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Introduction
°

Introduction

e Kernel methods: Support vector machine
® Ensemble methods:

® Random forest
® Adaboost
® Artificial Neural Network
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Kernel methods

® Feature mapping: ¢ : R> — R3

(x1,x2) — (Xf, \ﬁXle,Xg)

® |nexplicit mapping: ¢

d(w Fx) °

2 2\ %
(%% T, 8 »Fx, = (wY)
)/1?

Xijia Liu Machine Learning December 2, 2019 3/31



Kernel Methods
©0000000

Kernel methods

Feature mapping: ¢ : R> — R3
d)(\ 'Q“.

(x1,x2) — (Xf, \ﬁXle,Xg)

Inexplicit mapping: ¢
Kernel function: rg4(x;, X;) :‘d{(x;)T@(xj)
Polynomial kenerl and Gaussian Kernel (RBF).
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Kernel methods

Feature mapping: ¢ : R> — R3

(x1,x2) — (Xf, \ﬁxle,x%)

Inexplicit mapping: ¢
Kernel function: ry(x;,x;) = ¢(x;) T o(x;)
Polynomial kenerl and Gaussian Kernel (RBF).

Kernel tricks: obtain a non-linear model by embedding kernel
function into different linear algorithms.

Kernel PCA, Kernel regression, Support vector machine.
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Maximum Margin Classifier

® The margin of the decision boundary should be as large as possible.
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Maximum Margin Classifier

® A statistical illustration of this idea:
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Support Vectors
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Support Vectors
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Support Vectors

® Only the points on the boundary of margin have contributions to
the final estimation results
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Support Vectors

® Only the points on the boundary of margin have contributions to
the final estimation results

® Kernelized MMC — support vector machine
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Over fitting in SVM
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Soft Margin Classifier

e |IDEA: We give up some high noise
cases.

® For each observation, we introduce a
fuzzy (Slackness) parameter, & > 0.

® Hyper-parameter: large C, less noise
tolerance, high cost.
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Summary of Kernel SVM

® SVM = MMC + Kernel trick.
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Summary of Kernel SVM

® SVM = MMC + Kernel trick.
® Soft Margin Classifier = SVM + Cost.
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Summary of Kernel SVM

® SVM = MMC + Kernel trick.
® Soft Margin Classifier = SVM + Cost.

® Hyper-parameters: parameters in kernel function and cost C
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Summary of Kernel SVM

SVM = MMC + Kernel trick.
Soft Margin Classifier = SVM + Cost.

® Hyper-parameters: parameters in kernel function and cost C

RBF kernel SVM is the most popular one.
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Summary of Kernel SVM

SVM = MMC + Kernel trick.
Soft Margin Classifier = SVM + Cost.

® Hyper-parameters: parameters in kernel function and cost C

RBF kernel SVM is the most popular one.

The kernel parameter o can be estimated from sample, see Caputo,
Furesjo and Smola (2002).
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Summary of Kernel SVM

® SVM = MMC + Kernel trick.

® Soft Margin Classifier = SVM + Cost.

® Hyper-parameters: parameters in kernel function and cost C
® RBF kernel SVM is the most popular one.

® The kernel parameter o can be estimated from sample, see Caputo,
Furesjo and Smola (2002).

® Tuning: exponential growing sequesces of C and o, e.g.
2—5 2—3 215
, 272,27,
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Introduction to ensemble methods

® \Whether Swedish national football
team can qualify for the Euro Cup in
20207

4

EURO2020
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Introduction to ensemble methods

® \Whether Swedish national football

team can qualify for the Euro Cup in
20207

® Find an expert and follow his/her

suggestion. 6

EURO2020
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Introduction to ensemble methods

® \Whether Swedish national football
team can qualify for the Euro Cup in
20207

® Find an expert and follow his/her

suggestion. 6

® Aggregate optinions from all of us.

EURO2020
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Introduction to ensemble methods

® \Whether Swedish national football
team can qualify for the Euro Cup in
20207

® Find an expert and follow his/her

suggestion. 6

® Aggregate optinions from all of us.

