Artificial Neural Network

Part II: The Road Map of Machine Learning Algorithms

Xijia Liu xijia.liu.18@gmail.com

Department of mathematics and mathematical statistics Umeå University

December 2, 2019

Introduction

- Kernel methods: Support vector machine
- Ensemble methods:
 - Random forest
 - Adaboost
 - Artificial Neural Network

Ensemble Methods

Artificial Neural Network

Kernel methods

• Feature mapping: $\phi : \mathbb{R}^2 \to \mathbb{R}^3$

$$(x_1, x_2) \rightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

• Inexplicit mapping: ϕ

	Kernel Methods ●0000000	Ensemble Methods 000000000000000	Artificial Neural Netwo 000000
Kernel met	hods		
• Featu	ure mapping: $\phi:\mathbb{R}$ (x_1,x_2)	$\stackrel{2}{\longrightarrow} \mathbb{R}^{3}$ $\stackrel{1}{\longrightarrow} (x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2})$	ā., y.

- Inexplicit mapping: ϕ
- Kernel function: $\kappa_{\phi}(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$
- Polynomial kenerl and Gaussian Kernel (RBF).

$$k_{q}(\underline{x}_{i},\underline{x}_{j}) = (C + \Im \underline{x}_{i},\underline{x}_{j}) \qquad k_{p}(\underline{x}_{i},\underline{x}_{j}) = e_{xp} \left\{ -\frac{\|\underline{x}_{i}-\underline{x}_{j}\|_{2}^{2}}{\sigma^{2}} \right\}$$

• Feature mapping: $\phi : \mathbb{R}^2 \to \mathbb{R}^3$

$$(x_1, x_2) \rightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

- Inexplicit mapping: ϕ
- Kernel function: $\kappa_{\phi}(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$
- Polynomial kenerl and Gaussian Kernel (RBF).
- Kernel tricks: obtain a non-linear model by embedding kernel function into different linear algorithms.
- Kernel PCA, Kernel regression, Support vector machine.

Artificial Neural Network

Maximum Margin Classifier

• The margin of the decision boundary should be as large as possible.

Ensemble Methods

Artificial Neural Network

Maximum Margin Classifier

• A statistical illustration of this idea:

Ensemble Methods

Artificial Neural Network

Support Vectors

Artificial Neural Network

Support Vectors

Ensemble Methods

Artificial Neural Network

Support Vectors

• Only the points on the boundary of margin have contributions to the final estimation results

Ensemble Methods

Artificial Neural Network

Support Vectors

- Only the points on the boundary of margin have contributions to the final estimation results
- Kernelized MMC \rightarrow support vector machine

Ensemble Methods

Artificial Neural Network

Over fitting in SVM

Artificial Neural Network

Soft Margin Classifier

- IDEA: We give up some high noise cases.
- For each observation, we introduce a fuzzy (Slackness) parameter, ξ_i ≥ 0.
- Hyper-parameter: large *C*, less noise tolerance, high cost.

Ensemble Methods

Artificial Neural Network

Summary of Kernel SVM

• SVM = MMC + Kernel trick.

Artificial Neural Network

- SVM = MMC + Kernel trick.
- Soft Margin Classifier = SVM + Cost.

- SVM = MMC + Kernel trick.
- Soft Margin Classifier = SVM + Cost.
- Hyper-parameters: parameters in kernel function and cost C

- SVM = MMC + Kernel trick.
- Soft Margin Classifier = SVM + Cost.
- Hyper-parameters: parameters in kernel function and cost C
- RBF kernel SVM is the most popular one.

- SVM = MMC + Kernel trick.
- Soft Margin Classifier = SVM + Cost.
- Hyper-parameters: parameters in kernel function and cost C
- RBF kernel SVM is the most popular one.
- The kernel parameter σ can be estimated from sample, see Caputo, Furesjo and Smola (2002).

- SVM = MMC + Kernel trick.
- Soft Margin Classifier = SVM + Cost.
- Hyper-parameters: parameters in kernel function and cost C
- RBF kernel SVM is the most popular one.
- The kernel parameter σ can be estimated from sample, see Caputo, Furesjo and Smola (2002).
- Tuning: exponential growing sequesces of C and σ , e.g. $2^{-5}, 2^{-3}, ..., 2^{15}$.

Artificial Neural Network

Introduction to ensemble methods

• Whether Swedish national football team can qualify for the Euro Cup in 2020?

Introduction to ensemble methods

- Whether Swedish national football team can qualify for the Euro Cup in 2020?
- Find an expert and follow his/her suggestion.

Introduction to ensemble methods

- Whether Swedish national football team can qualify for the Euro Cup in 2020?
- Find an expert and follow his/her suggestion.

• Aggregate optinions from all of us.

Introduction to ensemble methods

- Whether Swedish national football team can qualify for the Euro Cup in 2020?
- Find an expert and follow his/her suggestion.

• Aggregate optinions from all of us.

