
Heterogeneous computing with performance
modelling

More GPU programming basics

Mirko Myllykoski
mirkom@cs.umu.se

Department of Computing Science and HPC2N
Ume̊a University

4-5. November 2020

1 / 38

Compute capability

I Different GPUs have different architecture and capabilities.
I Nvidia uses Compute Capabilities to enumerate the

differences:
I 3.x → Kepler, GTX 700 series, Tesla K80
I 5.x → Maxwell, GTX 900 series
I 6.x → Pascal, GXT 1000 series
I 7.x → Volta, Tesla V100
I 7.5 → Turing, RTX 2000 series
I 8.x → Ampere, RTX 300 series, Tesla A100

I During this course, we are consentrating on 7.0 (Volta).
I However, we are not going to discuss any fancy

optimization techniques that are only 7.0 specific.

I Every new CUDA version introduces new functionality.
I Some older GPUs do not support everything.
I Some GPUs require customized code.

2 / 38

Recap

I Let’s return back to the earlier figure...

RAM
core core

core core

PCI-E

CUDA cores

Streaming MultiProcessors (SMPs)

Host (CPU) Device (GPU)

3 / 38

Recap

I A GPU contains several Streaming MultiProcessors (SMPs).

I Each SMP contains several CUDA cores.
I The threads are divided into thread blocks.

I Each thread block is mapped to a single SMP.
I A SMP can have multiple thread blocks mapped to it.

I Simultaneous hardware multithreading.
I Each CUDA core can execute several threads simultaneously.
I A scheduler select the next instruction among a pool of active

threads.

4 / 38

Streaming MultiProcessors

I In reality, a SMP looks something like this:

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

tensor
cores

Scheduler

Registers

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

tensor
cores

Scheduler

Registers

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

tensor
cores

Scheduler

Registers

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

tensor
cores

Scheduler

Registers

Shared memory / L1 cache

5 / 38

Streaming MultiProcessors (processing blocks)

I Each SMP is divided into multiple processing blocks.

I Each processing block contains the following:

CUDA cores Large number of cores for various operations
(integer, 32-bit floating point, 64-bit floating
point, reduced precision, special functions, etc).

Scheduler During each cycle, a scheduler selects a set of
threads and issues an instruction to the cores.

Register file All threads share a large pool of registers.

I All processing blocks share a combined shared memory and L1
data cache.

I Left out from the figure: dispatch units, L0/L1 instruction
caches, load/store units, texture units, ...

6 / 38

Streaming MultiProcessors (compared to CPU)

I This is a drastically different approach compared to CPUs.
I Each CPU core contains its own scheduler, registers, caches, ...
I Each CPU core contains several execution ports but these

execution ports are not generally referred to as cores.

fp int int

Scheduler

Registers

L1 cache

l/s l/s

L2 cache

fp fp fp int int

Scheduler

Registers

L1 cache

l/s l/s

L2 cache

fp fp fp int int

Scheduler

Registers

L1 cache

l/s l/s

L2 cache

fp fp fp int int

Scheduler

Registers

L1 cache

l/s l/s

L2 cache

fp fp

L3 cache

7 / 38

Streaming MultiProcessors (summary)

I In general, GPUs allocate
I more silicon to units that compute, and
I less silicon to units that direct computation.

I More computing power in the same form factor.
I Modular approach: SMPs, processing blocks, CUDA cores.

I Easier to scale to thousands of cores.

I However, the CUDA cores share a lot of resources.
I Should we call CUDA cores cores?
I Are CUDA cores just execution ports?
I What are the limitations?

8 / 38

Warps

I Underneath, each thread blocks is subdivided into warps.
I Each warps consist of 32 sequentially numbered threads.

I Given a thread block of the size (Dx, Dy, Dz), the hardware
indexes a thread of index (x, y, z) as (x + y*Dx + z*Dx*Dy).

