
Heterogeneous computing with performance
modelling

Some advanced topics

Mirko Myllykoski
mirkom@cs.umu.se

Department of Computing Science and HPC2N
Ume̊a University

4-5. November 2020

1 / 13

Streams

I As mentioned during the lecture 1.basics, the syntax

kernel_name <<< blocks , threads >>>(...);

places a kernel kernel name into a stream.

I By default, the kernel is placed into the NULL stream
(stream 0).

I The operations in a stream are executed in order.
I Kernels are executed in the order they are issued.
I Only one kernel can be active at any given time.

I Blocking functions, such as cudaMemcpy, wait until the NULL
stream is empty.
I Kernels and memory transfers do not overlap.

2 / 13

Streams (create, destroy and syncronize)

I A CUDA program can contain several streams.

I A stream is created with
__host__ cudaError_t cudaStreamCreate(cudaStream_t* pStream)

I A stream is destroyed with

__host__ __device__ cudaError_t cudaStreamDestroy(cudaStream_t stream)

I A stream is synchronized with

__host__ cudaError_t cudaStreamSynchronize(cudaStream_t stream)

I This causes the host thread to wait until the stream is empty.

3 / 13

Streams (asynchronous functions)

I Most familiar CUDA functions have asynchronous variants:

__host__ __device__ cudaError_t cudaMemcpyAsync (

void* dst , const void* src , size_t count , cudaMemcpyKind kind ,

cudaStream_t stream = 0)

__host__ __device__ cudaError_t cudaMemcpy2DAsync (

void* dst , size_t dpitch , const void* src , size_t spitch ,

size_t width , size_t height , cudaMemcpyKind kind ,

cudaStream_t stream = 0)

__host__ __device__ cudaError_t cudaMemsetAsync (

void* devPtr , int value , size_t count , cudaStream_t stream = 0)

__host__ __device__ cudaError_t cudaMemset2DAsync (

void* devPtr , size_t pitch , int value , size_t width , size_t height ,

cudaStream_t stream = 0)

__host__ cudaError_t cudaMemPrefetchAsync (

const void* devPtr , size_t count , int dstDevice ,

cudaStream_t stream = 0)

I Note that all functions default to the NULL stream.
I You can use asynchronous commands without creating a

stream.

4 / 13

Streams (kernels and a few comments)

I A kernel is placed into a specific stream with the following
notation:
kernel_name <<< blocks , threads , smem , stream >>>(...);

I Note that the NULL stream is special1.
I Other streams cannot run in parallel with the NULL stream.
I Other streams synchronize implicitly with the NULL stream.

I In particular, the cudaDeviceSynchronize() function
synchronizes all streams.

I Blocking data transfer functions, such as cudaMemcpy, also
synchronize all streams.

1cudaStreamNonBlocking flag changes this.

5 / 13

Streams (page-locked host memory)

I Host and device share the same memory address space.
I A device cannot always access the host memory and vice versa.

I A device can access page-locked host memory:

__host__ cudaError_t cudaMallocHost (void** ptr , size_t size)

__host__ cudaError_t cudaHostAlloc (

void** pHost , size_t size , unsigned int flags)

__host__ cudaError_t cudaFreeHost (void* ptr)

__host__ cudaError_t cudaHostRegister (

void* ptr , size_t size , unsigned int flags)

__host__ cudaError_t cudaHostUnregister (void* ptr)

I In most cases, the flag should be cudaHostAllocDefault or
cudaHostRegisterDefault.

I Page-locked memory can be accessed with higher bandwidth
than regular pageable memory (malloc()).
I Page-locked memory is much slower that the global memory.

I Memory that is used in asynchronous data transfers
should be page locked.

6 / 13

Streams (page-locked host memory)

I In the earlier AX example (lecture 3.modelling), we reached
only 5GB/s over the PCI-E bus. Let’s change that:

cudaHostRegister(y, n*sizeof(double), cudaHostRegisterDefault);

struct timespec ts_start;

clock_gettime(CLOCK_MONOTONIC , &ts_start);

cudaMemcpy(d_y , y, n*sizeof(double), cudaMemcpyHostToDevice);

dim3 threads = 256;

dim3 blocks = max(1, min(256, n/threads.x));

ax_kernel <<<blocks , threads >>>(n, alpha , d_y);

cudaMemcpy(y, d_y , n*sizeof(double), cudaMemcpyDeviceToHost);

struct timespec ts_stop;

clock_gettime(CLOCK_MONOTONIC , &ts_stop);