Introduction to ensemble methods

- Whether Swedish national football team can qualify for the Euro Cup in 2020?
- Find an expert and follow his/her suggestion.
- Select the "best" model by cross validation.
- Aggregate optinions from all of us.

Give more weights to some experts.

Introduction to ensemble methods

- Whether Swedish national football team can qualify for the Euro Cup in 2020?
- Find an expert and follow his/her suggestion.
- Select the "best" model by cross validation.
- Aggregate optinions from all of us.
- Uniform Aggregation. Bagging/Random forest.
- Give more weights to some experts.

Introduction to ensemble methods

- Whether Swedish national football team can qualify for the Euro Cup in 2020?
- Find an expert and follow his/her suggestion.
- Select the "best" model by cross validation.
- Aggregate optinions from all of us.
- Uniform Aggregation. Bagging/Random forest.
- Give more weights to some experts.
- Non-uniform Aggregation. Adaboost.

Artificial Neural Network

Artificial Neural Network

0 (, o o	۵ ۵	۵
	° 0	0	Δ
0	0	0	Δ

Artificial Neural Network

Artificial Neural Network

R R C)	0	BR △	BB
	0	0	۵	
RR	0	0	BR o	BB ▲
0		0	0	۵

Artificial Neural Network

R RB O	0	BRB △	BBB
	0		
^{RRR} o	0	BRR	BBR △
0	0	0	۵

Artificial Neural Network

BRB	BBB
Δ	^
	4
Δ	
BRR	BBR
0	Δ
0	
	Δ
	BRB BRR O O

Artificial Neural Network

RRB		BRB	BBB
0	_	Δ	Δ
0	0	Δ	
	0		
^{RRR} o	0	BRR	BBR △
		0	
0	0		Δ

Artificial Neural Network

Uniform Aggregation

• Suppose we have learned *M* models, $f_i(\mathbf{x})$, from the data.

Artificial Neural Network

- Suppose we have learned *M* models, $f_i(\mathbf{x})$, from the data.
- Uniform Aggregation:

$$F(\mathbf{x}) = sign\left(\sum_{j=1}^{M} f_j(\mathbf{x})\right)$$
Artificial Neural Network

Uniform Aggregation

• Suppose we have learned *M* models, $f_i(\mathbf{x})$, from the data.

1

• Uniform Aggregation:

$$\mathsf{F}(\mathsf{x}) = rac{1}{M} \sum_{j=1}^M f_j(\mathsf{x})$$

Artificial Neural Network

Uniform Aggregation

- Suppose we have learned *M* models, $f_i(\mathbf{x})$, from the data.
- Uniform Aggregation:

$${\sf F}({\sf x}) = rac{1}{M}\sum_{j=1}^M f_j({\sf x})$$

• Variance and bias decomposition:

 $E(f_j(\mathbf{x}) - g(\mathbf{x}))^2$

Artificial Neural Network

Uniform Aggregation

- Suppose we have learned *M* models, $f_i(\mathbf{x})$, from the data.
- Uniform Aggregation:

$${\sf F}({\sf x}) = rac{1}{M}\sum_{j=1}^M f_j({\sf x})$$

• Variance and bias decomposition:

 $E(f_j(\mathbf{x}) - g(\mathbf{x}))^2 = E(f_j(\mathbf{x}) - E(f_j(\mathbf{x})) + E(f_j(\mathbf{x})) - g(\mathbf{x}))^2$

Artificial Neural Network

Uniform Aggregation

• Suppose we have learned *M* models, $f_i(\mathbf{x})$, from the data.

1

• Uniform Aggregation:

$$\mathsf{F}(\mathsf{x}) = rac{1}{M} \sum_{j=1}^M f_j(\mathsf{x})$$

• Variance and bias decomposition:

 $E(f_j(\mathbf{x}) - g(\mathbf{x}))^2 = E(f_j(\mathbf{x}) - E(f_j(\mathbf{x})))^2 + (E(f_j(\mathbf{x})) - g(\mathbf{x}))^2$

Artificial Neural Network

Uniform Aggregation

• Suppose we have learned *M* models, $f_i(\mathbf{x})$, from the data.

1

• Uniform Aggregation:

$$\mathsf{F}(\mathsf{x}) = rac{1}{M} \sum_{j=1}^M f_j(\mathsf{x})$$

• Variance and bias decomposition:

 $E(f_j(\mathbf{x}) - g(\mathbf{x}))^2 = E(f_j(\mathbf{x}) - E(f_j(\mathbf{x})))^2 + (E(f_j(\mathbf{x})) - g(\mathbf{x}))^2$

Artificial Neural Network

Uniform Aggregation

• Suppose we have learned *M* models, $f_i(\mathbf{x})$, from the data.

