
Heterogeneous computing with performance
modelling - Introduction to HPC2N

Birgitte Brydsø, Mirko Myllykoski, Pedro Ojeda-May

HPC2N, Ume̊a University

4-5 November 2020

1 / 22

Kebnekaise

1 602 nodes / 19288 cores (of which 2448 are KNL)

432 Intel Xeon E5-2690v4, 2x14 cores, 128 GB/node
52 Intel Xeon Gold 6132, 2x14 cores, 192 GB/node
20 Intel Xeon E7-8860v4, 4x18 cores, 3072 GB/node
32 Intel Xeon E5-2690v4, 2x NVidia K80, 2x14, 2x4992, 128 GB/node
4 Intel Xeon E5-2690v4, 4x NVidia K80, 2x14, 4x4992, 128 GB/node
10 Intel Xeon Gold 6132, 2x NVidia V100, 2x14, 2x5120, 192 GB/node
36 Intel Xeon Phi 7250, 68 cores, 192 GB/node, 16 GB MCDRAM/node

36 Intel Xeon Phi 7250, 68 cores, 192GB/node, 16GB MCDRAM/node

2 501760 CUDA “cores” (80*4992 cores/K80+20*5120 cores/V100)

3 More than 136 TB memory total

4 Interconnect: Mellanox FDR / EDR Infiniband

5 Theoretical performance: 984 TF

6 HP Linpack: 791 TF

7 Date installed: Fall 2016 / Spring 2017 / Spring 2018

2 / 22

Using our systems
Connecting to HPC2N’s systems - ThinLinc

ThinLinc is a cross-platform remote desktop server developed by
Cendio AB. It is especially useful when you need to use software
with a graphical interface.

Download the client from
https://www.cendio.com/thinlinc/download. Install it.

Start the client. Enter the name of the server:
kebnekaise-tl.hpc2n.umu.se. Enter your username.

Go to ”Options” − > ”Security”. Check that authentication
method is set to password.

Go to ”Options” − > ”Screen”. Uncheck ”Full screen mode”.

Enter your HPC2N password. Click ”Connect”

Click ”Continue” when you are being told that the server’s
host key is not in the registry. Wait for the ThinLinc desktop
to open.

3 / 22

Using Kebnekaise
Transfer your files and data

Linux, OS X:
Use scp (or sftp) for file transfer. Example, scp:

local> scp username@kebnekaise.hpc2n.umu.se:file .

local> scp file username@kebnekaise.hpc2n.umu.se:file

Windows:
Download client: WinSCP, FileZilla (sftp), PSCP/PSFTP, ...
Transfer with sftp or scp

Mac/OSX:
Transfer with sftp or scp (as for Linux) using Terminal
Or download client: Cyberduck, Fetch, ...

More information in guides (see previous slide) and here:
https://www.hpc2n.umu.se/documentation/filesystems/filetransfer

4 / 22

Using Kebnekaise
Editors

Editing your files

Various editors: vi, vim, nano, emacs ...

Example, vi/vim:

vi <filename>
Insert before: i
Save and exit vi/vim: Esc :wq

Example, nano:

nano <filename>
Save and exit nano: Ctrl-x

Example, Emacs:

Start with: emacs
Open (or create) file: Ctrl-x Ctrl-f
Save: Ctrl-x Ctrl-s
Exit Emacs: Ctrl-x Ctrl-c

5 / 22

The File System

More info here: http://www.hpc2n.umu.se/filesystems/overview

AFS (˜/) AFS (˜/Public) Project storage PFS /scratch

Good for
batch jobs No Yes Yes
Backed up Yes Yes No No No
Accessible Yes, readable
by batch No with right Yes Yes Yes
system permissions (node only)
High

performance No No Yes Yes Medium
Default World Group Everyone

readability Owner readable only on cluster Owner
chmod, Cannot be chmod, chmod, chmod,

Permissions chgrp, ACL changed chgrp, ACL chgrp, ACL chgrp, ACL
Your home- Your home- This gets

Notes directory is directory is allocated through Per node
on AFS on AFS storage projects

