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Why should | use GPUs?

Why should | use GPUs?
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Why should | use GPUs?

» Nvidia says that when compared to CPUs, GPUs provides
significantly higher
» instruction throughput and
> memory bandwidth.
» In particular, this performance is delivered in a relatively small
price and power envelope.

What does this mean?
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Why should | use GPUs? (flop rate, double precision)

» Quad-core Intel Skylake CPU:

~ 200 GFlops

» 14-core Intel Xeon Gold 6132 CPU:

~ 1200 GFlops

» Nvidia Tesla V100 GPU:

s p

~ 7000 GFlops
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Why should | use GPUs? (memory bandwidth)

» Quad-core Intel Skylake CPU:

~ 35 GB/s

» 14-core Intel Xeon Gold 6132 CPU:

~ 100 GB/s

» Nvidia Tesla V100 GPU:

~ 900 GB/s ]
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Why should | use GPUs? (power usage)

» Quad-core Intel Skylake CPU:

)

» 14-core Intel Xeon Gold 6132 CPU:

~ 140 W

» Nvidia Tesla V100 GPU:

~ 250 W

\ J

> These numbers are not entirely accurate.
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Why should | use GPUs? (price)

» Quad-core Intel Skylake CPU:

~ $400

» 14-core Intel Xeon Gold 6132 CPU:

» Nvidia Tesla V100

P> These numbers are not entirely accurate.
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~ $2000

GPU:

~ $10000
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Why should | use GPUs? (per Watt)

» Quad-core Intel Skylake CPU:

~ 2 GFlops per Watt, ~ 0.4 GB/s per Watt

» 14-core Intel Xeon Gold 6132 CPU:

~ 9 GFlops per Watt, ~ 0.7 GB/s per Watt

» Nvidia Tesla V100 GPU:

~ 28 GFlops per Watt, ~ 3.6 GB/s per Watt
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Why should | use GPUs? (per dollar)

» Quad-core Intel Skylake CPU:

~ 0.5 GFlops per $, ~ 0.09 GB/s per $

» 14-core Intel Xeon Gold 6132 CPU:

~ 0.6 GFlops per $, ~ 0.05 GB/s per $

» Nvidia Tesla V100 GPU:

~ 0.7 GFlops per $, ~ 0.09 GB/s per $
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Why should | use GPUs? (reduced precision)

» Quad-core Intel Skylake CPU:

~ 400 GFlops (single precision)

» 14-core Intel Xeon Gold 6132 CPU:

~ 2400 GFlops (single precision)

» Nvidia Tesla V100 GPU:

~ 14000 GFlops (single precision)
~ 112000 GFlops (half precision, tensor cores)
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What is the catch?

What is the catch?
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What is the catch? (highly parallel)

» GPUs are highly parallel. Obtaining peak performance
requires thousands of threads.

» The algorithms and the software must be highly parallel.

A

GFlops, GB/s

..............

# threads % %%%% % % %%%% %
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What is the catch? (long list continues)

» GPU programming is difficult.

» As mentioned, requires a lot of parallelism.
» Usually, the GPU-side code is written in " C++".

» The CUDA cores are not "true” cores.

» The cores share resources such as schedulers and caches.

» The tensor cores (half precision) are even more limited.

» Limited amount of memory.

» Data must be moved between memories (RAM, VRAM, ...).

» Certain memories are significantly faster than others.
» Certain memories are fast only when used correctly.

» Not all algorithms are suitable for GPUs.
» Some algorithms are just slightly faster on GPUs.
» Does it make sense to pay the extra money?

» Not all GPUs are equally powerful.

» Some GPUs have a very low double-precision flop rate.
» Some GPUs do not have tensor cores.
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CUDA basics

Lets go through some CUDA basics...
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What is CUDA?

» Compute Unified Device Architecture (CUDA) is a parallel
computing platform and an API created by Nvidia.

» Only for Nvidia GPUs.

» Can be used
» directly through CUDA C/C++ and CUDA Fortran,
» directly through wrappers (Python, Perl, Fortran, Java, Ruby,
Lua, etc),
» indirectly through compiler directives (OpenACC), and
» indirectly through other computational interfaces (OpenCL,
DirectCompute, OpenGL, etc).