I As a rule of thumb, threads that are adjacent in the x

dimension belong to the same warp.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

warp 0

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

warp 1
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

warp 2

9 / 38

Warps (warps scheduling)

I The warps are distributed among the processing blocks.
I During each instruction issue time, the scheduler

I picks a warp that is ready to execute an instruction and
I issues the instruction to a set of CUDA cores.
I The number of instructions issued depends on the architecture.

I All threads in a warp execute the same instruction!

I ”Non-contributing” threads are disabled:

printf("Everyone\n");
if (threadIdx.x < 16)
 printf("Less than 16.\n");
else if (threadIdx.x < 24)
 printf("Between 16 and 23\n");
else
 printf("Larger than 23\n");

10 / 38

Warps (disabled threads)

I Even though some threads are disabled, the overall cost is still
almost as high as if all threads in the warp had executed all
diverging paths:

printf("Everyone\n");
if (threadIdx.x < 16)
 printf("Less than 16.\n");
else if (threadIdx.x < 24)
 printf("Between 16 and 23\n");
else
 printf("Larger than 23\n");

11 / 38

Warps (disabled threads)

I The disabled threads do not trigger memory transfers etc, but
the associated resources (cores) are not being utilized:

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

tensor
cores

Scheduler

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

tensor
cores

Scheduler

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

tensor
cores

Scheduler

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

tensor
cores

Scheduler

I Above, the warps are issued over two or four cycles in
half-warps (int, fp32) or quarter-warps (fp64), receptively.

12 / 38

Warps (diverging execution paths)
I The diverging execution paths can be a bigger problem than

expected.

I If a thread diverges with the probability p ∈ [0, 1], then the
probability that at least one thread within a warp diverges is

1− (1− p)32.

0

20

40

60

80

100

0 20 40 60 80 100

Pr(a thread diverges)

P
r(

th
e
w
ar
p

 d
iv

er
ge

s)

13 / 38

Synchronization

I It is often necessary to synchronize the threads.
I We want to be sure that specific operations have been

completed.

I One of the simplest approaches is to create a barrier.
I All threads must encounter the barrier.
I Threads that have encountered the barrier wait until all

threads have encountered the barrier.

2 threads have encountered the barrier

5 threads have encountered the barrier

6 threads have encountered the barrier

7 threads have encountered the barrier

8 threads have encountered the barrier

tim
e

14 / 38

Synchronization (globally)

I The maximum lifetime of a thread is the same as the lifetime
of the corresponding kernel.
I All threads in a grid are synchronized at the beginning and

the end of a kernel.

time

kernel A kernel B kernel C

15 / 38

Synchronization (globally)

I The host thread and the grid are synchronized with:

__host__ __device__ cudaError_t cudaDeviceSynchronize (void)

tim
e

host thread grid

cudaDeviceSynchronize()

kernel finishes

16 / 38

Synchronization (thread block)

I Threads that belong to the same thread block are
synchronized with:

__device__ void __syncthreads (void)

time

th
re

ad
 b

lo
ck

gr
id

th
re

ad
 b

lo
ck

17 / 38

Synchronization (warp)

I Threads that belong to the same warp are synchronized with:

__device__ void __syncwarp(unsigned mask=0 xffffffff)

I Guarantees memory ordering among threads participating in
the barrier.

I Limited usefulness with pre-Volta GPUs.
I Sometimes necessary with Volta and post-Volta GPUs.

I See Independent Thread Scheduling.

18 / 38

Global memory

I Memory requests pass through L1 and L2 caches.
I A cache line is 128 bytes (32 floats, 16 doubles) and maps

to a 128 byte aligned segment of global memory.
I Unless L1 cache is explicitly disabled in which case the cache

line is 32 bytes and maps to a 32 byte aligned segment of
global memory.

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

....

19 / 38

Global memory (cache lines)

I A warp accesses the memory together.

I If a single thread in a warp accesses a memory address, then
the entire cache line is loaded:

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

....