EURO2020

® Give more weights to some experts.
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Introduction to ensemble methods

® \Whether Swedish national football

team can qualify for the Euro Cup in
20207

® Find an expert and follow his/her
suggestion.

® Select the "best” model by cross 6
validation.

® Aggregate optinions from all of us.
@
7 N

EURO2020

® Give more weights to some experts.
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Introduction to ensemble methods

® \Whether Swedish national football

team can qualify for the Euro Cup in
20207

® Find an expert and follow his/her
suggestion.

® Select the "best” model by cross 6
validation.

® Aggregate optinions from all of us.

KEFN
® Uniform Aggregation. s

Bagging/Random forest. EU RQZOZO

® Give more weights to some experts.
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Introduction to ensemble methods

® \Whether Swedish national football

team can qualify for the Euro Cup in
20207

® Find an expert and follow his/her
suggestion.

® Select the "best” model by cross 6
validation.

® Aggregate optinions from all of us.

KEFN
® Uniform Aggregation. s

Bagging/Random forest. EU RQZOZO

® Give more weights to some experts.

® Non-uniform Aggregation. Adaboost.

Xijia Liu Machine Learning December 2, 2019 11 /31



Ensemble Methods
0®000000000000

Uniform Aggregation

o & A
o ©
A
o
o
o © A
o
o o A

Xijia Liu Machine Learning December 2, 2019 12 /31



Ensemble Methods
0®000000000000

Uniform Aggregation

o a A
o ©
A
o
o
o © A
o
o © A

Xijia Liu Machine Learning December 2, 2019 12 /31



Ensemble Methods
0®000000000000

Uniform Aggregation

R B B

o & A
o ©
A
o

R o B o B

O A
o
o o A

Xijia Liu Machine Learning December 2, 2019 12 /31



Uniform Aggregation

Xijia Liu

Ensemble Methods
0®000000000000

RR

BR

BB
Fay
BB
Fay
O
A

Machine Learning

December 2, 2019

12 /31



Ensemble Methods
0®000000000000

Uniform Aggregation

RRB BRB BBB
o) & A
o ©
A
o
RRR BRR BBR
o o
(s} Fa
)
o © A

Xijia Liu Machine Learning December 2, 2019 12 /31



Ensemble Methods
0®000000000000

Uniform Aggregation

RRB BRB BBB
o L A
o ©
A
o
RRR BRR BBR
o o)
(s} Fay
o
o o A

Xijia Liu Machine Learning December 2, 2019 12 /31



Ensemble Methods
0®000000000000

Uniform Aggregation

RRB BRB BBB
o a A
o ©
A
o
RRR BRR BBR
o o
[} A
o
o © A

Xijia Liu Machine Learning December 2, 2019 12 /31



Ensemble Methods
00®00000000000

Uniform Aggregation

® Suppose we have learned M models, f(x), from the data.
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Uniform Aggregation

® Suppose we have learned M models, f;j(x), from the data.

® Uniform Aggregation:

M
= sign ij x)

Jj=1
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Uniform Aggregation

® Suppose we have learned M models, f;(x), from the data.

® Uniform Aggregation:

FOO = 37 D269
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Uniform Aggregation

® Suppose we have learned M models, f;(x), from the data.

® Uniform Aggregation:

1M
F( = 22> fi(x)
j=1
® Variance and bias decomposition:

E(fi(x) — g(x))*
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Uniform Aggregation

® Suppose we have learned M models, f;(x), from the data.

® Uniform Aggregation:

1M
F( = 22> fi(x)
j=1
® Variance and bias decomposition:

E(fi(x) - g(x))* = E (fi(x)~E(fi(x)) + E(f(x)) - g(x))’
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Uniform Aggregation

® Suppose we have learned M models, f;(x), from the data.

® Uniform Aggregation:

1M
F( = 22> fi(x)
j=1
® Variance and bias decomposition:

E(fi(x) — g(x))* = E (fi(x) = E(f(x)))* + (E(f(x)) — &(x))’
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Uniform Aggregation

® Suppose we have learned M models, f;(x), from the data.

® Uniform Aggregation:

1M
F( = 22> fi(x)
j=1
® Variance and bias decomposition:

E(fi(x) - g(x))* = E (£(x) = E(f(x)))* + (E(7(x)) — £(x))’
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Uniform Aggregation

® Suppose we have learned M models, f;(x), from the data.