1

• Uniform Aggregation:

$$\mathsf{F}(\mathsf{x}) = rac{1}{M} \sum_{j=1}^M f_j(\mathsf{x})$$

$$V_{ar}(x) = E(x - E_{ar})^2$$

• Variance and bias decomposition:

 $E(f_j(\mathbf{x}) - g(\mathbf{x}))^2 = E(f_j(\mathbf{x}) - E(f_j(\mathbf{x})))^2 + (E(f_j(\mathbf{x})) - g(\mathbf{x}))^2$

Artificial Neural Network

Uniform Aggregation

- Suppose we have learned *M* models, $f_i(\mathbf{x})$, from the data.
- Uniform Aggregation:

$$\mathsf{F}(\mathsf{x}) = rac{1}{M} \sum_{j=1}^M f_j(\mathsf{x})$$

• Variance and bias decomposition:

 $E(f_j(\mathbf{x}) - g(\mathbf{x}))^2 = E(f_j(\mathbf{x}) - E(f_j(\mathbf{x})))^2 + (E(f_j(\mathbf{x})) - g(\mathbf{x}))^2$

• Better performance:

$$\operatorname{avg} \operatorname{Err}(f_j(\mathbf{x})) \geq \operatorname{Err}(\operatorname{avg}(f_j(\mathbf{x})))$$

Artificial Neural Network

Uniform Aggregation

- Suppose we have learned *M* models, $f_i(\mathbf{x})$, from the data.
- Uniform Aggregation:

$$F(\mathbf{x}) = rac{1}{M} \sum_{j=1}^M f_j(\mathbf{x})$$

• Variance and bias decomposition:

 $E(f_j(\mathbf{x}) - g(\mathbf{x}))^2 = E(f_j(\mathbf{x}) - E(f_j(\mathbf{x})))^2 + (E(f_j(\mathbf{x})) - g(\mathbf{x}))^2$

• Better performance:

$$\operatorname{avg} \operatorname{Err}(f_j(\mathbf{x})) \geq \operatorname{Err}(\operatorname{avg}(f_j(\mathbf{x})))$$

• Large diversity among *M* models.

Artificial Neural Network

Uniform Aggregation

- Suppose we have learned *M* models, $f_i(\mathbf{x})$, from the data.
- Uniform Aggregation:

$$F(\mathbf{x}) = rac{1}{M} \sum_{j=1}^M f_j(\mathbf{x})$$

• Variance and bias decomposition:

 $E(f_j(\mathbf{x}) - g(\mathbf{x}))^2 = E(f_j(\mathbf{x}) - E(f_j(\mathbf{x})))^2 + (E(f_j(\mathbf{x})) - g(\mathbf{x}))^2$

• Better performance:

 $\operatorname{avg} \operatorname{Err}(f_j(\mathbf{x})) \geq \operatorname{Err}(\operatorname{avg}(f_j(\mathbf{x})))$

- Large diversity among *M* models.
- Question: How to get those *M* models?

Artificial Neural Network

Uniform Aggregation

- Suppose we have learned *M* models, $f_i(\mathbf{x})$, from the data.
- Uniform Aggregation:

$$F(\mathbf{x}) = rac{1}{M} \sum_{j=1}^M f_j(\mathbf{x})$$

• Variance and bias decomposition:

 $E(f_j(\mathbf{x}) - g(\mathbf{x}))^2 = E(f_j(\mathbf{x}) - E(f_j(\mathbf{x})))^2 + (E(f_j(\mathbf{x})) - g(\mathbf{x}))^2$

• Better performance:

 $\operatorname{avg} \operatorname{Err}(f_j(\mathbf{x})) \geq \operatorname{Err}(\operatorname{avg}(f_j(\mathbf{x})))$

- Large diversity among *M* models.
- Question: How to get those *M* models? Bootstrap!

Artificial Neural Network

Bagging (Bootstrap Aggregation)

• Basic idea: Apply Bootstrap resampling technique to generate different bootstrap samples, such that the classifiers learned from each bootstrap sample have large diversity.

Bagging (Bootstrap Aggregation)

 Basic idea: Apply Bootstrap resampling technique to generate different bootstrap samples, such that the classifiers learned from each bootstrap sample have large diversity.

Algorithm

- 1 Take a random sample with replacement from data set X^*
- 2 Train a classifier from this random sample
- S Repeat step 1 and 2(B) times, then perform uniform aggregation

Artificial Neural Network

Bagging (Bootstrap Aggregation)

• Basic idea: Apply Bootstrap resampling technique to generate different bootstrap samples, such that the classifiers learned from each bootstrap sample have large diversity.

Algorithm

- 1 Take a random sample with replacement from data set, X^*
- 2 Train a classifier from this random sample
- O Repeat step 1 and 2 B times, then perform uniform aggregation
 - A strategy to enhance the existing algorithm.

Bagging (Bootstrap Aggregation)

• Basic idea: Apply Bootstrap resampling technique to generate different bootstrap samples, such that the classifiers learned from each bootstrap sample have large diversity.

Algorithm

- 1 Take a random sample with replacement from data set, \mathbf{X}^*
- **2** Train a classifier from this random sample
- S Repeat step 1 and 2 B times, then perform uniform aggregation
 - A strategy to enhance the existing algorithm. Any proper algorithm?

