
Heterogeneous computing with performance
modelling

Performance modelling

Mirko Myllykoski
mirkom@cs.umu.se

Department of Computing Science and HPC2N
Ume̊a University

4-5. November 2020

1 / 53

Remark

One should always strive to measure everything
multiple times and compute averages etc!

During this course, we are measuring only once for
time and resource saving reasons

(50 participants, 6 GPUs).

2 / 53

Performance

How do we measure performance?

3 / 53

Floprate (definition)

I The raw computing performance of a CPU or a GPU is
usually measured in Flops. That is,

Floprate =
number of floating-point operations [Flop]

time [s]
.

I Usually the number of floating-point additions and
multiplications the hardware can perform per second.
I Additions and multiplications are usually faster (FMA).
I Division and special functions are usually slower.

4 / 53

Floprate (theoretical peak floprate, double precision)

I A theoretical peak floprate can be calculated for each
device.

I Quad-core Intel Skylake CPU:

∼ 200 GFlops

I 14-core Intel Xeon Gold 6132 CPU:

∼ 1200 GFlops

I Nvidia Tesla V100 GPU:

∼ 7 000 GFlops

5 / 53

Floprate (theoretical speedup)

The Nvidia Tesla V100 GPU is over
11 times faster than the 14-core

Intel Xeon CPU!

6 / 53

Floprate (single and half precision)

I The difference is even larger if we are willing to reduce the
precision.

I Typical numbers (single precision):
I Quad-core Intel Skylake CPU: ∼ 400 GFlops
I 14-core Intel Xeon Gold 6132 CPU: ∼ 2 400 GFlops
I Nvidia Tesla V100 GPU: ∼ 14 000 GFlops

I Typical numbers (half precision):
I Quad-core Intel Skylake CPU: ∼ — GFlops
I 2 × Intel Xeon Gold 6132 CPU: ∼ — GFlops
I Nvidia Tesla V100 GPU: ∼ 112 000 GFlops

7 / 53

Floprate (single and half precision, theoretical speedup)

The Nvidia Tesla V100 GPU is over
90 times faster than the 14-core

Intel Xeon CPU!

8 / 53

AX example
I Let’s perform a small experiments:

α ∈ R, x ∈ Rn,

x ← αx

I The total number of flops is n. Total number of bytes moved
is 16n.

I CPU code would look like this:
void ax(int n, double alpha , double *x)

{

#pragma omp parallel for

for (int i = 0; i < n; i++)

x[i] = alpha * x[i];

}

I GPU code would look like this:
__global__ void ax_kernel(int n, double alpha , double *x)

{

int thread_id = blockIdx.x * blockDim.x + threadIdx.x;

int thread_count = gridDim.x * blockDim.x;

for (int i = thread_id; i < n; i += thread_count)

x[i] = alpha * x[i];

}

9 / 53

AX example (actual performance)

I Quad-core Intel Skylake CPU (∼ 200 GFlops):

$ OMP_NUM_THREADS=4 ./ax.cpu 500E6

Time = 0.291716 s

I 14-core Intel Xeon Gold 6132 CPU (∼ 1 200 GFlops):

$ OMP_NUM_THREADS=14 srun/ax.cpu 500E6

Time = 0.087790 s

I Nvidia Tesla V100 GPU (∼ 7 000 GFlops):

$ srun/ax.cuda 500E6

Time = 0.010582 s

10 / 53

AX example (actual speedup)

The V100 is over 8 times faster than
the Xeon but ...

11 / 53

AX example (actual floprate)

I Quad-core Intel Skylake CPU (∼ 200 GFlops):

$ OMP_NUM_THREADS=4 ./ax.cpu 500E6

Time = 0.291716 s

Floprate = 2 GFlops

I 14-core Intel Xeon Gold 6132 CPU (∼ 1 200 GFlops):

$ OMP_NUM_THREADS=14 srun/ax.cpu 500E6

Time = 0.087790 s

Floprate = 6 GFlops

I Nvidia Tesla V100 GPU (∼ 7 000 GFlops):

$ srun/ax.cuda 500E6

Time = 0.010582 s

Floprate = 47 GFlops

12 / 53

AX example (actual floprate)

The V100 is over 8 times faster than
the Xeon but we are using less

than 1% of the peak floprate!