® Uniform Aggregation:

L Vo Cx) = ECx~20)Y
F(x) = 17 2_6(x)

® Variance and bias decomposition:

E(fi(x) - g(x))* = E (£(x) = E(f(x)))’ + (E(f(x)) — g(x))’
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Uniform Aggregation

® Suppose we have learned M models, f;(x), from the data.

® Uniform Aggregation:

1M
F( = 22> fi(x)
j=1
® Variance and bias decomposition:

E(fi(x) - g(x))* = E (£(x) = E(f(x)))’ + (E(f(x)) — g(x))’

Better performance:

avg Err(fi(x)) = Err(avz(7;(x)))
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Uniform Aggregation

® Suppose we have learned M models, f;(x), from the data.

® Uniform Aggregation:

L
FO) = 37 D 6
® Variance and bias decomposition: ”
E(f(x) — g())? = E (6(x) ~ E(5(x)* + (E(5(x)) ~ £(x))
Better performance:

avg Err(fi(x)) = Err(avz(7;(x)))

Large diversity among M models.
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Uniform Aggregation

® Suppose we have learned M models, f;(x), from the data.

® Uniform Aggregation:

L
FO) = 37 D 6
® Variance and bias decomposition: ”
E(f(x) — g())? = E (6(x) ~ E(5(x)* + (E(5(x)) ~ £(x))
Better performance:

avg Err(fi(x)) = Err(avz(7;(x)))

Large diversity among M models.

® Question: How to get those M models?
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Uniform Aggregation

® Suppose we have learned M models, f;(x), from the data.

® Uniform Aggregation:

L
FO) = 37 D 6
® Variance and bias decomposition: ”
E(f(x) — g())? = E (6(x) ~ E(5(x)* + (E(5(x)) ~ £(x))
Better performance:

avg Err(fi(x)) = Err(avz(7;(x)))

Large diversity among M models.

® Question: How to get those M models? Bootstrap!
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Bagging (Bootstrap Aggregation)

® Basic idea: Apply Bootstrap resampling technique to generate
different bootstrap samples, such that the classifiers learned from
each bootstrap sample have large diversity.

Algorithm
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Bagging (Bootstrap Aggregation)

® Basic idea: Apply Bootstrap resampling technique to generate
different bootstrap samples, such that the classifiers learned from

each bootstrap sample have large diversity.
)\fl fee o - )é_u

Algorithm

@ Take a random sample with replacement from data se
@® Train a classifier from this random sample

© Repeat step 1 and Z@times, then perform uniform aggregation
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Bagging (Bootstrap Aggregation)

® Basic idea: Apply Bootstrap resampling technique to generate
different bootstrap samples, such that the classifiers learned from
each bootstrap sample have large diversity.

Algorithm

@ Take a random sample with replacement from data set, X*

@® Train a classifier from this random sample

© Repeat step 1 and 2 B times, then perform uniform aggregation

® A strategy to enhance the existing algorithm.

Xijia Liu Machine Learning December 2, 2019



Ensemble Methods
000@0000000000

Bagging (Bootstrap Aggregation)

® Basic idea: Apply Bootstrap resampling technique to generate
different bootstrap samples, such that the classifiers learned from
each bootstrap sample have large diversity.

Algorithm

@ Take a random sample with replacement from data set, X*

@® Train a classifier from this random sample

© Repeat step 1 and 2 B times, then perform uniform aggregation

® A strategy to enhance the existing algorithm. Any proper algorithm?
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Decision Tree

ID Unable Estate Marital Income

1 0 1 S 125

2 0 0 M 100 Yes .
30 0 S 70 <" N\

4 0 1 M 120
5 1 0 D 95 N
6 0 0 M 60
7 0 1 D 220 \
8 1 0 S 85 @
9 0 0 M 75

10 1 0 S 90
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Decision Tree

Key: Sequentially split the feature space into small pieces.

ID Unable Estate Marital Income

1 0 1 S 125

2 0 0 M 100 . .