20 / 38

Global memory (optimal access)

I For optimal performance, a warp should access adjacent
memory locations that span across as few cache lines as
possible:

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

....

21 / 38

Global memory (CPU versus GPU)

I The following access pattern would work well on a CPU:

#pragma omp parallel for schedule(static , 64)

for (int i = 0; i < N; i++)

x[i] = alpha * x[i];

I Each core accesses a different cache line, no false sharing.

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

....

22 / 38

Global memory (CPU versus GPU)

I The following access pattern would work horribly on a CPU:

#pragma omp parallel for schedule(static , 1)

for (int i = 0; i < N; i++)

x[i] = alpha * x[i];

I Cores access the same cache line, false sharing.

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

....

23 / 38

Global memory (CPU versus GPU)

I The following access pattern would work well on a GPU:

for (int i = threadIdx.x; i < N; i += blockDim.x)

x[i] = alpha * x[i];

I Warp loads a minimal number of cache lines, each cache line
is accessed completely.

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

....

0 32 64

256 288 320

....

24 / 38

Global memory (CPU versus GPU)

I The following access pattern would work horribly on a GPU:

for (int i = 0; i < M; i++)

x[threadIdx.x*M+i] = alpha * x[threadIdx.x*M+i];

I Warp loads a large number of cache lines, only two words are
accessed from each cache line.

0 32 64 96 128 160 192 224

256 288 320 352 384 416 448 480

....

25 / 38

Shared memory

I Each SMP has a fast on-chip memory (128 KB Volta) that is
divided between a L1 data cache and a shared memory.

I A portion of the shared memory can be allocated for a thread
block.

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

tensor
cores

Scheduler

Registers

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

tensor
cores

Scheduler

Registers

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

tensor
cores

Scheduler

Registers

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

fp64 fp32 fp32 int int

tensor
cores

Scheduler

Registers

Shared memory / L1 cache

26 / 38

Shared memory (banks and bank conflicts)

I Shared memory is significantly faster than the global memory.

I However, it is divided into 32 memory banks.

I Successive 4-byte words map to successive banks (Volta).
I Each bank has a bandwidth of 4-bytes per clock cycle.

I Simultaneous access to the same bank causes a bank conflict.
I Conflicting memory requests are served sequentially.

0 16 32 48 64 80 96 112

128 144 160 176 192 208 224 240

....

bank 10 bank 22

27 / 38

Shared memory (conflict-free pattern)

I An example where each memory bank receives one request:

0 16 32 48 64 80 96 112

128 144 160 176 192 208 224 240

....

I No bank conflicts, optimal bandwidth.

28 / 38

Shared memory (conflicting pattern)

I An example where some memory banks receive multiple
requests:

0 16 32 48 64 80 96 112

128 144 160 176 192 208 224 240

....

I Several two-way bank conflicts, two sequential transfers,
effective bandwidth cut to half.

29 / 38

Shared memory (allocation)

I Shared memory can be allocated either statically or
dynamically.

I Static allocation:
__global__ void kernel (....)

{

__shared__ int x[256];

....

}

I Dynamic allocation:

__global__ void kernel (....)

{

extern __shared__ int x[];

....

}

kernel <<<blocks , threads , 256* sizeof(int)>>>kernel (....);

30 / 38

Shared memory (example)

I Shared memory is typically used when the threads in the same
thread block need to communicate.

I Imagine the following transpose operation:

__global__ void small_transpose(float A[32][32])

{

// we are assuming that the thread block size is 32 x 32

__shared__ float tmp [32][32];

// each thread loads a matrix element

tmp[threadIdx.y][threadIdx.x] = A[threadIdx.y][threadIdx.x];

// each thread waits until all other threads are ready

__syncthreads ();

// each thread stores a matrix element (note the swapped dimensions)

A[threadIdx.y][threadIdx.x] = tmp[threadIdx.x][threadIdx.y];

}

31 / 38

Shared memory (bad access pattern)

I The second access to the tmp array causes 32-way bank
conflict but the global memory is accessed optimally:

__global__ void small_transpose(float A[32][32])

{

// we are assuming that the thread block size is 32 x 32

__shared__ float tmp [32][32];

....

