — Maxwell, GTX 900 series

6.x — Pascal, GXT 1000 series

7.x — Volta, Tesla V100

7.5 — Turing, RTX 2000 series

8.x — Ampere, RTX 300 series, Tesla A100

However, we are not going to discuss any fancy
optimization techniques that are only 7.0 specific.

» Every new CUDA version introduces new functionality.

>
>

S%I]E\éERSITY = SNIC Q{F HPC2N

Some older GPUs do not support everything.
Some GPUs require customized code.

PRACE

2/38

Recap

> Let's return back to the earlier figure...

Host (CPU)

QPR

Device (GPU)

* Streaming MultiProcessors (SMPs)

CUDA cores

PRACE

. UNIVERSITY .. SN IC lg HPCZN 3/38

Recap

» A GPU contains several Streaming MultiProcessors (SMPs).
» Each SMP contains several CUDA cores.

» The threads are divided into thread blocks.

» Each thread block is mapped to a single SMP.

» A SMP can have multiple thread blocks mapped to it.
» Simultaneous hardware multithreading.

» Each CUDA core can execute several threads simultaneously.
» A scheduler select the next instruction among a pool of active
threads.

PRACE

S%IE\/}ERSITY [P S N IC mﬁ; HPC2N 4/38

Streaming MultiProcessors

» In reality, a SMP looks something like this:

5/38

Streaming MultiProcessors (processing blocks)

» Each SMP is divided into multiple processing blocks.
» Each processing block contains the following:

CUDA cores Large number of cores for various operations
(integer, 32-bit floating point, 64-bit floating
point, reduced precision, special functions, etc).

Scheduler During each cycle, a scheduler selects a set of
threads and issues an instruction to the cores.

Register file All threads share a large pool of registers.

» All processing blocks share a combined shared memory and L1
data cache.

» Left out from the figure: dispatch units, LO/L1 instruction
caches, load/store units, texture units, ...

PRACE

S%IE\/}ERSITY [P S N Ic -i:*«‘“ HPC2N 6/38

Streaming MultiProcessors (compared to CPU)

» This is a drastically different approach compared to CPUs.
» Each CPU core contains its own scheduler, registers, caches, ...
» Each CPU core contains several execution ports but these
execution ports are not generally referred to as cores.

7/38

Streaming MultiProcessors (summary)

» In general, GPUs allocate
» more silicon to units that compute, and
P |ess silicon to units that direct computation.

> More computing power in the same form factor.

» Modular approach: SMPs, processing blocks, CUDA cores.
» Easier to scale to thousands of cores.

» However, the CUDA cores share a lot of resources.

» Should we call CUDA cores cores?
» Are CUDA cores just execution ports?

» What are the limitations?

PRACE

S%F&ERSITY [P SNIC ;fquPC2N 8/38

Warps

» Underneath, each thread blocks is subdivided into warps.
» Each warps consist of 32 sequentially numbered threads.
> Given a thread block of the size (Dx, Dy, Dz), the hardware

indexes a thread of index (x, y, z) as (x + y*Dx + z*Dx*Dy).

» As a rule of thumb, threads that are adjacent in the x
dimension belong to the same warp.

1011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0123456789
£EE22:2£2¢8¢

warp 0

32 3334 353637 383940414243 44454647 48 49 5051 52 53 54 5556 57 58 59 60 61 62 63

—_—

warp 1
64 65 66 67 68 69 70 71 7273 74 7576 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 Q§

—_—

warp 2

PRACE

8%F$ERSITY Cp SNIC ;ﬁfHPCZN

9/38

Warps (warps scheduling)

> The warps are distributed among the processing blocks.
» During each instruction issue time, the scheduler

» picks a warp that is ready to execute an instruction and
P issues the instruction to a set of CUDA cores.
» The number of instructions issued depends on the architecture.

» All threads in a warp execute the same instruction!

» "Non-contributing” threads are disabled:

BN printf ("Everyone\n);
FIEIGBMSEMGLALLMGBMANIMANMMEER 4f (threadIdx.x < 16)
BEERRBBBBREREERIIGEIS3E3333333F printf ("Less than 16.\n");

£3s3ssssssS33333%3

EEEsEsEEsssiiRRERRRRRRERNRNE else if (threadIdx.x < 24)

sspssssssssssEVMIRESEEEEEE prinef ("Between 16 and 23\n");

else

gpRRREEEREECEEIECECIOREMIME printf("Larger than 23\n");

X) PRACE
B%I%\ERSITY [P SNIC :‘-‘fHPCZN 10/38

Warps (disabled threads)

» Even though some threads are disabled, the overall cost is still
almost as high as if all threads in the warp had executed all
diverging paths:

BN printf ("Everyone\n);
SRERRERRCRRRRERNERNERRRRNENNEE £ (threadIax.x < 16)
FREMBMBNBBMBMBMBmmzzEzaEEEEEEEE printf("Less than 16.\n");
FEazaasaasaasissMERRERNRNNENNE] else i (threadldx.x < 24)
SEEREEIEIECSEIMERBERERESECIEZE printf("Between 16 and 23\n");

else

BREREEEEREEEREEEERERMEMEMEME printf("Larger than 23\n");

X s PRACE
8%F$ERSITY ' SNIC :i‘%fHPCZN 11/38

Warps (disabled threads)

» The disabled threads do not trigger memory transfers etc, but
the associated resources (cores) are not being utilized:

W
AW

DWW A
DWW A
DWW A
DWW A
WA VAV
WAV VA
WA VAV
WA VAV
DWW AW
WAV VA
WA VAV
AN VAV
WAV VAV
WA VAV
WAV VA
DWW A

» Above, the warps are issued over two or four cycles in
half-warps (int, fp32) or quarter-warps (fp64), receptively.

= PRACE
@ Nihrsry & SNIC S HPC2N 12/38

Warps (diverging execution paths)

» The diverging execution paths can be a bigger problem than

expected.

» If a thread diverges with the probability p € [0, 1], then the
probability that at least one thread within a warp diverges is

S%F\;&ERSITY [P SNIC

100

32
1—-(1-p)~.
100
Ll o IR SRRRRRRREEI EEEEEEE —
[}
<
g
260 —
=
]
S sl -
[}
=
o 20 - —
0 1 1 1 1
0 20 40 60 80
Pr(a thread diverges)
<@ PRACE
S HPC2N

13/38

Synchronization

> [t is often necessary to synchronize the threads.

» We want to be sure that specific operations have been
completed.

» One of the simplest approaches is to create a barrier.

» All threads must encounter the barrier.
» Threads that have encountered the barrier wait until all
threads have encountered the barrier.

% § 2 threads have encountered the barrier

5 threads have encountered the barrier

6 threads have encountered the barrier

time

7 threads have encountered the barrier

8 threads have encountered the barrier

S%IE\/}ERSITY [P SNIC -ifr HPC2N 14 /38

Synchronization (globally)

» The maximum lifetime of a thread is the same as the lifetime
of the corresponding kernel.

> All threads in a grid are synchronized at the beginning and
the end of a kernel.

kernel A kernel B kernel C

PRACE

S%F&ERSITY [P SNIC ;fFHPC2N

15/38

Synchronization (globally)

> The host thread and the grid are synchronized with:

H __host__ __device__ cudaError_t cudaDeviceSynchronize (void)
(o) rid
post tve? ’
%. g g cudaDeviceSynchronize ()
Q
£
=

kernel finishes

PRACE

S%F&ERSITY [P SNIC :‘ffHPC2N 16 /38

Synchronization (thread block)

» Threads that belong to the same thread block are
synchronized with:

H __device__ void __syncthreads (void)

PRACE

S%F&ERSITY [P SNIC EF‘HPC2N 17 /38

Synchronization (warp)

» Threads that belong to the same warp are synchronized with:

H __device__ void __syncwarp(unsigned mask=0xffffffff)

» Guarantees memory ordering among threads participating in
the barrier.
» Limited usefulness with pre-Volta GPUs.
» Sometimes necessary with Volta and post-Volta GPUs.
» See Independent Thread Scheduling.

PRACE

S%F&ERSITY [P SNIC EF‘HPC2N 18 /38

Global memory

» Memory requests pass through L1 and L2 caches.
> A cache line is 128 bytes (32 floats, 16 doubles) and maps
to a 128 byte aligned segment of global memory.
» Unless L1 cache is explicitly disabled in which case the cache
line is 32 bytes and maps to a 32 byte aligned segment of

global memory.

0O 32 64 9 128 160
EEEN EEEN L]
256 288 320 352 384 416
EEEN EEEN EEEN
EEEEE EEEEE EEEET

- R) PRACE
@ Wikrory ¥ SNIC 7 HPC2N

192 224
EEEN

448 480
L]]

19/38

Global memory (cache lines)

> A warp accesses the memory together.

» If a single thread in a warp accesses a memory address, then
the entire cache line is loaded:

.,

.
0
0
..
N o
0 5
e
.
ey

0 32 64 .. 96 128 16§ 192 224
EEEE FEENEY IR N
256 288 320 3527384 416 448 480
EEEE ‘EEEEnanEgEN EEEE
EREECEr RN N S

X s PRACE
8%F$ERSITY ' SNIC :i‘%fHPCZN 20/38

Global memory (optimal access)

» For optimal performance, a warp should access adjacent
memory locations that span across as few cache lines as
possible:

v%n ¢ \5 'h
iiii li-i

- X) PRACE
B%I%\ERSITY [P SNIC :*ﬁHPCZN 21/38

Global memory (CPU versus GPU)

» The following access pattern would work well on a CPU:

for (int i = 0; i < N; i++)

#pragma omp parallel for schedule(static, 64)
x[i] = alpha * x[il;

» Each core accesses a different cache line, no false sharing.