Artificial Neural Network

Decision Tree

ID	Unable	Estate	Marital	Income
1	0	1	S	125
2	0	0	М	100
3	0	0	S	70
4	0	1	М	120
5	1	0	D	95
6	0	0	М	60
7	0	1	D	220
8	1	0	S	85
9	0	0	М	75
10	1	0	S	90

Artificial Neural Network

Decision Tree

Key: Sequentially split the feature space into small pieces.

ID	Unable	Estate	Marital	Income	
1	0	1	S	125	- February
2	0	0	М	100	
3	0	0	S	70	
4	0	1	М	120	able Marital
5	1	0	D	95	No Yes
6	0	0	М	60	Income (able)
7	0	1	D	220	>80 <80
8	1	0	S	85	(able) Unable
9	0	0	М	75	\bigcirc \bigcirc
10	1	0	S	90	

Motivations

- The main weaknesses of decision tree is unstable and very sensitive to the data.
- Large variation! Bagging!

Motivations

- The main weaknesses of decision tree is unstable and very sensitive to the data.
- Large variation! Bagging!
- Random forest = Decision tree + bagging

1 Draw a bootstrap sample from original data.

 In order to get a big variation among different trees, random forest algorithm also random select a subset of feature variables for training.

- In order to get a big variation among different trees, random forest algorithm also random select a subset of feature variables for training.
- In literature, it is called random subspace, also a kind of feature mapping.

- In order to get a big variation among different trees, random forest algorithm also random select a subset of feature variables for training.
- In literature, it is called random subspace, also a kind of feature mapping.
- Once those information have been decided, we can train a decision tree.

- In order to get a big variation among different trees, random forest algorithm also random select a subset of feature variables for training.
- In literature, it is called random subspace, also a kind of feature mapping.
- Once those information have been decided, we can train a decision tree.
- **3** Repeat these procedure B times.

- In order to get a big variation among different trees, random forest algorithm also random select a subset of feature variables for training.
- In literature, it is called random subspace, also a kind of feature mapping.
- Once those information have been decided, we can train a decision tree.
- **3** Repeat these procedure B times.
- Apply uniform aggregation method on those trees, then we have our random forest model.

Kernel Methods 20000000 Ensemble Methods

Artificial Neural Network

Out of Bagging Errors

• Out of bagging samples: a set of samples which is not included in the bootstrap sample.

Out of Bagging Errors

- Out of bagging samples: a set of samples which is not included in the bootstrap sample.
- The probability of an example is not included in a Bootstrap sample:

$$\left(1-\frac{1}{N}\right)^{N} \rightarrow \frac{1}{e} \approx 0.37$$

$$60^{0}/6 40^{0}/6$$

$$1 = 10^{10}$$

Out of Bagging Errors

- Out of bagging samples: a set of samples which is not included in the bootstrap sample.
- The probability of an example is not included in a Bootstrap sample:

$$\left(1-rac{1}{N}
ight)^N
ightarrow rac{1}{e}pprox 0.37$$

- Out of bagging classifier: for the bth Bootstrap sample, we can build up a tree, then apply this tree on the corresponding out of bagging samples.
- The error of out of bagging classifier is called out of bagging errors.

Out of Bagging Errors

- Out of bagging samples: a set of samples which is not included in the bootstrap sample.
- The probability of an example is not included in a Bootstrap sample:

$$\left(1-rac{1}{N}
ight)^N
ightarrow rac{1}{e}pprox 0.37$$

- Out of bagging classifier: for the bth Bootstrap sample, we can build up a tree, then apply this tree on the corresponding out of bagging samples.
- The error of out of bagging classifier is called out of bagging errors.
- Self-validation.

Kernel Methods 00000000 Ensemble Methods

Artificial Neural Network

Feature Importance

• Measure the importance for each features, $\mathcal{I}(x_i)$

- Measure the importance for each features, $\mathcal{I}(x_i)$
- Question: how do you evaluate the importance of a football player?

- Measure the importance for each features, $\mathcal{I}(x_i)$
- Question: how do you evaluate the importance of a football player?
- The number of goals? The number of successful passing lanes? The number of successful blocking? ...

- Measure the importance for each features, $\mathcal{I}(x_i)$
- Question: how do you evaluate the importance of a football player?
- The number of goals? The number of successful passing lanes? The number of successful blocking? ...
- The best evaluation is if the team still can win the game without this player.

- Measure the importance for each features, $\mathcal{I}(x_i)$
- Question: how do you evaluate the importance of a football player?
- The number of goals? The number of successful passing lanes? The number of successful blocking? ...
- The best evaluation is if the team still can win the game without this player.
- Replace the feature x_i by permuted x_i^P

- Measure the importance for each features, $\mathcal{I}(x_i)$
- Question: how do you evaluate the importance of a football player?
- The number of goals? The number of successful passing lanes? The number of successful blocking? ...
- The best evaluation is if the team still can win the game without this player.
- Replace the feature x_i by permuted x_i^P
- Then we can measure the importance of x_i by the difference of performance

 $\mathcal{I}(x_j) = Err_{OOB}(x_j) - Err_{OOB}(x_i^p)$

Turning Random Forest

• Two hyper-parameters: the number of trees, N_t and the number of features randomly selected on each spliting, N_f .