Why?
What else could effect the

performance?

13 / 53

Memory throughput (definition)

I The memory performance of a CPU or a GPU is usually
measured in terms of memory throughput. That is,

Throughput =
number of bytes moved [Byte]

time [s]
.

I Usually the bandwidth is measured between the CPU cores
and the main memory; or the CUDA cores and the global
memory.

14 / 53

Memory throughput (theoretical memory bandwidth)

I A theoretical memory bandwidth can be calculated for each
device.

I Quad-core Intel Skylake CPU:

∼ 35 GB/s

I 14-core Intel Xeon Gold 6132 CPU:

∼ 100 GB/s

I Nvidia Tesla V100 GPU:

∼ 900 GB/s

15 / 53

AX example (actual memory througput)

I Quad-core Intel Skylake CPU (∼ 35 GB/s):

$ OMP_NUM_THREADS=4 ./ax.cpu 500E6

Time = 0.291716 s

Floprate = 2 GFlops

Memory throughput = 27 GB/s

I 14-core Intel Xeon Gold 6132 CPU (∼ 100 GB/s):

$ OMP_NUM_THREADS=14 srun/ax.cpu 500E6

Time = 0.087790 s

Floprate = 6 GFlops

Memory throughput = 91 GB/s

I Nvidia Tesla V100 GPU (∼ 900 GB/s):

$ srun/ax.cuda 500E6

Time = 0.010582 s

Floprate = 47 GFlops

Memory throughput = 756 GB/s

16 / 53

AX example (actual memory througput)

We are using between 77% and 91%
of the memory bandwidth!

17 / 53

AX example (profiler)

I We can use Nvidia’s nv-nsight-cu-cli profiling tool to
analyze the situation:

$ srun nv-nsight-cu-cli ./ax.cuda 500E6

....

---------------- -------------- --------------

Memory Frequency cycle/usecond 875,84

SOL FB % 84,58

Elapsed Cycles cycle 13 181 137

SM Frequency cycle/nsecond 1,25

Memory [%] % 84,58

Duration msecond 10,55

SOL L2 % 31,21

SM Active Cycles cycle 12 837 852,30

SM [%] % 3,34

SOL TEX % 15,21

18 / 53

AX example (profiler)

I The relevant fields are the following:

---------------- -------------- --------------

SOL FB % 84,58

Memory [%] % 84,58

SM [%] % 3,34

I SOL FB is related to global memory throughput and Memory is
related to the occupancy rate of the memory subsystem.

I SM is related to the occupancy rate of the compute resources.

I Conclusion: The CUDA cores are idling but the memory
bus is busy.

19 / 53

GEMM example

I Lets perform a second experiments:

A,B ∈ Rn×n

C ← AB,C ∈ Rn×n

I A naive CPU code would looks like this:
void gemm(int n, int ldA , int ldB , int ldC , double *A, double *B, double *

C)

{

for (int i = 0; i < n; i++) { // columns

for (int j = 0; j < n; j++) { // rows

double dot = 0.0;

for (int k = 0; k < n; k++)

dot += A[k*ldA+j] * B[i*ldB+k];

C[i*ldC+j] = dot;

}

}

}

I Total number of flops is 2n3. Total number of bytes
transferred is 16n3 + 8n2 (this does not hold in practice).

20 / 53

GEMM example (actual floprate)

I An optimized BLAS library was used to generate these results.

I Quad-core Intel Skylake CPU (∼ 200 GFlops):

$ OMP_NUM_THREADS=4 ./gemm.cpu 5000

Runtime was 1.422 s.

Floprate was 176 GFlops.

