Part I: The Elements of Machine Learning

Xijia Liu xijia.liu.18@gmail.com

Department of mathematics and mathematical statistics Umeå University

December 2, 2019

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000	00000	00000	

Outline

1 Introduction

- **2** Non-Linear Extension
- **3** Over Fitting Problems
- 4 Model Evaluation and Selection

Introduction	
00000	

Over Fitting Problems

Model Evaluation and Selection

Philosophy

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selectio
●0000	00000	00000	00000
Philosoph	у		

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Select
●0000	00000	00000	00000
Philosoph	ıy		

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selectic
●0000	00000	00000	
Philosophy			

Introduction ●0000	Non-Linear Extension 00000	Over Fitting Problems 00000	Model Evaluation and Selection
Philosophy			

- Examples.
- Two kinds of information

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selec

Philosophy

- Examples.
- Two kinds of information
 - x information: accessible, cheap.

Introduction	Non-Linear Extension
•0000	00000

Over Fitting Problems

Model Evaluation and Selection

Philosophy

- Examples.
- Two kinds of information
 - x information: accessible, cheap.
 - y information: expensive, annotation by human.

Introduction ●0000	Non-Linear Extension 00000	Over Fitting Problems	Mo

Model Evaluation and Selection

Philosophy

- Examples.
- Two kinds of information
 - x information: accessible, cheap.
 - y information: expensive, annotation by human.
- Aim: find the connection between x and y, e.g. a map f from x to y

Х

v

Introduction	Non-Linear Extension	Over Fitting Problems
●0000	00000	00000

Model Evaluation and Selection

Philosophy

- Examples.
- Two kinds of information
 - x information: accessible, cheap.
 - y information: expensive, annotation by human.
- Aim: find the connection between x and y, e.g. a map f from x to y
- Prediction: automated, accurate, safe and objective solution.

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
•0000			

Philosophy

- Examples.
- Two kinds of information
 - x information: accessible, cheap.
 - y information: expensive, annotation by human.
- Aim: find the connection between **x** and **y**, e.g. a map *f* from **x** to **y**
- Prediction: automated, accurate, safe and objective solution.
- Ability of prediction V.S. interpretation.

Over Fitting Problems

Model Evaluation and Selection

Over Fitting Problems

Model Evaluation and Selection

Observations from my lovely son \heartsuit

• At beginning, he repeatedly asked me: "What is this, papa?"

Over Fitting Problems

Model Evaluation and Selection

- At beginning, he repeatedly asked me: "What is this, papa?"
- After a while, his question style was switched from special to general.
 "Papa, is this an apple?"

Over Fitting Problems

Model Evaluation and Selection

- At beginning, he repeatedly asked me: "What is this, papa?"
- After a while, his question style was switched from special to general. "Papa, is this an apple?"
- At last, he just became an amazing classifier about apple! Accuracy is 100%

Over Fitting Problems

Model Evaluation and Selection

- At beginning, he repeatedly asked me: "What is this, papa?"
- After a while, his question style was switched from special to general. "Papa, is this an apple?"
- At last, he just became an amazing classifier about apple! Accuracy is 100%
- It's so magical! I did not summarize any rule for him!

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

Introduction INON-Linear Extension	Over Fitting Problems	woder Evaluation and Selection
00000 00000	00000	00000

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000	00000	00000	00000

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

×/···	
Xuun	
Allia	LIU

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
0000●	00000	00000	

• Data: Target variable y, feature variables X.

- Y	- I	

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:

- X	11.2	1
- 2311	lla i	

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable *y*, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable *y*, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable *y*, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable *y*, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: p(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable *y*, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable *y*, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:

- Data: Target variable *y*, feature variables **X**.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.

$\rho = E(\gamma|x) = w^{T}x$

P(Y=1)

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

River (x) = \$ wix Elos] \$ (5)-1+e-S

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.

Logit function

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.

- Data: Target variable *y*, feature variables **X**.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.

- Data: Target variable *y*, feature variables **X**.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.