96 128 160 192 224
INEEEEEE

352 384 416 448 480
L]]

A 1 PRACE
B%F\;\ERSITY [P SN IC «@? HPC2N

22/38

Global memory (CPU versus GPU)

» The following access pattern would work horribly on a CPU:

#pragma omp parallel for schedule(static, 1)
for (int i = 0; i < N; i++)
x[i] = alpha * x[il;

» Cores access the same cache line, false sharing.

: :

;'“L.'.';., __“\\‘."

0. .ﬁ- ° '47 96 128 160 192
NI
256 288 320 352 384 416 448
EEEEEEEE EEEEEEEE

X y PRACE
@ Wikrory ¥ SNIC 7 HPC2N

224

480

23/38

Global memory (CPU versus GPU)

» The following access pattern would work well on a GPU:

» Warp loads a minimal number of cache lines, each cache line
is accessed completely.

for (int i = threadIdx.x; i < N; i += blockDim.x)
x[i] = alpha * x[il;

i a0 4

. 3 PRACE
@ ik SNIC 7 HPC2N

24/38

Global memory (CPU versus GPU)

» The following access pattern would work horribly on a GPU:

for (int i = 0; i < M; i++)
x[threadIdx.x*M+i] = alpha * x[threadIdx.x*M+il;

» Warp loads a large number of cache lines, only two words are
accessed from each cache line.

04 ."' s AN trea,
256" 288" S 352 4,384 “418-.. 448 480
Iil!f -!Il ‘EAEEE \. [[]]
EEmmE; (T T L CTTTEEEE TTTH

- R) PRACE
@ Wikrory ¥ SNIC 7 HPC2N

25/38

Shared memory

» Each SMP has a fast on-chip memory (128 KB Volta) that is
divided between a L1 data cache and a shared memory.

» A portion of the shared memory can be allocated for a thread
block.

’ - pracE
S%IE\;XERSITY Cp SNIC ¥ HPC2N A 26 /38

Shared memory (banks and bank conflicts)

» Shared memory is significantly faster than the global memory.
> However, it is divided into 32 memory banks.
> Successive 4-byte words map to successive banks (Volta).

» Each bank has a bandwidth of 4-bytes per clock cycle.

» Simultaneous access to the same bank causes a bank conflict.
» Conflicting memory requests are served sequentially.

0 16 32 ;.. 48 64 80 ... 96 112

ENEEEEES CEANEEEEEEEEE i D EEEEEEE

128 144 160: 176 192 208: 224 240

ENEEEEES CEANEEEEEEEEE D O EEEEEEE

EEEEEEEE CEEEEEEEEEEEE e
bank 10 bank 22

X) PRACE
S%F\?ERSITY [P SNIC :ffHPCZN 27/38

Shared memory (conflict-free pattern)

» An example where each memory bank receives one request:

PEEEEEEEzioIEoEoEiiioIEniiizafis

0" & i A i oieni ¥ 6 g Qi
’!?}6' i.*?s..:'"‘r;" ;vr%?r l
128} ,:"144,:' i160 § :192 268 ioa {oa0iii
H 4 HoH 14 V y y 4 Pl
”";'.' i. . . i. '.'.... . . ””i. ; i.

» No bank conflicts, optimal bandwidth.

PRACE

S%F\;&ERSITY [P SNIC :ffHPC2N

28/38

Shared memory (conflicting pattern)

> An example where some memory banks receive multiple

requests:

r .1’6' '[:3, ﬁa." 64»3; . 99/ ".i‘

128 144i {180 {176 | i8> Sos 204 i 2a0f
HiEEEERdEEEN l;' C L3

» Several two-way bank conflicts, two sequential transfers,
effective bandwidth cut to half.

PRACE

S%F&ERSITY [P SNIC EF‘HPC2N

29/38

Shared memory (allocation)

» Shared memory can be allocated either statically or

dynamically.

» Static allocation:
__global__ void kermnel(....)

{
__shared__ int x[256];

» Dynamic allocation:

__global_
{

void kernel(....)

extern __shared__ int x[];

}

kernel <<<blocks, threads, 256*sizeof (int)>>>kernel(....);

PRACE

8%F$ERSITY Cp SNIC 3F‘HPC2N

30/38

Shared memory (example)

» Shared memory is typically used when the threads in the same
thread block need to communicate.