I 14-core Intel Xeon Gold 6132 CPU (∼ 1 200 GFlops)1:

$ OMP_NUM_THREADS=14 srun/gemm.cpu 5000

Runtime was 0.469 s.

Floprate was 533 GFlops

I Nvidia Tesla V100 GPU (∼ 7 000 GFlops):

$ srun/gemm.cuda 5000

Runtime was 0.041 s.

Floprate was 6077 GFlops

1I am using OpenBLAS (fosscuda). MKL would give better performance.

21 / 53

GEMM example (actual floprate)

We are using between 46% and 88%
of the peak floprate!

22 / 53

GEMM example (profiler)

I Let’s see what the profiler says:

$ srun nv-nsight-cu-cli ./gemm.cuda 5000

....

---------------- -------------- --------------

Memory Frequency cycle/usecond 878,08

SOL FB % 36,45

Elapsed Cycles cycle 51 458 926

SM Frequency cycle/nsecond 1,25

Memory [%] % 37,18

Duration msecond 41,06

SOL L2 % 23,69

SM Active Cycles cycle 50 755 341,94

SM [%] % 98,31

SOL TEX % 37,68

23 / 53

GEMM example (profiler)

I The relevant fields:

---------------- -------------- --------------

SOL FB % 36,45

Memory [%] % 37,18

SM [%] % 98,31

I Conclusion: The CUDA cores are busy but the memory
bus is party idle.

24 / 53

Arithmetical intensity

The two codes behave very
differently...

Can we predict the behavior in
advance?

25 / 53

Arithmetical intensity

I From now on, let’s call
I the former type of kernels (ax) memory bound and
I the latter type of kernels (gemm) compute bound.

I That is,
I the performance of a memory-bound code is limited by the

available memory bandwidth and
I the performance of a compute-bound code is limited by the

instruction throughput.

26 / 53

Arithmetical intensity (definition)

I How do we know which kernels are memory bound and which
are compute bound?

I We begin to answer this question by defining arithmetical
intensity:

Arithmetical intensity =
number of floating-point operations [Flop]

number of bytes moved [Byte]
.

27 / 53

Arithmetical intensity (examples)

I Double precision AX has the arithmetical intensity of

Arithmetical intensityAX,double =
1 Flop

2 · 8 Byte
=

1

16
Flop/Byte.

I Single precision AX has the arithmetical intensity of

Arithmetical intensityAX,single =
1 Flop

2 · 4 Byte
=

1

8
Flop/Byte.

I Well-implemented double-precision GEMM has the
arithmetical intensity of

Arithmetical intensityGEMM,double = ∼ 32 Flop/Byte

28 / 53

Arithmetical intensity (more examples)

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128

GEMM
AXPY

FFT

SpMV
Particle
codes

DNN

256 512

Stencil

arithmetical intensity

29 / 53

Arithmetical intensity (deep neural networks)

I Half-precision numbers from Nvidia:

Operation Arithmetical intensity
Linear layer (4096 outputs, 1024 inputs,
batch size 512)

315 Flop/Byte

Linear layer (4096 outputs, 1024 inputs,
batch size 1)

1 Flop/Byte

Max pooling with 3x3 window and unit stride 2.25 Flop/Byte
ReLU activation 0.25 Flop/Byte
Layer normalization < 10 Flop/Byte

30 / 53

Arithmetical intensity (what can we do with it?)

I Let’s (loosely) define the total amount of work as

Work = Flops + Transfers.

I If we assume that floating-point and memory operations are
more or less evenly distributed throughout the code, we can
estimate the execution time with

Time = max

{
Flops

Peak Floprate
,

Transfers

Bandwidth

}
.

31 / 53

Arithmetical intensity (what can we do with it?)

I Now, since Performance = Flops / Time, we have

Performance =
Flops

max
{

Flops
Peak Floprate ,

Transfers
Bandwidth

}
.

= min

{
Peak Floprate,

Flops

Transfers
× Bandwidth

}
.

I Note that the right term is simply the arithmetical intensity
multiplied by the memory bandwidth!