6 / 22

The File System

7 / 22

The File System
AFS

Your home directory is located in /home/u/username and can
also be accessed with the environment variable $HOME

It is located on the AFS (Andrew File System) file system

Important! The batch system cannot access AFS since
ticket-forwarding to batch jobs do not work

AFS does secure authentification using Kerberos tickets

8 / 22

The File System
PFS, project storage

The ’parallel’ file system, located in
/pfs/nobackup/home/u/username (/pfs/nobackup/$HOME)

As well, project storage is located on pfs, under
/proj/nobackup/<your-project-storage>

Offers high performance when accessed from the nodes

The correct place to run all your batch jobs

NOT backed up, so you should not leave files there that
cannot easily be recreated

For easier access during this course, create a symbolic link
from your home on AFS to your home on PFS:

ln -s /pfs/nobackup/$HOME $HOME/pfs

You can now access your pfs with cd pfs from your home
directory on AFS

9 / 22

The Module System (Lmod)

Most programs are accessed by first loading them as a ’module’

Modules are:

used to set up your environment (paths to executables,
libraries, etc.) for using a particular (set of) software
package(s)

a tool to help users manage their Unix/Linux shell
environment, allowing groups of related environment-variable
settings to be made or removed dynamically

allows having multiple versions of a program or package
available by just loading the proper module

installed in a hierarchial layout. This means that some
modules are only available after loading a specific compiler
and/or MPI version.

10 / 22

The Module System (Lmod)

Most programs are accessed by first loading them as a ’module’

See which modules exists:
module spider or ml spider

Modules depending only on what is currently loaded:
module avail or ml av

See which modules are currently loaded:
module list or ml

Example: loading a compiler toolchain and version, here for GCC,
OpenMPI, OpenBLAS/LAPACK, FFTW, ScaLAPACK and CUDA:
module load fosscuda/2019b or ml fosscuda/2019b

Example: Unload the above module:
module unload fosscuda/2019b or ml -fosscuda/2019b

More information about a module:
module show <module> or ml show <module>

Unload all modules except the ’sticky’ modules:

module purge or ml purge

11 / 22

The Module System
Compiler Toolchains

Compiler toolchains load bundles of software making up a complete envi-

ronment for compiling/using a specific prebuilt software. Includes some/all

of: compiler suite, MPI, BLAS, LAPACK, ScaLapack, FFTW, CUDA.

Some of the currently available toolchains (check ml av for all/versions):

GCC: GCC only
gcccuda: GCC and CUDA
foss: GCC, OpenMPI, OpenBLAS/LAPACK, FFTW, ScaLAPACK
fosscuda: GCC, OpenMPI, OpenBLAS/LAPACK, FFTW, ScaLAPACK, and CUDA
gimkl: GCC, IntelMPI, IntelMKL
gimpi: GCC, IntelMPI
gompi: GCC, OpenMPI
gompic: GCC, OpenMPI, CUDA
goolfc: gompic, OpenBLAS/LAPACK, FFTW, ScaLAPACK
icc: Intel C and C++ only
iccifort: icc, ifort
iccifortcuda: icc, ifort, CUDA
ifort: Intel Fortran compiler only
iimpi: icc, ifort, IntelMPI
intel: icc, ifort, IntelMPI, IntelMKL
intelcuda: intel and CUDA
iomkl: icc, ifort, Intel MKL, OpenMPI
pomkl: PGI C, C++, and Fortran compilers, IntelMPI
pompi: PGI C, C++, and Fortran compilers, OpenMPI

12 / 22

Compiling and Linking with Libraries
Linking

Figuring out how to link

Intel and Intel MKL linking:
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

Buildenv

After loading a compiler toolchain, load ’buildenv’ and use
’ml show buildenv’ to get useful linking info
Example, fosscuda, version 2019b:
ml fosscuda/2019b

ml buildenv

ml show buildenv

Using the environment variable (prefaced with $) is highly
recommended!
You have to load the buildenv module in order to be able to
use the environment variables for linking!

