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® Two kinds of information

® x information: accessible,
cheap.

® vy information: expensive, -

annotation by human.
Output

® Aim: find the connection between x ot ————> [T
and y, e.g. a map f from x to y

® Prediction: automated, accurate,
safe and objective solution.

® Ability of prediction V.S.
interpretation.

Internal behavior of the code is unknown
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Overfitting

® The final aim of building a model is generalization.
® Training set V.S. validation set.

® Not only take into account the errors within the training set, E,
but also the prediction error from validation set, Ey

® FE7 is the measure of the goodness of fit; Ey is a measure of the

overfitting.
‘ Orange Red
Er(m) Perfect Good enough
Ev(m) Poor Good

Complexity | Complicate Simple
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Overfitting
® The final aim of building a model is generalization. @
® Training set V.S. validation set. 9 >
® Not only take into account the errors within the training set, E7 /% __ o

but also the prediction error from validation set, Ey

® FE7 is the measure of the goodness of fit; Ey is a measure of the

overfitting.
‘ Orange Red
Er(m) Perfect Good enough
Ev(m) Poor Good

Complexity | Complicate Simple

® QOverfitting: Model the errors; Consequence is bad Generalization.
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® The final aim of building a model is generalization.
® Training set V.S. validation set.

® Not only take into account the errors within the training set, E,
but also the prediction error from validation set, Ey

® FE7 is the measure of the goodness of fit; Ey is a measure of the

overfitting.
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K surroundings.
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K Nearest Neighbors, follwing the local majority

® Predict the label as the majority of the
K surroundings. ®

* Annotated observations {x;,y;} ",
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K Nearest Neighbors, follwing the local majority

® Predict the label as the majority of the

K surroundings. L

® Annotated observations {x,-,y,-},’-V:1 e © °
*
. ®

® For a new observation X,e,, find the °

K nearest neighbors given a metric. o e

° e o
e

Xijia Liu Machine Learning December 2, 2019



Over Fitting Problems
[e]e]e] o]

K Nearest Neighbors, follwing the local majority

® Predict the label as the majority of the

K surroundings. e
® Annotated observations {x;,y;},_; e O\ o
| *
| ® |
® For a new observation X,e,, find the / °
K nearest neighbors given a metric. L o// 6}
° e o
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K Nearest Neighbors, follwing the local majority

® Predict the label as the majority of the
K surroundings.

°
® Annotated observations {x,-,y,-},’-V:1
) (] @
® For a new observation X,e,, find the ® * o
K nearest neighbors given a metric.
o e
o e o
e
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K Nearest Neighbors, follwing the local majority

Predict the label as the majority of the

K surroundings. L
N

i=1

Annotated observations {x;, y;}

® For a new observation X,e,, find the °
K nearest neighbors given a metric. 6}

It also can be applied for regression e o
problem.
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K Nearest Neighbors, follwing the local majority

® Predict the label as the majority of the
K surroundings. L
® Annotated observations {x,-,y,-},’-V:1
® For a new observation X,e,, find the °
K nearest neighbors given a metric. 6}

® [t also can be applied for regression e o
problem.

® Memory based method and lazy
learner.
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® Model parameters: ;t‘—\,

® (Logistic) regression, the regression coefficients. |
® DA, the parameters of each Gaussian model. XX
® Perceptron, the weight parameters.

® Hyper parameters:

® Polynomial regression, the order of polynomial.
® Principal component regression, the number of components.
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Hyper-parameters and Model selection

Model parameters:

® (Logistic) regression, the regression coefficients.
® DA, the parameters of each Gaussian model.
® Perceptron, the weight parameters.

® Hyper parameters:

® Polynomial regression, the order of polynomial.
® Principal component regression, the number of components.
® KNN, the number of neighbors K.

How to choose (tuning) the hyper-parameters?

Choose the "best” model.
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Model Evaluation and Selection
0®000

Evaluation

® Regression:

® Mean Square Error (MSE): £ SN (7 — yi)?
® Mean Absolute Error (MSA): L 3% |7 — yi|
® R square and F-statistic

e (lassification:

® Accuracy
1n,
N Z Wy # vi}
i=1

® Confusion matrix
® Kappa statistics
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00000

Leave One Out Cross Validation

® Suppose the sample size of the training data is N

® For each observation i

® | eave the ith case out, and train the model with the rest.
® Predict the ith case using the trained model.

® Calculate the average accuracy or other metrics.

R k:[....k

123 n]

! >
s o M
123 n
123 n
123 n

® Computational cost is high.
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k-Fold Cross Validation

® Randomly divide the training data set into k even parts.

® For each group i/,
® Excluding the ith group, train the model with the rest.
® Predict the ith group using the trained model.

® Calculate the average performance.

[123 n
!

11765 47

11765 a7

11765 a7

11765 47

11765 47

® Provide a way to estimate the standard deviation of the estimation
of performance.
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Procedure

® Spliting the data into three parts: training set, validation set and
testing set.

® Fit and validate different models with training/validatoin set and
the corresponding validation method.

® Select the model with the "best” performance.
® Train the "best” model by using train set + validation set.

® Estimate the performance of the model by using the testing set.
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