» During this training course, we will use CUDA C/C++.
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What is CUDA? (nvcc and libraries)

> CUDA comes with its own compiler, nvcc.
» GPU-specific code is compiled to PTX (Parallel Thread
Execution) "assembly”.
» The PTX code is translated to binary code by the driver.
» The rest is offloaded to the host compiler (e.g., g++).

> CUDA also comes with a large set of libraries:

» CUDA Runtime library (CUDART), basic functionality.
» CUDA Basic Linear Algebra Subroutines (cuBLAS).

» CUDA Fast Fourier Transform library (cuFFT).

» CUDA Sparse Matrix library(cuSPARSE).

» CUDA Deep Neural Network library (cuDNN).

» Many 3rd party libraries use these vendor libraries.

P> In most cases, you want to use these libraries instead of
implementing your own.
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Hello world

#include <stdlib.h>
#include <stdio.h>

__global__ void say_hello ()
{

» A "Hello world” program (hello.cu) is a good place to start:

printf ("GPU says, Hello world!\n");
}
int main ()
{
printf ("Host says, Hello world!\n");
say_hello<<<1,1>>>();
cudaDeviceSynchronize () ;
return EXIT_SUCCESS;
}
PRACE
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Hello world (compile and run)

» Load the correct toolchain:
$ ml purge
$ ml fosscuda/2019b buildenv
» Compile the source code with nvcc:
$ nvcc -o hello hello.cu
» Queue a job:

$ srun --account=SNIC2020-9-161 \
--reservation=snic2020-9-161-dayl \
--ntasks=1 --gres=gpu:v100:1,gpuexcl \
--time=00:02:00 ./hello

Host says, Hello world!

GPU says, Hello world!
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Hello world (what is happening)

lHost (CPU)

Device (GPU)

Hello world!

GPU says,
Hello world!
We have three objects:
Host CPUs + main memory (RAM)
Device A GPU consisting of several CUDA cores

PCI-E Fast interconnect between the host and the device
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Hello world (kernels)

» The device-side code is written inside special functions called
kernels.

> A kernel is declared with the __global__ keyword:

__global__ void say_hello ()
{
printf ( )

}

P> Kernel's return type is always void.
» All threads enter the kernel from the beginning of the body of
the function.
» Single Instruction, Multiple Thread (SIMT)
» Threads are not spawned fork-join style (except when a kernel
launches other kernel).
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Hello world (kernel launch)

» The host issues the say_hello kernel as follows:

|| say_hello<<<1,1>>>();

» This places the kernel call into a queue known as stream.
» Note that the kernel is not guaranteed to be executed!
> We will return to the <<< ., . >>> brackets later...
» For now, you need to know that the number of threads is one.
» The cudaDeviceSynchronize call causes the host to wait
until stream is empty, i.e., the kernel has finished:

H cudaDeviceSynchronize ();
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Hello world (summary)

#include <stdlib.h>
#include <stdio.h>

// kernel
__global__ void say_hello ()

// the device (GPU) ewecutes these lines
printf ("GPU says, Hello world!\n");

}

int main ()

{
// the host (CPU) ewecutes these lines
printf ("Host says, Hello world!\n");
// issue the say_hello kernel
say_hello<<<1,1>>>();
// wait until the kernel has finished
cudaDeviceSynchronize () ;
return EXIT_SUCCESS;

}
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AX example (scalar-vector multiplication)

P> Let's try something more complicated:

aceR, xeR"

X < ax

» A host function would look something like this:

void ax(int n, double alpha, double *x)
{
for (int i = 0; i < n; i++)
x[i] = alpha * x[il;
¥
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AX example (kernel)

> A matching kernel is still relatively simple:

__global__ void ax_kernel(int n, double alpha, double *x)

{
int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
if (thread_id < n)
x[thread_id] = alpha * x[thread_id];
}

» What are blockIdx.x, blockDim.x and threadIdx.x?
» Where is the for loop?
> Why is there a if block?
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AX example (CUDA cores and SMPs)

» Let's look at the earlier figure again...

Host (CPU)

Device (GPU)

’ Streaming MultiProcessors (SMPs)

CUDA cores
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AX example (CUDA cores and SMPs)

» Each Streaming MultiProcessor (SMP) consists of several
CUDA cores.
» Each CUDA core can execute several threads
simultaneously.
» The scheduler select the next instruction among a pool of
active threads.
» Thus, the total number of threads can be in the millions.

