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Compute capability

I Different GPUs have different architecture and capabilities.
I Nvidia uses Compute Capabilities to enumerate the

differences:
I 3.x → Kepler, GTX 700 series, Tesla K80
I 5.x → Maxwell, GTX 900 series
I 6.x → Pascal, GXT 1000 series
I 7.x → Volta, Tesla V100
I 7.5 → Turing, RTX 2000 series
I 8.x → Ampere, RTX 300 series, Tesla A100

I During this course, we are consentrating on 7.0 (Volta).
I However, we are not going to discuss any fancy

optimization techniques that are only 7.0 specific.

I Every new CUDA version introduces new functionality.
I Some older GPUs do not support everything.
I Some GPUs require customized code.
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Recap

I Let’s return back to the earlier figure...
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Recap

I A GPU contains several Streaming MultiProcessors (SMPs).

I Each SMP contains several CUDA cores.
I The threads are divided into thread blocks.

I Each thread block is mapped to a single SMP.
I A SMP can have multiple thread blocks mapped to it.

I Simultaneous hardware multithreading.
I Each CUDA core can execute several threads simultaneously.
I A scheduler select the next instruction among a pool of active

threads.
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Streaming MultiProcessors

I In reality, a SMP looks something like this:
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Streaming MultiProcessors (processing blocks)

I Each SMP is divided into multiple processing blocks.

I Each processing block contains the following:

CUDA cores Large number of cores for various operations
(integer, 32-bit floating point, 64-bit floating
point, reduced precision, special functions, etc).

Scheduler During each cycle, a scheduler selects a set of
threads and issues an instruction to the cores.

Register file All threads share a large pool of registers.

I All processing blocks share a combined shared memory and L1
data cache.

I Left out from the figure: dispatch units, L0/L1 instruction
caches, load/store units, texture units, ...
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Streaming MultiProcessors (compared to CPU)

I This is a drastically different approach compared to CPUs.
I Each CPU core contains its own scheduler, registers, caches, ...
I Each CPU core contains several execution ports but these

execution ports are not generally referred to as cores.
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Streaming MultiProcessors (summary)

I In general, GPUs allocate
I more silicon to units that compute, and
I less silicon to units that direct computation.

I More computing power in the same form factor.
I Modular approach: SMPs, processing blocks, CUDA cores.

I Easier to scale to thousands of cores.

I However, the CUDA cores share a lot of resources.
I Should we call CUDA cores cores?
I Are CUDA cores just execution ports?
I What are the limitations?
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Warps

I Underneath, each thread blocks is subdivided into warps.
I Each warps consist of 32 sequentially numbered threads.

I Given a thread block of the size (Dx, Dy, Dz), the hardware
indexes a thread of index (x, y, z) as (x + y*Dx + z*Dx*Dy).

I As a rule of thumb, threads that are adjacent in the x

dimension belong to the same warp.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

warp 0

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

warp 1
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

warp 2
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Warps (warps scheduling)

I The warps are distributed among the processing blocks.
I During each instruction issue time, the scheduler

I picks a warp that is ready to execute an instruction and
I issues the instruction to a set of CUDA cores.
I The number of instructions issued depends on the architecture.

I All threads in a warp execute the same instruction!

I ”Non-contributing” threads are disabled:

printf("Everyone\n");
if (threadIdx.x < 16)
    printf("Less than 16.\n");
else if (threadIdx.x < 24)
    printf("Between 16 and 23\n");
else
    printf("Larger than 23\n");
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Warps (disabled threads)

I Even though some threads are disabled, the overall cost is still
almost as high as if all threads in the warp had executed all
diverging paths:

printf("Everyone\n");
if (threadIdx.x < 16)
    printf("Less than 16.\n");
else if (threadIdx.x < 24)
    printf("Between 16 and 23\n");
else
    printf("Larger than 23\n");
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Warps (disabled threads)

I The disabled threads do not trigger memory transfers etc, but
the associated resources (cores) are not being utilized:
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I Above, the warps are issued over two or four cycles in
half-warps (int, fp32) or quarter-warps (fp64), receptively.
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Warps (diverging execution paths)
I The diverging execution paths can be a bigger problem than

expected.

I If a thread diverges with the probability p ∈ [0, 1], then the
probability that at least one thread within a warp diverges is

1− (1− p)32.
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Synchronization

I It is often necessary to synchronize the threads.
I We want to be sure that specific operations have been

completed.

I One of the simplest approaches is to create a barrier.
I All threads must encounter the barrier.
I Threads that have encountered the barrier wait until all

threads have encountered the barrier.