» Imagine the following transpose operation:

__global__ void small_transpose(float A[32][32])
{
// we are assuming that the thread block size is 32 z 32
__shared__ float tmp[32][32];
// each thread loads a matriz element
tmp [threadIdx.y] [threadIdx.x] = A[threadIdx.y][threadIdx.x];
// each thread waits until all other threads are ready
__syncthreads ();
// each thread stores a matriz element (note the swapped dimensions)
AlthreadIdx.y][threadIdx.x] = tmp[threadIdx.x][threadIdx.y];
}

PRACE

8%F$ERSITY Cp SNIC 3F‘HPC2N

31/38

Shared memory (bad access pattern)

» The second access to the tmp array causes 32-way bank
conflict but the global memory is accessed optimally:

__global__ void small_transpose(float A[32][32])

{
// we are assuming that the thread block size is 32 z 32
__shared__ float tmp[32][32];
// each thread stores a matriz element (note the swapped dimensions)
AlthreadIdx.y][threadIdx.x] = tmp[threadldx.x][threadIdx.yl;
}

PRACE

B%I%\ERSITY ' SNIC i‘}? HPC2N

32/38

Shared memory (optimal access pattern)

» This can be fixed quite easily:

__global__ void small_transpose(float A[32][32])
{

// we are assuming that the thread block size is 32 z 32
__shared__ float tmp[32]1[33]; // <= #** note 33 ***

// each thread stores a matriz element (note the swapped dimensions)

PRACE

S%F\IIAERSITY [P SNIC 3?HPC2N 33/38

Matrices

» cudaMalloc and cudaMallocManaged align memory to 256
bytes (two 128-byte cache lines).

» Matrices (two-dimensional arrays) require special attention
since each column should also be aligned (assuming
column-major ordering):

not aligned

il
i \I
Hl | ||| |||\||\| I‘I

i*512
i*512+128

Ml

i*512+256

@ VX Wt SNIC S HPC2N

i*512+385

|

PRACE

34/38

Matrices (manual allocation)

» The alignment can be done manually:

// a function that returns the ceil of a/b. That is,

// DIVCEIL (5, 2) = ceil(5/2) = ceil (2.5) = 3.
static int DIVCEIL(int a, int b)
{

return (a+b-1)/b;
}

// allocate 256-byte aligned m = n matriz (m rows, n columns)
double *A;

int 1dA = DIVCEIL(m, 256/sizeof (double))*(256/sizeof (double));
cudaMalloc (&A, n*1ldAxsizeof (double));

» This is same as

// allocate 256-byte aligned m = n matriz (m rows, n columns)
double *A;

int 1dA = DIVCEIL(m, 32)*32;

cudaMalloc (&A, n*1ldAxsizeof (double));

X) PRACE
S%FQAERSITY [P SNIC :ﬁy HPC2N

35/38

Matrices (cudaMallocPitch)

» Or using the cudaMallocPitch function:

__host__ cudaError_t cudalMallocPitch (
void *x devPtr,
size_t * pitch,
size_t width,
size_t height

» pitch is the leading dimension. Both pitch and width are
given in bytes.

» Note that the cudaMallocPitch function assumes the that
matrix in stored in row-major format. Therefore, you should
do the following when allocating in column-major format:

double *A; int 1dA;

{
size_t pitch;
cudaMallocPitch (&A, &pitch, m*sizeof (double), n);
1dA = pitch/sizeof (double);

-

PRACE

S%F&ERSITY [P SNIC :‘ffHPC2N 36/38

Matrices (transfers)

> A matrix can be transferred with the cudaMemcpy2D function:

__host__ cudaError_t cudaMemcpy2D (
void * dst,
size_t dpitch,
const void * src,
size_t spitch,
size_t width,
size_t height,
enum cudaMemcpyKind kind

)
> Assuming we have
» a matrix A with the leading dimension 1dA in the host memory
and
» a matrix dA with the leading dimension 1d_dA in the global
memory:

cudaMemcpy2D(d_A, 1ld_dA*sizeof (double), A, 1ldA*sizeof (double),
m*sizeof (double), n, cudaMemcpyHostToDevice)

X) PRACE
S%IE\¢\ERSITY [P SN Ic ‘:\fﬁ“ HPC2N

37/38

Hands-ons

» Materials: https://git.cs.umu.se/mirkom/gpu_course/
» Two hands-ons under hands-ons/2.intermediate:
1.sum Learn how to use shared memory and
synchronize threads. Learn how to sum together
the elements of a vector.
2.gemv Learn how to use shared memory, synchronize

threads and handle matrices. Learn how to
perform a matrix-vector multiplication.

» Solutions can be found under solutions/2.intermediate.

PRACE

S%IE\/}ERSITY [P SNIC mﬁ%‘“ HPC2N 38/38

https://git.cs.umu.se/mirkom/gpu_course/