- Data: Target variable *y*, feature variables **X**.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.
 - Key: $\hat{y} = \arg \max_k \Pr(y = k | \mathbf{x})$

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.
 - Key: $\hat{y} = \arg \max_k \Pr(y = k | \mathbf{x})$
 - Maximum margin classifier

Model Evaluation and Selection

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.
 - Key: $\hat{y} = \arg \max_k \Pr(y = k | \mathbf{x})$
 - Maximum margin classifier
- Perceptron classfier: Sign(w'x)
 Sign (5) = { / 5 > 1
 I S < 1

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.
 - Key: $\hat{y} = \arg \max_k \Pr(y = k | \mathbf{x})$
 - Maximum margin classifier
 - Perceptron classfier: *Sign*(w'x)

- Data: Target variable y, feature variables X.
- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.
 - Key: $\hat{y} = \arg \max_k \Pr(y = k | \mathbf{x})$
 - Maximum margin classifier
 - Perceptron classfier: Sign(w'x)

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000			

620

9, Wx x Cos(0)

w

- Types of learning:
 - Supervised Learning: f(X) → y. regression, classification (classifier, decision boundary).
 - Unsupervised Learning: g(X) → z, z is latent variable. Density estimation, Grouping, Features extraction.
- Supervised Learning algorithms:
 - Linear classifier: Logistic regression, Gaussian Discriminant.
 - Key: $\hat{y} = \arg \max_k \Pr(y = k | \mathbf{x})$
 - Maximum margin classifier
 - Perceptron classfier: Sign(w'x)

Non-linear Extension

Introduction	Non-Linear Extension	Over Fitting Problems	Model
00000	0●000	00000	0000
Help!			

Introduction	Non-Linear Extension	Over Fitting Problems	Model
00000	0●000	00000	0000

Model Evaluation and Selection

Help!

Introduction 00000 Non-Linear Extension

Over Fitting Problems

Model Evaluation and Selection

Polynomial Regression

Model Evaluation and Selection

Polynomial Regression

• In simple linear regression, we fit the data as a linear function of x

Model Evaluation and Selection

Polynomial Regression

- In simple linear regression, we fit the data as a linear function of x
- Here, it seems that we need to fit our data as a curve.

Model Evaluation and Selection

Polynomial Regression

- In simple linear regression, we fit the data as a linear function of x
- Here, it seems that we need to fit our data as a curve.
- Polynomial regression

 $y_i = w_0 + w_1 x_i + w_2 x_i^2 + \dots + w_k x_i^k + \epsilon_i$

Introduction 00000 Non-Linear Extension

Over Fitting Problems

Model Evaluation and Selection

Non linear Separable

Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000		

Non linear Separable

• Non linear separable. Hyper plain decision boundary seems does not work here...

Model Evaluation and Selection

Non linear Separable

- Non linear separable. Hyper plain decision boundary seems does not work here...
- It seems that the decision boundary is an ellipse.

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$$

$$(\chi_1, \chi_2) \longrightarrow (\chi_1^2, \sqrt{2}\chi_1, \chi_2, \chi_2^2)$$

Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000		

• In the first problem, we did a transformation $\phi: \mathbb{R} \to \mathbb{R}^k$

$$x \rightarrow (x, x^2, ..., x^k)$$

Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000		

• In the first problem, we did a transformation $\phi: \mathbb{R} \to \mathbb{R}^k$

$$x \rightarrow (x, x^2, ..., x^k)$$

• In the second problem, we did a transformation $\phi: \mathbb{R}^2 \rightarrow \mathbb{R}^3$

 $(x_1, x_2) \rightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)$

Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000		

• In the first problem, we did a transformation $\phi: \mathbb{R} \to \mathbb{R}^k$

$$x \rightarrow (x, x^2, ..., x^k)$$

• In the second problem, we did a transformation $\phi: \mathbb{R}^2 \rightarrow \mathbb{R}^3$

$$(x_1, x_2) \rightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

• ϕ is called feature mapping or basis function.

Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000		

• In the first problem, we did a transformation $\phi: \mathbb{R} \to \mathbb{R}^k$

$$x \rightarrow (x, x^2, ..., x^k)$$

• In the second problem, we did a transformation $\phi: \mathbb{R}^2 \rightarrow \mathbb{R}^3$

$$(x_1, x_2) \rightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

- ϕ is called feature mapping or basis function.
- Examples:
 - Identical transform x
 - Polynomial transform x^k
 - Non-linear function: $\log(x)$, \sqrt{x}

Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000		

• In the first problem, we did a transformation $\phi: \mathbb{R} \to \mathbb{R}^k$

$$x \rightarrow (x, x^2, ..., x^k)$$

• In the second problem, we did a transformation $\phi: \mathbb{R}^2 \rightarrow \mathbb{R}^3$

$$(x_1, x_2) \rightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

- ϕ is called feature mapping or basis function.
- Examples:
 - Identical transform x
 - Polynomial transform x^k
 - Non-linear function: $\log(x)$, \sqrt{x}
 - Indicator function: $1_{x \in (a,b)}$ local regression, spline.
 - Fourier transform, Wavelet transform.

Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000		

• In the first problem, we did a transformation $\phi: \mathbb{R} \to \mathbb{R}^k$

$$x \rightarrow (x, x^2, ..., x^k)$$

• In the second problem, we did a transformation $\phi: \mathbb{R}^2 \rightarrow \mathbb{R}^3$

$$(x_1, x_2) \rightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

- ϕ is called feature mapping or basis function.
- Examples:
 - Identical transform x
 - Polynomial transform x^k
 - Non-linear function: $\log(x)$, \sqrt{x}
 - Indicator function: $1_{x \in (a,b)}$ local regression, spline.
 - Fourier transform, Wavelet transform.

Non-Linear Extension	Over Fitting Problems	
	00000	

Non-Linear Extension

Model Evaluation and Selection

 $\gamma = \beta_0 + \beta_1 \times_0 + \beta_1 \times_2^2 + \beta_2 \times_3^2 + \beta_2 \times_4^2$

	Non-Linear Extension	Over Fitting Problems
00000	00000	00000

Non-Linear Extension

Model Evaluation and Selection

Non-Linear Extension

Model Evaluation and Selection

Non-Linear E×

Model Evaluation and Selection

Introduction 00000	Non-Linear Extension 00000	Over Fitting Problems	Model Evaluation and Selection
Overfitting			

• The final aim of building a model is generalization.

Introduction 00000	Non-Linear Extension 00000	Over Fitting Problems	Model Evaluation and Selection
Overfitting			

- The final aim of building a model is generalization.
- Training set V.S. validation set.

Introduction 00000	Non-Linear Extension 00000	Over Fitting Problems	Model Evaluation and Selection
Overfitting			

- The final aim of building a model is generalization.
- Training set V.S. validation set.
- Not only take into account the errors within the training set, E_T , but also the prediction error from validation set, E_V

Introduction 00000	Non-Linear Extension 00000	Over Fitting Problems	Model Evaluation and Selection

Overfitting

- The final aim of building a model is generalization.
- Training set V.S. validation set.
- Not only take into account the errors within the training set, E_T , but also the prediction error from validation set, E_V
- E_T is the measure of the goodness of fit; E_V is a measure of the overfitting.

	Orange	Red
$E_T(m)$	Perfect	Good enough
$E_V(m)$	Poor	Good
Complexity	Complicate	Simple

Introduction 00000	Non-Linear Extension 00000	Over Fitting Problems	Model Evaluation and Selection

Overfitting

- The final aim of building a model is generalization.
- Training set V.S. validation set.
- Not only take into account the errors within the training set, E_T , but also the prediction error from validation set, E_V
- *E_T* is the measure of the goodness of fit; *E_V* is a measure of the overfitting.

	Orange	Red
$E_T(m)$	Perfect	Good enough
$E_V(m)$	Poor	Good
Complexity	Complicate	Simple

• Overfitting: Model the errors; Consequence is bad Generalization.

Introduction 00000	Non-Linear Extension 00000	Over Fitting Problems	Model Evaluation and Selection

Overfitting

- The final aim of building a model is generalization.
- Training set V.S. validation set.
- Not only take into account the errors within the training set, E_T , but also the prediction error from validation set, E_V
- E_T is the measure of the goodness of fit; E_V is a measure of the overfitting.

	Orange	Red
$E_T(m)$	Perfect	Good enough
$E_V(m)$	Poor	Good
Complexity	Complicate	Simple

• Overfitting: Model the errors; Consequence is bad Generalization.

K Nearest Neighbors, follwing the local majority

• Predict the label as the majority of the *K* surroundings.

- Predict the label as the majority of the *K* surroundings.
- Annotated observations $\{\mathbf{x}_i, y_i\}_{i=1}^N$

- Predict the label as the majority of the *K* surroundings.
- Annotated observations $\{\mathbf{x}_i, y_i\}_{i=1}^N$
- For a new observation **x**_{new}, find the *K* nearest neighbors given a metric.

- Predict the label as the majority of the *K* surroundings.
- Annotated observations $\{\mathbf{x}_i, y_i\}_{i=1}^N$
- For a new observation **x**_{new}, find the *K* nearest neighbors given a metric.