13 / 22

Compiling and Linking with Libraries
Compiling with nvcc, example using fosscuda/2019b

Load any modules (once per session):
ml fosscuda/2019b buildenv

Compile with nvcc. The flag -o allowes you to name the
output file
nvcc -o hello hello.cu

Remember to link with any libraries. If you loaded buildenv

you can use the environment variables. Example with
OpenBLAS:
nvcc -o hello hello.cu ${LIBBLAS}

14 / 22

The Batch System (SLURM)

Large/long/parallel jobs must be run through the batch
system

SLURM is an Open Source job scheduler, which provides
three key functions

Keeps track of available system resources
Enforces local system resource usage and job scheduling
policies
Manages a job queue, distributing work across resources
according to policies

In order to run a batch job, you need to create and submit a
SLURM submit file (also called a batch submit file, a batch
script, or a job script).

Guides and documentation at:
http://www.hpc2n.umu.se/support

15 / 22

The Batch System (SLURM)
Useful Commands

Submit job: sbatch <jobscript>

Get list of your jobs: squeue -u <username>

srun <commands for your job/program>

salloc <commands to the batch system>

Check on a specific job: scontrol show job <job id>

Delete a specific job: scancel <job id>

Useful info about job: sacct -l -j <jobid> | less -S

16 / 22

The Batch System (SLURM)
Job Output

Output and errors in:
slurm-<job-id>.out

To get output and error files split up, you can give these flags
in the submit script:
#SBATCH --error=job.%J.err

#SBATCH --output=job.%J.out

To specify Broadwell or Skylake only:
#SBATCH --constraint=broadwell or
#SBATCH --constraint=skylake

To run on the GPU nodes, add this to your script:
#SBATCH --gres=gpu:<card>:x
where <card> is k80 or v100, x = 1, 2, or 4 (4 only if K80).

http://www.hpc2n.umu.se/resources/hardware/kebnekaise

17 / 22

The Batch System (SLURM)
Simple example, serial

Example: Serial job, compiler toolchain ’fosscuda/2019b’

#!/bin/bash

Project id - change to your own after the course!

#SBATCH -A SNIC2020-9-16

Asking for 1 core

#SBATCH -n 1

Asking for a walltime of 5 min

#SBATCH --time=00:05:00

Always purge modules before loading new in a script.

ml purge > /dev/null 2>&1
ml fosscuda/2019b

./my serial program

Submit with:

sbatch <jobscript>
18 / 22

The Batch System (SLURM)
parallel example

#!/bin/bash

#SBATCH -A SNIC2020-9-16

#SBATCH -n 14

#SBATCH --time=00:05:00

ml purge < /dev/null 2>&1
ml fosscuda/2019b

srun ./my mpi program

19 / 22

The Batch System (SLURM)
Requesting GPU nodes

Currently there is no separate queue for the GPU nodes

Request GPU nodes by adding this to your batch script:

#SBATCH --gres=gpu:<type-of-card>:x

where <type-of-card> is either k80 or v100 and x

= 1, 2, or 4 (4 only for the K80 type)

There are 32 nodes (broadwell) with dual K80 cards and 4
nodes with quad K80 cards

There are 10 nodes (skylake) with dual V100 cards

20 / 22

The Batch System (SLURM)
Example: Asking for a GPU

NOTE: Instead of using a batch script, you can give the commands
on the command line.

#!/bin/bash

#SBATCH -A SNIC2020-9-16

#SBATCH --time=00:05:00

#SBATCH --ntasks=1 # Asking for one V100 card

#SBATCH --gres=gpu:v100:1

#SBATCH --reservation=snic2020-9-161-day1

Load any modules you need

ml fosscuda/2019b buildenv

./my program

21 / 22

Various useful info

A project has been set up for the workshop: SNIC2020-9-16

You use it in your batch submit file by adding:

#SBATCH -A SNIC2020-9-16

There is a reservation for 3 V100 GPU nodes. This reservation
is accessed by adding this to your batch submit file:

WEDNESDAY
#SBATCH --reservation=snic2020-9-161-day1

THURSDAY
#SBATCH --reservation=snic2020-9-161-day2

The reservation is ONLY valid for the duration of the course.

22 / 22