2 threads have encountered the barrier

5 threads have encountered the barrier

6 threads have encountered the barrier
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tim
e
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Synchronization (globally)

I The maximum lifetime of a thread is the same as the lifetime
of the corresponding kernel.
I All threads in a grid are synchronized at the beginning and

the end of a kernel.

time

kernel A kernel B kernel C
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Synchronization (globally)

I The host thread and the grid are synchronized with:

__host__ __device__ cudaError_t cudaDeviceSynchronize ( void )

tim
e

host thread grid

cudaDeviceSynchronize()

kernel finishes
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Synchronization (thread block)

I Threads that belong to the same thread block are
synchronized with:

__device__ void __syncthreads ( void )
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Synchronization (warp)

I Threads that belong to the same warp are synchronized with:

__device__ void __syncwarp(unsigned mask=0 xffffffff)

I Guarantees memory ordering among threads participating in
the barrier.

I Limited usefulness with pre-Volta GPUs.
I Sometimes necessary with Volta and post-Volta GPUs.

I See Independent Thread Scheduling.
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Global memory

I Memory requests pass through L1 and L2 caches.
I A cache line is 128 bytes (32 floats, 16 doubles) and maps

to a 128 byte aligned segment of global memory.
I Unless L1 cache is explicitly disabled in which case the cache

line is 32 bytes and maps to a 32 byte aligned segment of
global memory.

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

.... .... .... .... .... .... .... ....
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Global memory (cache lines)

I A warp accesses the memory together.

I If a single thread in a warp accesses a memory address, then
the entire cache line is loaded:

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

.... .... .... .... .... .... .... ....
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Global memory (optimal access)

I For optimal performance, a warp should access adjacent
memory locations that span across as few cache lines as
possible:

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

.... .... .... .... .... .... .... ....

21 / 38



Global memory (CPU versus GPU)

I The following access pattern would work well on a CPU:

#pragma omp parallel for schedule(static , 64)

for (int i = 0; i < N; i++)

x[i] = alpha * x[i];

I Each core accesses a different cache line, no false sharing.

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

.... .... .... .... .... .... .... ....
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Global memory (CPU versus GPU)

I The following access pattern would work horribly on a CPU:

#pragma omp parallel for schedule(static , 1)

for (int i = 0; i < N; i++)

x[i] = alpha * x[i];

I Cores access the same cache line, false sharing.

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

.... .... .... .... .... .... .... ....
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Global memory (CPU versus GPU)

I The following access pattern would work well on a GPU:

for (int i = threadIdx.x; i < N; i += blockDim.x)

x[i] = alpha * x[i];

I Warp loads a minimal number of cache lines, each cache line
is accessed completely.

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

.... .... .... .... .... .... .... ....

0 32 64

256 288 320

.... .... ....
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Global memory (CPU versus GPU)

I The following access pattern would work horribly on a GPU:

for (int i = 0; i < M; i++)

x[threadIdx.x*M+i] = alpha * x[threadIdx.x*M+i];

I Warp loads a large number of cache lines, only two words are
accessed from each cache line.

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

.... .... .... .... .... .... .... ....
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Shared memory

I Each SMP has a fast on-chip memory (128 KB Volta) that is
divided between a L1 data cache and a shared memory.

I A portion of the shared memory can be allocated for a thread
block.
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Shared memory (banks and bank conflicts)

I Shared memory is significantly faster than the global memory.

I However, it is divided into 32 memory banks.

I Successive 4-byte words map to successive banks (Volta).
I Each bank has a bandwidth of 4-bytes per clock cycle.

I Simultaneous access to the same bank causes a bank conflict.
I Conflicting memory requests are served sequentially.

0 16 32 48 64 80 96 112

128 144 160 176 192 208 224 240

.... .... .... .... .... .... .... ....

bank 10 bank 22
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Shared memory (conflict-free pattern)

I An example where each memory bank receives one request:

0 16 32 48 64 80 96 112

128 144 160 176 192 208 224 240

.... .... .... .... .... .... .... ....

I No bank conflicts, optimal bandwidth.
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Shared memory (conflicting pattern)

I An example where some memory banks receive multiple
requests:

0 16 32 48 64 80 96 112

128 144 160 176 192 208 224 240

.... .... .... .... .... .... .... ....

I Several two-way bank conflicts, two sequential transfers,
effective bandwidth cut to half.
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Shared memory (allocation)

I Shared memory can be allocated either statically or
dynamically.

I Static allocation:
__global__ void kernel (....)

{

__shared__ int x[256];

....

}

I Dynamic allocation:

__global__ void kernel (....)

{

extern __shared__ int x[];

....