3 0 0 S 70 RN

4 0 1 M 120

5 1 0 D 95 N
6 0 0 M 60
7 0 1 D 220 VRN

8 1 0 S 85

9 0 0 M 75
10 1 0 S 90
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Motivations

® The main weaknesses of decision tree is unstable and very sensitive
to the data.

® |arge variation! Bagging!
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Motivations

® The main weaknesses of decision tree is unstable and very sensitive
to the data.

® |arge variation! Bagging!

® Random forest = Decision tree + bagging
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Algorithm

@ Draw a bootstrap sample from original data.
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Algorithm

@ Draw a bootstrap sample from original data.

® |n order to get a big variation among different trees, random
forest algorithm also random select a subset of feature
variables for training.
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Algorithm

@ Draw a bootstrap sample from original data.
® |n order to get a big variation among different trees, random
forest algorithm also random select a subset of feature

variables for training.
® |n literature, it is called random subspace, also a kind of

feature mapping.
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Algorithm

@ Draw a bootstrap sample from original data.
® |n order to get a big variation among different trees, random
forest algorithm also random select a subset of feature

variables for training.
® |n literature, it is called random subspace, also a kind of

feature mapping.

@® Once those information have been decided, we can train a decision
tree.
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Algorithm

@ Draw a bootstrap sample from original data.
® |n order to get a big variation among different trees, random
forest algorithm also random select a subset of feature

variables for training.
® |n literature, it is called random subspace, also a kind of

feature mapping.

@® Once those information have been decided, we can train a decision
tree.

© Repeat these procedure B times.
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Algorithm

@ Draw a bootstrap sample from original data.

® |n order to get a big variation among different trees, random
forest algorithm also random select a subset of feature
variables for training.

® |n literature, it is called random subspace, also a kind of

feature mapping.

@® Once those information have been decided, we can train a decision
tree.

© Repeat these procedure B times.

@ Apply uniform aggregation method on those trees, then we have our
random forest model.
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Out of Bagging Errors

® Qut of bagging samples: a set of samples which is not included in
the bootstrap sample.
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Out of Bagging Errors

® Qut of bagging samples: a set of samples which is not included in
the bootstrap sample.

® The probability of an example is not included in a Bootstrap sample:

N
1 1
1-— -~ 0.37
( N> —>e 0.3

Y
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Out of Bagging Errors

® Qut of bagging samples: a set of samples which is not included in
the bootstrap sample.

® The probability of an example is not included in a Bootstrap sample:
N
1 1
1-—) — —-=037

® Qut of bagging classifier: for the bth Bootstrap sample, we can
build up a tree, then apply this tree on the corresponding out of
bagging samples.

® The error of out of bagging classifier is called out of bagging errors.
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Out of Bagging Errors

® Qut of bagging samples: a set of samples which is not included in
the bootstrap sample.

® The probability of an example is not included in a Bootstrap sample:
N
1 1
1-—) — —-=037

® Qut of bagging classifier: for the bth Bootstrap sample, we can
build up a tree, then apply this tree on the corresponding out of
bagging samples.

® The error of out of bagging classifier is called out of bagging errors.

® Self-validation.
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Feature Importance

® Measure the importance for each features, Z(x;)

Xijia Liu Machine Learning December 2, 2019 19 / 31



Ensemble Methods
00000000e00000

Feature Importance

® Measure the importance for each features, Z(x;)

® Question: how do you evaluate the importance of a football player?
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Feature Importance

® Measure the importance for each features, Z(x;)
® Question: how do you evaluate the importance of a football player?

® The number of goals? The number of successful passing lanes? The
number of successful blocking? ...
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Feature Importance

® Measure the importance for each features, Z(x;)

® Question: how do you evaluate the importance of a football player?

® The number of goals? The number of successful passing lanes? The
number of successful blocking? ...
® The best evaluation is if the team still can win the game without

this player.
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Feature Importance

® Measure the importance for each features, Z(x;)
® Question: how do you evaluate the importance of a football player?

® The number of goals? The number of successful passing lanes? The
number of successful blocking? ...

® The best evaluation is if the team still can win the game without
this player.