// each thread stores a matrix element (note the swapped dimensions)

A[threadIdx.y][threadIdx.x] = tmp[threadIdx.x][threadIdx.y];

}

0 16 32 48 64 80 96 112

128 144 160 176 192 208 224 240

....

32 / 38

Shared memory (optimal access pattern)

I This can be fixed quite easily:

__global__ void small_transpose(float A[32][32])

{

// we are assuming that the thread block size is 32 x 32

__shared__ float tmp [32][33]; // <= *** note 33 ***

....

// each thread stores a matrix element (note the swapped dimensions)

A[threadIdx.y][threadIdx.x] = tmp[threadIdx.x][threadIdx.y];

}

0 16 32 48 64 80 96 112

128 144 160 176 192 208 224 240

....

33 / 38

Matrices

I cudaMalloc and cudaMallocManaged align memory to 256
bytes (two 128-byte cache lines).

I Matrices (two-dimensional arrays) require special attention
since each column should also be aligned (assuming
column-major ordering):

i*512

i*512+128

i*512+256

i*512+385

not aligned aligned

34 / 38

Matrices (manual allocation)

I The alignment can be done manually:

// a function that returns the ceil of a/b. That is ,

// DIVCEIL (5, 2) = ceil (5/2) = ceil (2.5) = 3.

static int DIVCEIL(int a, int b)

{

return (a+b-1)/b;

}

...

// allocate 256- byte aligned m x n matrix (m rows , n columns)

double *A;

int ldA = DIVCEIL(m, 256/ sizeof(double))*(256/ sizeof(double));

cudaMalloc (&A, n*ldA*sizeof(double));

I This is same as
// allocate 256- byte aligned m x n matrix (m rows , n columns)

double *A;

int ldA = DIVCEIL(m, 32) *32;

cudaMalloc (&A, n*ldA*sizeof(double));

35 / 38

Matrices (cudaMallocPitch)

I Or using the cudaMallocPitch function:

__host__ cudaError_t cudaMallocPitch (

void ** devPtr ,

size_t * pitch ,

size_t width ,

size_t height

)

I pitch is the leading dimension. Both pitch and width are
given in bytes.

I Note that the cudaMallocPitch function assumes the that
matrix in stored in row-major format. Therefore, you should
do the following when allocating in column-major format:

double *A; int ldA;

{

size_t pitch;

cudaMallocPitch (&A, &pitch , m*sizeof(double), n);

ldA = pitch/sizeof(double);

}

36 / 38

Matrices (transfers)

I A matrix can be transferred with the cudaMemcpy2D function:

__host__ cudaError_t cudaMemcpy2D (

void * dst ,

size_t dpitch ,

const void * src ,

size_t spitch ,

size_t width ,

size_t height ,

enum cudaMemcpyKind kind

)

I Assuming we have
I a matrix A with the leading dimension ldA in the host memory

and
I a matrix dA with the leading dimension ld dA in the global

memory:

cudaMemcpy2D(d_A , ld_dA*sizeof(double), A, ldA*sizeof(double),

m*sizeof(double), n, cudaMemcpyHostToDevice)

37 / 38

Hands-ons

I Materials: https://git.cs.umu.se/mirkom/gpu_course/

I Two hands-ons under hands-ons/2.intermediate:

1.sum Learn how to use shared memory and
synchronize threads. Learn how to sum together
the elements of a vector.

2.gemv Learn how to use shared memory, synchronize
threads and handle matrices. Learn how to
perform a matrix-vector multiplication.

I Solutions can be found under solutions/2.intermediate.

38 / 38

https://git.cs.umu.se/mirkom/gpu_course/