» How do we decide what each thread should do?
» How do we manage all these threads?

» Different problems sizes might require different number of
threads.

» Different GPUs might have different number of SMPs and
CUDA cores.
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divided into thread blocks:

ds are

thread“ -I‘ocks

of the

the dimensions

nd blockDim.y are

AX example (threads and thread blocks)

» The threa

thread blocks.
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AX example (threads and thread blocks)

a grid:

umber in

index n

» Each thread block gets an

bloc!gl_dx.x

Axp¥d0]q

of the grid.

nd gridDim.y are the dimensions

» gridDim.x a
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AX example (threads and thread blocks)

P> The overall idea is to partition the work into self-contained
tasks.
> Each task is assigned to one thread block.
» The thread block indices are used to identify the task.

Work
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AX example (threads and thread blocks)

» The CUDA runtime is responsible for scheduling the thread
blocks to SMPs.
» The execution order of the thread blocks is relaxed.
» The code can therefore adapt to different GPUs:
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AX example (threads and thread blocks)

umber:

» Each thread gets a local index n

threadldx.x
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AX example (global indexing)

> A unique global index number can be calculated for each
thread:

__global__ void ax_kernel (int n, double alpha, double *x)

{
// query the global thread index
int thread_id = blockIdx.x * blockDim.x + threadIdx.x;

if (thread_id < n)
x[thread_id] = alpha * x[thread_idl;

blockDim.x = 8

blockldx.x ' 0 '

threadldx.x 0

thread _id = blockldx.x * blockDim.x + threadldx.
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AX example (global indexing)

» The if block is used to filter out excess threads:

__global__ void ax_kernel (int n, double alpha, double *x)

{
// query the global thread index
int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
// each thread updates one Tow
if (thread_id < n)
x[thread_id] = alpha * x[thread_idl];
}

x [thread id] - [DEEEE

alpha * Mééééééééééééééééééé

x[thread id] iiiiiiiil I ,” ,” ,”

8 91011121314151617 18192021 22 23
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AX example (remarks)

» The thread blocks should be reasonably large.
» Usually 32 threads is too small for practical use.
» At the moment, the upper limit is 1024 thread.
» My personal recommendation is to start from 256 threads,
and tune the number if necessary.
» Multiples of 32 are preferred (warps, more on that later).
» The grid should be reasonably large.
» Each thread block runs on a single SMP.
» For optimal performance, each SMP should get a thread block.
» Nvidia Tesla V100 GPU has 80 SMPs.
» Given a thread block of the size (Dx, Dy, Dz), the hardware
indexes a thread of index (x, y, z) as (x + y*Dx + z*Dx*Dy).
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AX example (memory spaces)

» The host manages the memory:

double *x = (double *) malloc(n*sizeof (double));
for (int i = 0; i < nj i++)
x[il = i
double *d_x;
cudaMalloc (&d_x, nxsizeof (double));

Host (CPU) Device (GPU)
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AX example (memory spaces)

Host memory is accessible by the host (and sometimes by all
threads in all thread blocks).

Global memory is accessible by all threads in all thread blocks.

Shared memory is accessible by threads that belong to the same
thread block.

Host (CPU)

H-

Device (GPU)
| ZuEE EEEE NS EEEE )
i EEEE
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AX example (memory transfer to device)

» The host initializes a data transfer from the host memory to
the global memory:

cudaMemcpy(d_x, x, n*sizeof (double), cudaMemcpyHostToDevice);

» The cudaMemcpy call is blocking.
» The host waits until the transfer is ready.

Host (CPU) Device (GPU)

@ sy = SNIC
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AX example (kernel launch)

» The host issues the ax_kernel kernel:

dim3 threads = 256; // blockDim.z
dim3 blocks = (n+threads.x-1)/threads.x; // gridDim.z

ax_kernel <<<blocks, threads>>>(n, alpha, d_x);

» If the kernel used multi-dimensional threads blocks, then

dim3 threads(Dx, Dy, Dz);
dim3 blocks(Gx, Gy, Gz)

ax_kernel <<<blocks, threads>>>(n, alpha, d_x);

would create a Gx x Gy x Gz grid of thread blocks, with Dx
x Dy x Dz threads in each block.
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AX example (kernel launch)

> Alternatively, we could have written

ax_kernel <<<(n+255) /256, 256>>>(n, alpha, d_x);

» (n+blockDim.x-1)/blockDim.x is simply a convenient way
of making sure that

n < gridDim.x * blockDim.x.