® Replace the feature x; by permuted x”

Xijia Liu Machine Learning December 2, 2019 19 / 31



Ensemble Methods
00000000e00000

Feature Importance

® Measure the importance for each features, Z(x;)
® Question: how do you evaluate the importance of a football player?

® The number of goals? The number of successful passing lanes? The
number of successful blocking? ...

® The best evaluation is if the team still can win the game without
this player.

® Replace the feature x; by permuted x”

® Then we can measure the importance of x; by the difference of

performance
Z(x;) = Erroos(x;) — Erroos(x})
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Turning Random Forest

® Two hyper-parameters: the number of trees, N; and the number of
features randomly selected on each spliting, Ny.
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Turning Random Forest

® Two hyper-parameters: the number of trees, N; and the number of
features randomly selected on each spliting, Ny.

® Suggested tuning procedure:
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Turning Random Forest

® Two hyper-parameters: the number of trees, N; and the number of
features randomly selected on each spliting, Ny.

® Suggested tuning procedure:

® Fix Nr as the squar root of the total number of feature
variables, build 5 random forests with different
N; = 300, 500, ..., 1000.
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Turning Random Forest

® Two hyper-parameters: the number of trees, N; and the number of
features randomly selected on each spliting, Ny.

® Suggested tuning procedure:

® Fix Nr as the squar root of the total number of feature
variables, build 5 random forests with different
N; = 300, 500, ..., 1000.

® Choose the best forest given the OOB errors.
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Turning Random Forest

® Two hyper-parameters: the number of trees, N; and the number of
features randomly selected on each spliting, Ny.

® Suggested tuning procedure:

® Fix Nr as the squar root of the total number of feature
variables, build 5 random forests with different
N; = 300, 500, ..., 1000.

® Choose the best forest given the OOB errors.

® Fix N; and choose different numbers around the squar root of
the total number of feature variables.

20 / 31
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Turning Random Forest

® Two hyper-parameters: the number of trees, N; and the number of
features randomly selected on each spliting, Ny.

® Suggested tuning procedure:

® Fix Nf as the squar root of the total number of feature
variables, build 5 random forests with different
N; = 300, 500, ..., 1000.

® Choose the best forest given the OOB errors.

® Fix N; and choose different numbers around the squar root of
the total number of feature variables.

® Build up the classifier, then select the best given OOB errors.

Xijia Liu Machine Learning December 2, 2019 20 /
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Boosting and Adaboosting

® Uniform aggregation: Bagging, Random Forest.
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Boosting and Adaboosting

® Uniform aggregation: Bagging, Random Forest.

® Boosting: Non-uniform aggregation.
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Boosting and Adaboosting

® Uniform aggregation: Bagging, Random Forest.
® Boosting: Non-uniform aggregation.

® Adaboost, Freund Y. and Schapire R.E. (1997):

Xijia Liu Machine Learning December 2, 2019 21 /31



Ensemble Methods
0000000000e000

Boosting and Adaboosting

® Uniform aggregation: Bagging, Random Forest.
® Boosting: Non-uniform aggregation.

® Adaboost, Freund Y. and Schapire R.E. (1997): Learn from failures
and mistakes.
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Adaboost

® Teach kids to distinguish apple from other fruits.
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Adaboost

® Teach kids to distinguish apple from other fruits.
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Adaboost

® Teach kids to distinguish apple from other fruits.

Circle

b
. [

Xijia Liu Machine Learning December 2, 2019 22 /31



Ensemble Methods
00000000000 e00

Adaboost

® Teach kids to distinguish apple from other fruits.

Circle + Red

Xijia Liu Machine Learning December 2, 2019 22 /31



Ensemble Methods
00000000000 e00

Adaboost

® Teach kids to distinguish apple from other fruits.
Circle + Red
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Adaboost

® Teach kids to distinguish apple from other fruits.
Circle + Red + Green
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Adaboost

® Teach kids to distinguish apple from other fruits.
Circle + Red + Green
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Adaboost

® Teach kids to distinguish apple from other fruits.
Circle + Red + Green 4+ Stem
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Weighted Classifer

® Decision Stump: make a prediction based on the value of a single
input feature variable.
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Weighted Classifer

® Decision Stump: make a prediction based on the value of a single
input feature variable.