Turning Random Forest

- Two hyper-parameters: the number of trees, N_t and the number of features randomly selected on each spliting, N_f .
- Suggested tuning procedure:
- Two hyper-parameters: the number of trees, N_t and the number of features randomly selected on each spliting, N_f .
- Suggested tuning procedure:
 - Fix *N_f* as the squar root of the total number of feature variables, build 5 random forests with different *N_t* = 300, 500, ..., 1000.

- Two hyper-parameters: the number of trees, N_t and the number of features randomly selected on each spliting, N_f .
- Suggested tuning procedure:
 - Fix N_f as the squar root of the total number of feature variables, build 5 random forests with different N_t = 300, 500, ..., 1000.
 - Choose the best forest given the OOB errors.

- Two hyper-parameters: the number of trees, N_t and the number of features randomly selected on each spliting, N_f.
- Suggested tuning procedure:
 - Fix *N_f* as the squar root of the total number of feature variables, build 5 random forests with different *N_t* = 300, 500, ..., 1000.
 - Choose the best forest given the OOB errors.
 - Fix *N_t* and choose different numbers around the squar root of the total number of feature variables.

- Two hyper-parameters: the number of trees, N_t and the number of features randomly selected on each spliting, N_f.
- Suggested tuning procedure:
 - Fix N_f as the squar root of the total number of feature variables, build 5 random forests with different N_t = 300, 500, ..., 1000.
 - Choose the best forest given the OOB errors.
 - Fix N_t and choose different numbers around the squar root of the total number of feature variables.
 - Build up the classifier, then select the best given OOB errors.

Ensemble Methods

Artificial Neural Network

Boosting and Adaboosting

• Uniform aggregation: Bagging, Random Forest.

Ensemble Methods

Artificial Neural Network

Boosting and Adaboosting

- Uniform aggregation: Bagging, Random Forest.
- Boosting: Non-uniform aggregation.

Ensemble Methods

Artificial Neural Network

Boosting and Adaboosting

- Uniform aggregation: Bagging, Random Forest.
- Boosting: Non-uniform aggregation.
- Adaboost, Freund Y. and Schapire R.E. (1997):

Boosting and Adaboosting

- Uniform aggregation: Bagging, Random Forest.
- Boosting: Non-uniform aggregation.
- Adaboost, Freund Y. and Schapire R.E. (1997): Learn from failures and mistakes.

Ensemble Methods

Artificial Neural Network

Adaboost

• Teach kids to distinguish apple from other fruits.

Ensemble Methods

Artificial Neural Network

Adaboost

• Teach kids to distinguish apple from other fruits.

Circle

Ensemble Methods

Artificial Neural Network

Adaboost

• Teach kids to distinguish apple from other fruits.

Circle

Ensemble Methods

Artificial Neural Network

Adaboost

• Teach kids to distinguish apple from other fruits.

Circle + Red

Ensemble Methods

Artificial Neural Network

Adaboost

• Teach kids to distinguish apple from other fruits.

Circle + Red

Introd	

Ensemble Methods

Artificial Neural Network

Adaboost

- Teach kids to distinguish apple from other fruits.
- Circle + Red + Green

	Kernel Methods 0000000	Ensemble Methods 00000000000000	Artificial Neural Network
Adaboost			

- Teach kids to distinguish apple from other fruits.
- Circle + Red + Green

	Kernel Methods 0000000	Ensemble Methods 000000000000000000000000000000000000	Artificial Neural Network
Adaboost			

- Teach kids to distinguish apple from other fruits.
- Circle + Red + Green + Stem

Weighted Classifer

• Decision Stump: make a prediction based on the value of a single input feature variable.

- Decision Stump: make a prediction based on the value of a single input feature variable.
- Pay different extents of attention to different cases:

- Decision Stump: make a prediction based on the value of a single input feature variable.
- Pay different extents of attention to different cases: Weighted sample,

- Decision Stump: make a prediction based on the value of a single input feature variable.
- Pay different extents of attention to different cases: Weighted sample, Bootstrap!

Weighted Classifer

- Decision Stump: make a prediction based on the value of a single input feature variable.
- Pay different extents of attention to different cases: Weighted sample, Bootstrap!

Example

 $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)\}$

Weighted Classifer

- Decision Stump: make a prediction based on the value of a single input feature variable.
- Pay different extents of attention to different cases: Weighted sample, Bootstrap!

Example

 $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)\} \\ \mathcal{D}_B = \{(x_1, y_1), (x_2, y_2), (x_2, y_2), (x_3, y_3)\}$

Weighted Classifer

- Decision Stump: make a prediction based on the value of a single input feature variable.
- Pay different extents of attention to different cases: Weighted sample, Bootstrap!

Example

 $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)\}$ $\mathcal{D}_B = \{1(x_1, y_1), 2(x_2, y_2), 1(x_3, y_3), 0(x_4, y_4)\}$

- Decision Stump: make a prediction based on the value of a single input feature variable.
- Pay different extents of attention to different cases: Weighted sample, Bootstrap!