» | personally prefer the following approach:

// a function that returns the ceil of a/b. That is,

// DIVCEIL (5, 2) = ceil(5/2) = ceil (2.5) = 3.
static int DIVCEIL(int a, int b)
{

return (a+b-1)/b;
}

ax_kernel <<<DIVCEIL(n, 256), 256>>>(n, alpha, d_x);
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AX example (kernel launch)

» When the kernel finally starts, the threads access the data
from the global memory:

Host (CPU) Device (GPU)

' PCIE |
| PCIE |
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AX example (memory transfers from device)

» The host initializes a data transfer from the global memory to
the host memory:

cudaMemcpy (x, d_x, n*sizeof (double), cudaMemcpyDeviceToHost)

Host (CPU) Device (GPU)
| uum musw snss muEs
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AX example (cleanup)

» Finally, we must free the allocated memory:

free(x);
cudaFree (d_x);

» All memory that has been allocated using the cudaMalloc
function must the freed with the cudaFree function.

» The following will cause a segmentation fault:

free(d_x);
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AX example (compile and run)

P Load the correct toolchain:
$ ml purge
$ ml fosscuda/2019b buildenv

» Compile the source code with nvcc:
$ nvcc -o ax ax.cu

» Queue a job:
$ srun --account=SNIC2020-9-161 \
--reservation=snic2020-9-161-dayl \
--ntasks=1 --gres=gpu:v100:1,gpuexcl \
--time=00:02:00 ./ax 10000
Residual = 0.000000e+00
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Error handling (queries)

> Most CUDA functions return an error code of the type
cudaError_t.

» A successful function call returns cudaSuccess. Other values
indicate error.
> A kernel launch does not return anything.
> Any errors must be queried separately. See below.

» The previous error code can be checked and resetted with:

H __host device__ cudaError_t cudaGetLastError ()
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Error handling (queries)

» The previous error code can be checked without resetting:

“__host__ __device__ cudaError_t cudaPeekAtLastError ()

» An error code can be turned into a string:

“__host__ __device__ const char* cudaGetErrorName (cudaError_t error)

» An error code can be turned into a longer description:

“__host__ __device__ const char* cudaGetErrorString(cudaError_t error)
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Error handling (some notes)

» Kernel launches and many other CUDA functions (*Async)
are non-blocking / asynchronous.

» The kernel or the function call is simply placed into a stream.

device host

cudaMemcpy (d_x, X, n*sizeof (double), cudaMemcpyHostToDevice);

time

*==cudaSuccess
ax_kernel<<<blocks, threads>>>(n, alpha, d_x);
I cudaMemcpy (x, d_x, n*sizeof (double), cudaMemcpyDeviceToHost)

*==cudaSuccess
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Error handling (some notes)

P It is possible that the returned error code is related to one of
the earlier kernels or function calls!

time

device

8%F$ERSITY [P SNIC

v

host

cudaMemcpy (d_x, x, n*sizeof (double), cudaMemcpyHostToDevice) ;

*==cudaSuccess
ax_kernel<<<blocks, threads>>>(n, alpha, d_x);
cudaMemcpy (x, d_x, n*sizeof (double), cudaMemcpyDeviceToHost)

"1=cudaSuccess
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Error handling (some notes)

» This can happen even when the outcome of the kernel launch

is checked:
device host
Q ) )
E cudaMemcpy (d_x, X, n*sizeof (double), cudaMemcpyHostToDevice)
]
*==cudaSuccess
ax nel<<<blocks, th alpha, d x)

cudaGetLastError () cudaSuccess
cudaMemcpy (x, d_x, n*sizeof (double), cudaMemcpyDeviceToHost)

‘1= cudaSuccess

» Only errors that occurred during the kernel launch are
returned by cudaGetLastError().
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Hands-ons

> Materials: https://git.cs.umu.se/mirkom/gpu_course/
» Three hands-ons under hands-ons/1.basics:
1.threads Learn how to launch a kernel. Learn how to
coordinate threads and thread blocks.
2.errors Learn how to detect and handle errors.
3.memory Learn how to allocate global memory and
transfer data to/from a device.

» Solutions can be found under solutions/1.basics.
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