32 / 53

Arithmetical intensity (optimal intensity)

I An optimal arithmetical intensity can be calculated for each
device:

Optimal intensity =
theoretical peak floprate

theoretical memory bandwidth
.

I In that case, we have

Performance = min

{
Peak Floprate,

Peak Floprate

Bandwidth
× Bandwidth

}
= Peak Floprate.

33 / 53

Arithmetical intensity (optimal intensity)

I If the arithmetical intensity is smaller than the optimal
intensity, the kernel is memory bound and we have

Performance =
Flops

Transfers
× Bandwidth

≤ Peak Floprate.

I If the arithmetical intensity is larger than the optimal
intensity, the kernel is compute bound and we have

Performance = Peak Floprate.

34 / 53

Arithmetical intensity (optimal intensity, double precision)

I Quad-core Intel Skylake CPU:

∼ 5.7 Flop/Byte

I 14-core Intel Xeon Gold 6132 CPU:

∼ 12 Flop/Byte

I Nvidia Tesla V100 GPU:

∼ 7.7 Flop/Byte

35 / 53

Arithmetical intensity (optimal intensity, double precision)

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128

GEMM
AXPY

FFT

SpMV
Particle
codes

DNN

256 512

Stencil

arithmetical intensity

Sk
yl

ak
e

V
10

0
Xe

on

36 / 53

Arithmetical intensity (optimal intensity, single precision)

I Quad-core Intel Skylake CPU:

∼ 11.4 Flop/Byte

I 14-core Intel Xeon Gold 6132 CPU:

∼ 24 Flop/Byte

I Nvidia Tesla V100 GPU:

∼ 15.6 Flop/Byte

37 / 53

Arithmetical intensity (optimal intensity, double precision)

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128

GEMM
AXPY

FFT

SpMV
Particle
codes

DNN

256 512

Stencil

arithmetical intensity
Sk

yl
ak

e
V
10

0
Xe

on

38 / 53

Arithmetical intensity (optimal intensity, half precision)

I Quad-core Intel Skylake CPU:

— Flop/Byte

I 14-core Intel Xeon Gold 6132 CPU:

— Flop/Byte

I Nvidia Tesla V100 GPU:

∼ 124 Flop/Byte

39 / 53

Arithmetical intensity (optimal intensity, half precision)

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128

GEMMAXPY
FFT

SpMV
Particle
codes

DNN

256 512

Stencil

arithmetical intensity

V
10

0
40 / 53

Roofline model

I We could plot both the peak floprate and the optimal
arithmetical intensity to the same figure:

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512
arithmetical intensity

S
ky

la
ke

V
10

0
X

eo
n

1

10

100

1000

10000

100000

F
lo

pr
at

e
[G

F
lo

ps
]

41 / 53

Roofline model (model)
I By including the function

Performance = min

{
Peak Floprate,

Flops

Transfers
× Bandwidth

}
to the plot, we get the following ”roofline“:

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512
arithmetical intensity

1

10

100

1000

10000

100000

F
lo

pr
at

e
[G

F
lo

ps
]

memory bound compute bound

S
ky

la
ke

V
10

0
X

eo
n

42 / 53

Roofline model (AX kernel)

I By including ”Arithmetical intensityAX,double“ to the figure, we
see that the measured floprate is actually quite close to the
value predicted by the model:

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512
arithmetical intensity

1

10

100

1000

10000

100000

F
lo

pr
at

e
[G

F
lo

ps
]

S
ky

la
ke

V
10

0
X

eo
n

43 / 53

Roofline model (GEMM kernel)

I The same applies to ”Arithmetical intensityGEMM,double“:

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512
arithmetical intensity

S
ky

la
ke

V
10

0
X

eo
n

1

10

100

1000

10000

100000

F
lo

pr
at

e
[G

F
lo

ps
]

44 / 53

Arithmetical intensity (caches and shared memory)

I When calculated naively, the double precision GEMM has the
arithmetical intensity of

Arithmetical intensityGEMM,double =
2n3

16n3 + 8n2
Flop/Byte

= ∼ 1

8
Flop/Byte

I Why is the real number

Arithmetical intensityGEMM,double = ∼ 32 Flop/Byte?