Example

 $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)\}$ $\mathcal{D}_B = \{\mathbf{1}(x_1, y_1), \mathbf{2}(x_2, y_2), \mathbf{1}(x_3, y_3), \mathbf{0}(x_4, y_4)\}$

• For data D, there are 3 potential cuts. We count each case only once in the calculation of mis-classification errors.

- Decision Stump: make a prediction based on the value of a single input feature variable.
- Pay different extents of attention to different cases: Weighted sample, Bootstrap!

Example

 $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)\}$ $\mathcal{D}_B = \{\mathbf{1}(x_1, y_1), \mathbf{2}(x_2, y_2), \mathbf{1}(x_3, y_3), \mathbf{0}(x_4, y_4)\}$

- For data D, there are 3 potential cuts. We count each case only once in the calculation of mis-classification errors.
- For data \mathcal{D}_B , only 2 potential cuts. We count the case, (x_2, y_2) twice in the calculation of mis-classification errors.

- Decision Stump: make a prediction based on the value of a single input feature variable.
- Pay different extents of attention to different cases: Weighted sample, Bootstrap!

Example

 $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)\}$ $\mathcal{D}_B = \{\mathbf{1}(x_1, y_1), \mathbf{2}(x_2, y_2), \mathbf{1}(x_3, y_3), \mathbf{0}(x_4, y_4)\}$

- For data D, there are 3 potential cuts. We count each case only once in the calculation of mis-classification errors.
- For data \mathcal{D}_B , only 2 potential cuts. We count the case, (x_2, y_2) twice in the calculation of mis-classification errors.
- Adaboost: a reweight scheme, such that the mis-classified examples get more weights in the next round.

Ensemble Methods

Artificial Neural Network

Ensemble Methods

Artificial Neural Network

ANN in Ensemble methods

• Uniform aggregation: $F(\mathbf{x}) = Sign\left(\sum_{j=1}^{J} f_j(\mathbf{x})\right)$

Ensemble Methods

Artificial Neural Network

ANN in Ensemble methods

- Uniform aggregation: $F(\mathbf{x}) = Sign\left(\sum_{j=1}^{J} f_j(\mathbf{x})\right)$
- Random forest = Bagging + Decision tree

Ensemble Methods

Artificial Neural Network

ANN in Ensemble methods

- Uniform aggregation: $F(\mathbf{x}) = Sign\left(\sum_{j=1}^{J} f_j(\mathbf{x})\right)$
- Random forest = Bagging + Decision tree
- Question: Can we learn f_j as a perceptron, $f_j = Sign(\mathbf{w}^T \mathbf{x} + w_0)$?
Artificial Neural Network

ANN in Ensemble methods

- Uniform aggregation: $F(\mathbf{x}) = Sign\left(\sum_{j=1}^{J} f_j(\mathbf{x})\right)$
- Random forest = Bagging + Decision tree
- Question: Can we learn f_j as a perceptron, $f_j = Sign(\mathbf{w}^T \mathbf{x} + w_0)$?
- Question: Can we learn different weights for different perceptrons from the target variable y, such that the final model F(x), is a non-uniform aggregation of those perceptrons?

$$F(\mathbf{x}) = Sign\left(\alpha_0 + \sum_{j=1}^J \alpha_j Sign(\mathbf{w}_j^T \mathbf{x} + w_0)\right)$$

Artificial Neural Network

· • •				
- X		10		
		Ia.	_	ıu
	_			

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network

Motivations

• 'AND' operator: $AND(f_1, f_2)$

Artificial Neural Network

Motivations

• 'AND' operator: $AND(f_1, f_2)$

Artificial Neural Network

Motivations

- 'AND' operator: AND(f₁, f₂)
- Find a line split the space.

 $\alpha_0 + \alpha_1 f_1 + \alpha_2 f_2 = \mathbf{0}$

Artificial Neural Network

Motivations

- 'AND' operator: AND(f₁, f₂)
- Find a line split the space.

 $\alpha_0 + \alpha_1 f_1 + \alpha_2 f_2 = \mathbf{0}$

• The final classifier is

 $Sign(-1 + f_1(x) + f_2(x))$

Artificial Neural Network

Motivations

- 'AND' operator: AND(f₁, f₂)
- Find a line split the space.

 $\alpha_0 + \alpha_1 f_1 + \alpha_2 f_2 = \mathbf{0}$

• The final classifier is

 $Sign\left(-1+Sign\left(\mathbf{w}_{1}^{T}\mathbf{x}+w_{10}\right)+f_{2}(\mathbf{x})\right)$

Artificial Neural Network

Motivations

- 'AND' operator: AND(f₁, f₂)
- Find a line split the space.

 $\alpha_0 + \alpha_1 f_1 + \alpha_2 f_2 = \mathbf{0}$

• The final classifier is

 $Sign\left(-1+f_1(\mathbf{x})+Sign\left(\mathbf{w}_2^T\mathbf{x}+w_{20}\right)\right)$

Artificial Neural Network

Motivations

- 'AND' operator: $AND(f_1, f_2)$
- Find a line split the space.