® Pay different extents of attention to different cases:
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Weighted Classifer

® Decision Stump: make a prediction based on the value of a single
input feature variable.

® Pay different extents of attention to different cases: Weighted
sample,
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Weighted Classifer

® Decision Stump: make a prediction based on the value of a single
input feature variable.

® Pay different extents of attention to different cases: Weighted
sample, Bootstrap!
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Weighted Classifer

® Decision Stump: make a prediction based on the value of a single
input feature variable.

® Pay different extents of attention to different cases: Weighted
sample, Bootstrap!
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® Decision Stump: make a prediction based on the value of a single
input feature variable.

® Pay different extents of attention to different cases: Weighted
sample, Bootstrap!

D = {(x1,y1), (X2, ¥2), (x3,¥3), (xa, ya) }
Dg = {(le}/l)v (X27Y2)7 (X2,}’2)7 (X37Y3)}
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® Decision Stump: make a prediction based on the value of a single
input feature variable.

® Pay different extents of attention to different cases: Weighted
sample, Bootstrap!

D = {(x1,y1), (X2, ¥2), (x3,¥3), (xa, ya) }
Dp = {1(x1, 1), 2(x2, y2), 1(x3, y3), 0(xa, ya) }
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D = {(x1,y1), (X2, ¥2), (x3,¥3), (xa, ya) }
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® For data D, there are 3 potential cuts. We count each case only
once in the calculation of mis-classification errors.
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D = {(x1,y1), (X2, ¥2), (x3,¥3), (xa, ya) }
Dp = {1(x1, 1), 2(x2, y2), 1(x3, y3), 0(xa, ya) }
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® For data Dg, only 2 potential cuts. We count the case, (x2,y»)
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Weighted Classifer

® Decision Stump: make a prediction based on the value of a single
input feature variable.

® Pay different extents of attention to different cases: Weighted
sample, Bootstrap!

D = {(x1,y1), (X2, ¥2), (x3,¥3), (xa, ya) }
Dp = {1(x1, 1), 2(x2, y2), 1(x3, y3), 0(xa, ya) }

® For data D, there are 3 potential cuts. We count each case only
once in the calculation of mis-classification errors.

® For data Dg, only 2 potential cuts. We count the case, (x2,y»)
twice in the calculation of mis-classification errors.

® Adaboost: a reweight scheme, such that the mis-classified examples
get more weights in the next round.
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® Uniform aggregation: F(x) = Sign (Zle ﬂ(x))
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ANN in Ensemble methods

® Uniform aggregation: F(x) = Sign (Zle ﬂ(x))

Random forest = Bagging + Decision tree

Question: Can we learn f; as a perceptron, f; = Sign (w'x + wp)?

Question: Can we learn different weights for different perceptrons
from the target variable y, such that the final model F(x), is a
non-uniform aggregation of those perceptrons?

J
F(x) = Sign | ap + Z ajSign(ijx + wp)
j=1
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f2(x)

(-1,1) (1,1)

f1(®)
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Motivations

® 'AND’ operator: AND(f, )

® Find a line split the space.

N e
N
ag + ar1fL +arh =0 Y N 1)
AN [
N
N
N
- i .
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N
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® 'AND’ operator: AND(f, )

® Find a line split the space.

N TR
N
ag + ar1fL +arh =0 (-1,1)\\ 1)
AN [
N
® The final classifier is \\
N .
Sign(—1+ fi(x) + f(x)) R N A@®
N

1) [CRETI
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Motivations

® 'AND’ operator: AND(f, )

® Find a line split the space.
ag + orfy +anfh =0

® The final classifier is

Sign (—1 + Sign (WITX + WlO) + ’CZ(X))

(-1,-1)

Artificial Neural Network

O@00000

TR
@
AN [
N
N
N
N .
N A@®
N

December 2, 2019

26 / 31

Xijia Liu Machine Learning



Artificial Neural Network
0Oe00000

Motivations

® 'AND’ operator: AND(f, )

® Find a line split the space.

N TR
N
ag + ar1fL +arh =0 (-1,1)\\ 1)
AN [
. . . \
® The final classifier is \\
N .
Sign (—1 + fi(x) + Sign (w] x + wa)) N A@®
N
(-1,-1) (1,-1) \‘
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e 'AND’ operator: AND(f,, f)

® Find a line split the space.