45 / 53

Arithmetical intensity (caches and shared memory)

I When implemented naively, we compute each entry separately:

A,B ∈ Rn×n, (AB)i ,j =
n∑

k=1

aikbkj

(
n2 · 2n

8n2(2n + 1)
Flop/Byte

)
I However, we can also do the following:

A11 . . . A1m
...

. . .
...

Am1 . . . Amm


B11 . . . B1m

...
. . .

...
Bm1 . . . Bmm




i ,j

=
m∑

k=1

AikBkj

46 / 53

Arithmetical intensity (caches and shared memory)

I If the blocks Aik and Bkj are small enough, they can be fitted
into CPU caches or SMP’s shared memory.

I Each block is loaded only once and then shared among the
thread block!

I The matrix-matrix multiplication AikBkj can therefore be
performed with minimal global memory communications.

I Only the global memory transfers are counted in the analysis
=⇒ the denominator decreases
=⇒ the arithmetical intensity increases
=⇒ higher performance on modern CPUs and GPUs.

47 / 53

Arithmetical intensity (caches and shared memory)

ti
m
e

Global
memory

Registers Global
memory

Shared
memory

Registers

48 / 53

PCI-E bandwidth (data in global memory)

I In the earlier example, the necessary data already resided in
the global memory when the timer was started:

struct timespec ts_start;

clock_gettime(CLOCK_MONOTONIC , &ts_start);

dim3 threads = 256;

dim3 blocks = max(1, min(256, n/threads.x));

ax_kernel <<<blocks , threads >>>(n, alpha , d_y);

cudaDeviceSynchronize ();

struct timespec ts_stop;

clock_gettime(CLOCK_MONOTONIC , &ts_stop);

I Outcome:

$ srun/ax.cuda 500E6

Time = 0.010582 s

Floprate = 47 GFlops

Memory throughput = 756 GB/s

49 / 53

PCI-E bandwidth (data in host memory)

I Let’s change that:

struct timespec ts_start;

clock_gettime(CLOCK_MONOTONIC , &ts_start);

cudaMemcpy(d_y , y, n*sizeof(double), cudaMemcpyHostToDevice);

dim3 threads = 256;

dim3 blocks = max(1, min(256, n/threads.x));

ax_kernel <<<blocks , threads >>>(n, alpha , d_y);

cudaMemcpy(y, d_y , n*sizeof(double), cudaMemcpyDeviceToHost);

struct timespec ts_stop;

clock_gettime(CLOCK_MONOTONIC , &ts_stop);

I Outcome:

Time = 1.652748 s

Floprate = 0.3 GFlops

Memory throughput = 5 GB/s

50 / 53

PCI-E bandwidth (bandwidth)

I We must remember that the data must be transferred over
the PCI-E bus:

900GB/s 900GB/s

tim
e

Global
memory

Registers Host
memory

Global
memory

Data in global memory Data in host memory

Registers

PCI-E
32GB/s

51 / 53

PCI-E bandwidth (roofline model)
I We must recalibrate the model for PCI-E 3.0:

Performance = min

{
Peak Floprate,

Flops

Transfers
× 32 BG/s.

}
I The roofline plot is going to look very different:

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512
arithmetical intensity

1

10

100

1000

10000

100000

F
lo

pr
at

e
[G

F
lo

ps
]

S
ky

la
ke

V
10

0
X

eo
n

52 / 53

Hands-ons

I Materials: https://git.cs.umu.se/mirkom/gpu_course/

I Two hands-ons under hands-ons/3.modelling:

1.compare Analyze memory-bound and compute-bound
codes.

2.profiling Analyze and profile Wednesday’s hands-ons.

I Solutions can be found under solutions/3.modelling.

53 / 53

https://git.cs.umu.se/mirkom/gpu_course/