}

kernel <<<blocks , threads , 256* sizeof(int)>>>kernel (....);
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Shared memory (example)

I Shared memory is typically used when the threads in the same
thread block need to communicate.

I Imagine the following transpose operation:

__global__ void small_transpose(float A[32][32])

{

// we are assuming that the thread block size is 32 x 32

__shared__ float tmp [32][32];

// each thread loads a matrix element

tmp[threadIdx.y][ threadIdx.x] = A[threadIdx.y][ threadIdx.x];

// each thread waits until all other threads are ready

__syncthreads ();

// each thread stores a matrix element (note the swapped dimensions )

A[threadIdx.y][ threadIdx.x] = tmp[threadIdx.x][ threadIdx.y];

}
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Shared memory (bad access pattern)

I The second access to the tmp array causes 32-way bank
conflict but the global memory is accessed optimally:

__global__ void small_transpose(float A[32][32])

{

// we are assuming that the thread block size is 32 x 32

__shared__ float tmp [32][32];

....

// each thread stores a matrix element (note the swapped dimensions )

A[threadIdx.y][ threadIdx.x] = tmp[threadIdx.x][ threadIdx.y];

}

0 16 32 48 64 80 96 112

128 144 160 176 192 208 224 240

.... .... .... .... .... .... .... ....
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Shared memory (optimal access pattern)

I This can be fixed quite easily:

__global__ void small_transpose(float A[32][32])

{

// we are assuming that the thread block size is 32 x 32

__shared__ float tmp [32][33]; // <= *** note 33 ***

....

// each thread stores a matrix element (note the swapped dimensions )

A[threadIdx.y][ threadIdx.x] = tmp[threadIdx.x][ threadIdx.y];

}

0 16 32 48 64 80 96 112

128 144 160 176 192 208 224 240

.... .... .... .... .... .... .... ....
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Matrices

I cudaMalloc and cudaMallocManaged align memory to 256
bytes (two 128-byte cache lines).

I Matrices (two-dimensional arrays) require special attention
since each column should also be aligned (assuming
column-major ordering):

i*512

i*512+128

i*512+256

i*512+385

not aligned aligned
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Matrices (manual allocation)

I The alignment can be done manually:

// a function that returns the ceil of a/b. That is ,

// DIVCEIL (5, 2) = ceil (5/2) = ceil (2.5) = 3.

static int DIVCEIL(int a, int b)

{

return (a+b-1)/b;

}

...

// allocate 256- byte aligned m x n matrix (m rows , n columns)

double *A;

int ldA = DIVCEIL(m, 256/ sizeof(double))*(256/ sizeof(double));

cudaMalloc (&A, n*ldA*sizeof(double));

I This is same as
// allocate 256- byte aligned m x n matrix (m rows , n columns)

double *A;

int ldA = DIVCEIL(m, 32) *32;

cudaMalloc (&A, n*ldA*sizeof(double));
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Matrices (cudaMallocPitch)

I Or using the cudaMallocPitch function:

__host__ cudaError_t cudaMallocPitch (

void ** devPtr ,

size_t * pitch ,

size_t width ,

size_t height

)

I pitch is the leading dimension. Both pitch and width are
given in bytes.

I Note that the cudaMallocPitch function assumes the that
matrix in stored in row-major format. Therefore, you should
do the following when allocating in column-major format:

double *A; int ldA;

{

size_t pitch;

cudaMallocPitch (&A, &pitch , m*sizeof(double), n);

ldA = pitch/sizeof(double);

}
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Matrices (transfers)

I A matrix can be transferred with the cudaMemcpy2D function:

__host__ cudaError_t cudaMemcpy2D (

void * dst ,

size_t dpitch ,

const void * src ,

size_t spitch ,

size_t width ,

size_t height ,

enum cudaMemcpyKind kind

)

I Assuming we have
I a matrix A with the leading dimension ldA in the host memory

and
I a matrix dA with the leading dimension ld dA in the global

memory:

cudaMemcpy2D(d_A , ld_dA*sizeof(double), A, ldA*sizeof(double),

m*sizeof(double), n, cudaMemcpyHostToDevice)
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Hands-ons

I Materials: https://git.cs.umu.se/mirkom/gpu_course/

I Two hands-ons under hands-ons/2.intermediate:

1.sum Learn how to use shared memory and
synchronize threads. Learn how to sum together
the elements of a vector.

2.gemv Learn how to use shared memory, synchronize
threads and handle matrices. Learn how to
perform a matrix-vector multiplication.

I Solutions can be found under solutions/2.intermediate.
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