 $\alpha_0 + \alpha_1 f_1 + \alpha_2 f_2 = \mathbf{0}$

• The final classifier is

$$Sign\left(\alpha_{0} + \sum_{j=1}^{2} \alpha_{j} Sign\left(\mathbf{w}_{j}^{T} \mathbf{x} + w_{j0}\right)\right)$$

Artificial Neural Network

Motivations

- 'AND' operator: $AND(f_1, f_2)$
- Find a line split the space.

 $\alpha_0 + \alpha_1 f_1 + \alpha_2 f_2 = \mathbf{0}$

• The final classifier is

$$Sign\left(\alpha_{0} + \sum_{j=1}^{J} \alpha_{j} Sign\left(\mathbf{w}_{j}^{T} \mathbf{x} + w_{j0}\right)\right)$$

Artificial Neural Network

Motivations

- 'AND' operator: $AND(f_1, f_2)$
- Find a line split the space.

 $\alpha_0 + \alpha_1 f_1 + \alpha_2 f_2 = \mathbf{0}$

• The final classifier is

$$Sign\left(\alpha_{0} + \sum_{j=1}^{J} \alpha_{j} Sign\left(\mathbf{w}_{j}^{T}\mathbf{x} + w_{j0}\right)\right)$$

• 'OR' and 'NOT'

Artificial Neural Network

Motivations

- 'AND' operator: $AND(f_1, f_2)$
- Find a line split the space.

 $\alpha_0 + \alpha_1 f_1 + \alpha_2 f_2 = \mathbf{0}$

• The final classifier is

$$Sign\left(\alpha_{0} + \sum_{j=1}^{J} \alpha_{j} Sign\left(\mathbf{w}_{j}^{T} \mathbf{x} + w_{j0}\right)\right)$$

- 'OR' and 'NOT'
- Any convex set can be approximated by this model if *J* is large enough.

Artificial Neural Network

Non-uniform Aggregation of Perceptrons

• Non-uniform Aggregation of Perceptrons can be presented as

$$F(\mathbf{x}) = Sign\left(w_0^{(2)} + \sum_{j=1}^{J} w_j^{(2)} Sign\left(\sum_{i=1}^{d} w_{j,i}^{(1)} x_i + w_{j,0}^{(1)}\right)\right)$$

Artificial Neural Network

Non-uniform Aggregation of Perceptrons

• Non-uniform Aggregation of Perceptrons can be presented as

$$F(\mathbf{x}) = Sign\left(w_0^{(2)} + \sum_{j=1}^{J} w_j^{(2)} Sign\left(\sum_{i=1}^{d} w_{j,i}^{(1)} x_i + w_{j,0}^{(1)}\right)\right)$$

Artificial Neural Network

Non-uniform Aggregation of Perceptrons

• Non-uniform Aggregation of Perceptrons can be presented as

$$F(\mathbf{x}) = Sign\left(w_0^{(2)} + \sum_{j=1}^{J} w_j^{(2)} Sign\left(\sum_{i=1}^{d} w_{j,i}^{(1)} x_i + w_{j,0}^{(1)}\right)\right)$$

Input Layer

Artificial Neural Network

Non-uniform Aggregation of Perceptrons

• Non-uniform Aggregation of Perceptrons can be presented as

$$F(\mathbf{x}) = Sign\left(w_0^{(2)} + \sum_{j=1}^{J} w_j^{(2)} Sign\left(\sum_{i=1}^{d} w_{j,i}^{(1)} x_i + w_{j,0}^{(1)}\right)\right)$$

Input Layer Hidden Layers

Artificial Neural Network

Non-uniform Aggregation of Perceptrons

• Non-uniform Aggregation of Perceptrons can be presented as

$$F(\mathbf{x}) = Sign\left(w_0^{(2)} + \sum_{j=1}^{J} w_j^{(2)} Sign\left(\sum_{i=1}^{d} w_{j,i}^{(1)} x_i + w_{j,0}^{(1)}\right)\right)$$

Input Layer Hidden Layers Output Layer

Artificial Neural Network

Motivations

A non-convex set.

 x_1

Artificial Neural Network

Motivations

• A non-convex set.

 x_1

Artificial Neural Network

Motivations

• A non-convex set.

Artificial Neural Network

Motivations

A non-convex set.

Artificial Neural Network

- A non-convex set.
- 'XOR' operator.

Motivations

• 'XOR' operator.

- A non-convex set.
- 'XOR' operator.
- Not linear separable... Any idear?

Artificial Neural Network

- A non-convex set.
- 'XOR' operator.
- Not linear separable... Any idear?

Artificial Neural Network

- A non-convex set.
- 'XOR' operator.
- Not linear separable... Any idear?
- Multi-Layers Perceptron (MLP).

Artificial Neural Network

Motivations

- A non-convex set.
- 'XOR' operator.
- Not linear separable... Any idear?
- Multi-Layers Perceptron (MLP).