\ TR
ag+onfy +azxf, =0 N
[EETIN @
. e . AN @
® The final classifier is \\
N
J . .
si 5 T ] N )
1gn | aog + a;o1gn (wj X+ Wjo) \\
j=1 (1,-1) 11 N

® 'OR" and 'NOT’
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Motivations

e 'AND’ operator: AND(f,, f)

{ /4
® Find a line split the space. N7
\ TR
ag+onfy +azxf, =0 N
(L1 (1,1)
. e . AN [ J
® The final classifier is \\
\
J N .
- \
Sign | o Sign (w! x i fi®)
gn | o+ > a;Sign (wx + wpo) AN
Jj=1 (-1,-1) (1,-1) \‘

® 'OR" and 'NOT’

® Any convex set can be
approximated by this model if
J is large enough.
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Non-uniform Aggregation of Perceptrons

® Non-uniform Aggregation of Perceptrons can be presented as

F(x)—Sign(w +ZW )Slgn<ZW x,+W >)

Input Layer  Hidden Layers Output Layer
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® A non-convex set.

® 'XOR' operator.

Xijia Liu

TR

(-1,1) (1,1)
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R®
® A non-convex set. g w
® 'XOR' operator. @
® Not linear separable... Any
idear? )
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N A
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® A non-convex set. an Y W
) ) N @
® 'XOR' operator. N N
S \
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® Not linear separable... Any N N
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\
® A non-convex set. TN )
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® 'XOR' operator. N N
N \
. \ \
® Not linear separable... Any N N
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\
® A non-convex set. an Y wy
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® 'XOR’ operator. \ N
S N\
. N
® Not linear separable... Any N N
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S N\
® Multi-Layers Perceptron (S CIRIIN
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(MLP). N
N
N
N

There is nothing difficulty cann’t be solved by eating a hamburg at MAX,
if so, just eat one more.
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N TR
\
® A non-convex set. o wn
' ) N @
® 'XOR’ operator. N N
S N
. N
e Not linear separable... Any N N
idear? \\ \\ ()
. S N
® Multi-Layers Perceptron ° ™ an N
(MLP). N
\
N
N

There is nothing difficulty cann't be solved by Multi-layers perceptron, if
so, just add one more layer
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Multi-Layers Perceptron

Input Layer Hidden Layers Output Layer
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From MLP to Artificial Neural Network

® The general MLP can be
represented as

M = sign <WJ(1)TX)
ZJ-(L) = Sign <wj(.L)TZ(L—1)>
y = Sign <W;L+1)TZ(L))
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® The general MLP can be
represented as

z}l) = Sign (wj(.l)Tx)
Z9 = sign (w{!T2(t7V)
y = Sign <W§L+1)T2(L))
® Neurons: zJ.(L), latent
variable.
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From MLP to Artificial Neural Network

® The general MLP can be

represented as z 2 9
z}l) = Sign (wj(.l)Tx)
2" - Sign (w7 2(17D)

y = Sign <W§L+1)T2(L))

® Neurons: zJ.(L), latent
variable.

® Activation function,
Sign(-), Identity function,
logit function and so on.
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® The general MLP can be
represented as

A0 = o (WD)
W _ LT (11
Z - U(ij 2 ))
y = U(WJ(.LH)TZ(L))

® Neurons: zJ.(L), latent
variable.

® Activation function, o(+):

Sign(-), ldentity function,
logit function and so on.
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From MLP to Artificial Neural Network

® The general MLP can be
represented as

A0 = o (WD)
W _ LT (11
Z - U(ij 2 ))
y = U(WJ(.LH)TZ(L))
® Neurons: zJ.(L), latent
variable.
® Activation function, o(+):

Sign(+), Identity function,

logit function and so on. Feed-foward Neural Network

® Output layer: y, objective
function — regression or
classification.
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ANN, an integrated learning process
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integrated learning process
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® The last layer of neurons can be viewed as a set of extracted
features from the raw data.

® ANN can be viewed as an integrated learning process.
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