- Predict the label as the majority of the *K* surroundings.
- Annotated observations $\{\mathbf{x}_i, y_i\}_{i=1}^N$
- For a new observation **x**_{new}, find the *K* nearest neighbors given a metric.

- Predict the label as the majority of the *K* surroundings.
- Annotated observations $\{\mathbf{x}_i, y_i\}_{i=1}^N$
- For a new observation **x**_{new}, find the *K* nearest neighbors given a metric.
- It also can be applied for regression problem.

- Predict the label as the majority of the *K* surroundings.
- Annotated observations $\{\mathbf{x}_i, y_i\}_{i=1}^N$
- For a new observation **x**_{new}, find the *K* nearest neighbors given a metric.
- It also can be applied for regression problem.
- Memory based method and lazy learner.

• Model parameters:

• Hyper parameters:

- Model parameters:
 - (Logistic) regression, the regression coefficients.

• Hyper parameters:

- Model parameters:
 - (Logistic) regression, the regression coefficients.
 - LDA, the parameters of each Gaussian model.
- Hyper parameters:

- Model parameters:
 - (Logistic) regression, the regression coefficients.
 - LDA, the parameters of each Gaussian model.
 - Perceptron, the weight parameters.
- Hyper parameters:

- Model parameters:
 - (Logistic) regression, the regression coefficients.
 - LDA, the parameters of each Gaussian model.
 - Perceptron, the weight parameters.
- Hyper parameters:
 - Polynomial regression, the order of polynomial.

- Model parameters:
 - (Logistic) regression, the regression coefficients.
 - LDA, the parameters of each Gaussian model.
 - Perceptron, the weight parameters.
- Hyper parameters:
 - Polynomial regression, the order of polynomial.
 - Principal component regression, the number of components.

х'х

- Model parameters:
 - (Logistic) regression, the regression coefficients.
 - LDA, the parameters of each Gaussian model.
 - Perceptron, the weight parameters.
- Hyper parameters:
 - Polynomial regression, the order of polynomial.
 - Principal component regression, the number of components.
 - KNN, the number of neighbors K.
Hyper-parameters and Model selection

- Model parameters:
 - (Logistic) regression, the regression coefficients.
 - LDA, the parameters of each Gaussian model.
 - Perceptron, the weight parameters.
- Hyper parameters:
 - Polynomial regression, the order of polynomial.
 - Principal component regression, the number of components.
 - KNN, the number of neighbors K.
- How to choose (tuning) the hyper-parameters?

Hyper-parameters and Model selection

- Model parameters:
 - (Logistic) regression, the regression coefficients.
 - LDA, the parameters of each Gaussian model.
 - Perceptron, the weight parameters.
- Hyper parameters:
 - Polynomial regression, the order of polynomial.
 - Principal component regression, the number of components.
 - KNN, the number of neighbors K.
- How to choose (tuning) the hyper-parameters?
- Choose the "best" model.

Model Evaluation and Selection

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000	00000		○●○○○

Evaluation

- Regression:
 - Mean Square Error (MSE): $\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i y_i)^2$
 - Mean Absolute Error (MSA): $\frac{1}{N} \sum_{i=1}^{N} |\hat{y}_i y_i|$
 - R square and F-statistic
- Classification:
 - Accuracy

$$\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}\{\widehat{y}_i\neq y_i\}$$

- Confusion matrix
- Kappa statistics

Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
		00000

Leave One Out Cross Validation

- Suppose the sample size of the training data is N
- For each observation *i*
 - Leave the *i*th case out, and train the model with the rest.
 - Predict the *i*th case using the trained model.
- Calculate the average accuracy or other metrics.

For K=1....K

• Computational cost is high.

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
			00000

k-Fold Cross Validation

- Randomly divide the training data set into k even parts.
- For each group *i*,
 - Excluding the *i*th group, train the model with the rest.
 - Predict the *i*th group using the trained model.
- Calculate the average performance.

• Provide a way to estimate the standard deviation of the estimation of performance.

Xijia Liu

Introduction	Non-Linear Extension	Over Fitting Problems	Model Evaluation and Selection
00000	00000	00000	

Procedure

- Spliting the data into three parts: training set, validation set and testing set.
- Fit and validate different models with training/validatoin set and the corresponding validation method.
- Select the model with the "best" performance.
- Train the "best" model by using train set + validation set.
- Estimate the performance of the model by using the testing set.