There is nothing difficulty cann't be solved by eating a hamburg at MÄX, if so, just eat one more.

Motivations

- A non-convex set.
- 'XOR' operator.
- Not linear separable... Any idear?
- Multi-Layers Perceptron (MLP).

There is nothing difficulty cann't be solved by Multi-layers perceptron, if so, just add one more layer

Kernel Methods 20000000 Ensemble Methods

Artificial Neural Network

Multi-Layers Perceptron

From MLP to Artificial Neural Network

• The general MLP can be represented as

$$\begin{aligned} z_{j}^{(1)} &= Sign\left(\mathbf{w}_{j}^{(1)T}\mathbf{x}\right) \\ &\vdots \\ z_{j}^{(L)} &= Sign\left(\mathbf{w}_{j}^{(L)T}\mathbf{z}^{(L-1)}\right) \\ y &= Sign\left(\mathbf{w}_{j}^{(L+1)T}\mathbf{z}^{(L)}\right) \end{aligned}$$

From MLP to Artificial Neural Network

- The general MLP can be represented as
 - $\begin{aligned} z_{j}^{(1)} &= Sign\left(\mathbf{w}_{j}^{(1)T}\mathbf{x}\right) \\ &\vdots \\ z_{j}^{(L)} &= Sign\left(\mathbf{w}_{j}^{(L)T}\mathbf{z}^{(L-1)}\right) \\ y &= Sign\left(\mathbf{w}_{j}^{(L+1)T}\mathbf{z}^{(L)}\right) \end{aligned}$
- Neurons: $z_j^{(L)}$, latent variable.

From MLP to Artificial Neural Network

• The general MLP can be represented as

$$z_{j}^{(1)} = \underbrace{Sign}_{j} \left(\mathbf{w}_{j}^{(1)T} \mathbf{x} \right)$$

$$\vdots$$

$$z_{j}^{(L)} = Sign \left(\mathbf{w}_{j}^{(L)T} \mathbf{z}^{(L-1)} \right)$$

$$y = Sign \left(\mathbf{w}_{j}^{(L+1)T} \mathbf{z}^{(L)} \right)$$

- Neurons: $z_j^{(L)}$, latent variable.
- Activation function, σ(·), Sign(·), Identity function, logit function and so on.

From MLP to Artificial Neural Network

• The general MLP can be represented as

$$\begin{aligned} z_j^{(1)} &= \sigma\left(\mathbf{w}_j^{(1)T}\mathbf{x}\right) \\ &\vdots \\ z_{j_k}^{(L)} &= \sigma\left(\mathbf{w}_{j_k}^{(L)T}\mathbf{z}^{(L-1)}\right) \\ y &= \sigma\left(\mathbf{w}_j^{(L+1)T}\mathbf{z}^{(L)}\right) \end{aligned}$$

- Neurons: $z_j^{(L)}$, latent variable.
- Activation function, $\sigma(\cdot)$: Sign(\cdot), Identity function, logit function and so on.

Artificial Neural Network

From MLP to Artificial Neural Network

• The general MLP can be represented as

$$\begin{aligned} z_j^{(1)} &= \sigma\left(\mathbf{w}_j^{(1)T}\mathbf{x}\right) \\ &\vdots \\ z_{j_k}^{(L)} &= \sigma\left(\mathbf{w}_{j_k}^{(L)T}\mathbf{z}^{(L-1)}\right) \\ y &= \sigma\left(\mathbf{w}_j^{(L+1)T}\mathbf{z}^{(L)}\right) \end{aligned}$$

- Neurons: z_j^(L), latent variable.
- Activation function, σ(·): Sign(·), Identity function, logit function and so on.
- Output layer: *y*, objective function → regression or classification.

Artificial Neural Network

From MLP to Artificial Neural Network

• The general MLP can be represented as

$$\begin{aligned} z_j^{(1)} &= \sigma\left(\mathbf{w}_j^{(1)T}\mathbf{x}\right) \\ &\vdots \\ z_{j_k}^{(L)} &= \sigma\left(\mathbf{w}_{j_k}^{(L)T}\mathbf{z}^{(L-1)}\right) \\ y &= \sigma\left(\mathbf{w}_j^{(L+1)T}\mathbf{z}^{(L)}\right) \end{aligned}$$

- Neurons: $z_j^{(L)}$, latent variable.
- Activation function, $\sigma(\cdot)$: Sign(\cdot), Identity function, logit function and so on.
- Output layer: *y*, objective function → regression or classification.

Feed-foward Neural Network

Kernel Methods 00000000 Ensemble Methods

Artificial Neural Network

ANN, an integrated learning process

Kernel Methods 20000000 Ensemble Methods

Artificial Neural Network

ANN, an integrated learning process

Kernel Methods 20000000 Ensemble Methods

Artificial Neural Network

ANN, an integrated learning process

- The last layer of neurons can be viewed as a set of extracted features from the raw data.
- ANN can be viewed as an integrated learning process.