I Outcome:

Time = 0.641264 s

Floprate = 0.8 GFlops

Memory throughput = 12 GB/s

7 / 13

Streams (example)
ti
m
e

device host

cudaMemcpyAsync(d_x1, x1, n*sizeof(double), cudaMemcpyHostToDevice, p1);

cudaStream_t p1, p2;
cudaStreamCreate(p1);
cudaStreamCreate(p2);

cudaMemcpyAsync(d_x2, x2, n*sizeof(double), cudaMemcpyHostToDevice, p2);
ax_kernel<<<blocks, threads, 0, p1>>>(n, alpha, d_x1);
ax_kernel<<<blocks, threads, 0, p2>>>(n, alpha, d_x2);
cudaMemcpyAsync(x1, d_x1, n*sizeof(double), cudaMemcpyDeviceToHost, p1);
cudaMemcpyAsync(x2, d_x2, n*sizeof(double), cudaMemcpyDeviceToHost, p2);
cudaStreamSynchronize(p1);

cudaStreamSynchronize(p2);
==cudaSuccess

==cudaSuccess

8 / 13

Events

I Streams can be monitored and coordinated with events.

I An event must first be created:
__host__ cudaError_t cudaEventCreate (cudaEvent_t* event)

__host__ __device__ cudaError_t cudaEventDestroy (cudaEvent_t event)

I The cudaEventDestroy() function is safe, i.e., it frees all
associated resources only after the event is no longer needed.

I After being created, an event can be placed into a stream:

__host__ __device__ cudaError_t cudaEventRecord (

cudaEvent_t event , cudaStream_t stream = 0)

I Events can be used for host thread synchronization:

__host__ cudaError_t cudaEventSynchronize (cudaEvent_t event)

I The host thread waits until the stream has reached the event.

9 / 13

Events (continuation)

I We can query the status of an event:

__host__ cudaError_t cudaEventQuery (cudaEvent_t event)

I If the stream has reached the event, cudaSuccess is returned.
Otherwise, cudaErrorNotReady is returned.

I A stream can be made to wait until another stream has
reached an event:
__host__ __device__ cudaError_t cudaStreamWaitEvent (

cudaStream_t stream , cudaEvent_t event , unsigned int flags = 0)

I Two events can be used for timing:

__host__ cudaError_t cudaEventElapsedTime (

float* ms , cudaEvent_t start , cudaEvent_t end)

I Returns the elapsed time between two events (in milliseconds).

10 / 13

Managed memory

I Modern GPUs can manage the memory automatically:

// allocate managed memory

double *x;

cudaMallocManaged (&x, n*sizeof(double));

// initialize memory

for (int i = 0; i < n; i++)

x[i] = 2.0 * rand()/RAND_MAX - 1.0;

// issue the kernel directly

dim3 threads = 256;

dim3 blocks = (n+threads.x)/threads.x;

ax_kernel <<<blocks , threads >>>(n, alpha , x);

cudaDeviceSynchronize ();

cudaFree(x);

I The host must call cudaDeviceSynchronize() before
accessing the data.

11 / 13

Managed memory (continuation)

I When a memory buffer that has been allocated with the
cudaMallocManaged function is accessed, one of the
following events occurs:

1. If the corresponding memory page (4096 bytes) exists in the
host/device memory, then the memory request is served by the
memory controller or the caches.

2. If the corresponding memory page does no exists in the
host/device memory, then

2.1 a page fault is triggered,
2.2 memory transfer is initialized for the entire page, and
2.3 the thread(s) pause until the memory transfer is ready.

I Fetching the entire page can be costly if the memory is
accessed randomly. One must also pay attention to alignment.

I You can also prefetch the data to the global memory:

cudaMemPrefetchAsync(addr , size , cudaGetDevice (& device));

12 / 13

Hands-ons

I Materials: https://git.cs.umu.se/mirkom/gpu_course/

I Five hands-ons under hands-ons/4.advanced:

1.async Learn how to use streams and asynchronous
data transfers.

2.multi gemm Learn how to manage multiple streams.
3.pipeline Learn how to pipeline computation and data

transfers.
4.managed Learn how to use managed memory.

5.lu Learn what type of computations are suitable for
GPUs.

I Solutions can be found under solutions/4.advanced.

13 / 13

https://git.cs.umu.se/mirkom/gpu_course/

