
MATLAB in HPC 
Parallel Computing Toolbox I.
Anders Sjöström LUNARC
anders.sjostrom@lunarc.lu.se



Parallel Computing Toolbox 
(PCT)
• Can use multicore processors, 

GPUs, and computer clusters. 
• High-level constructs.
• No CUDA or MPI programming

necessary.
• Programs and models can run

in both interactive and batch
modes.

• Included in standard license for 
single server/computer.

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 2

GPU

CPU

CPU

CPU



GPU

CPU

CPU

CPU

Parallel Computing Toolbox 
(PCT)
• PCT use workers (MATLAB computational engines) on 

multicore desktops, executing applications locally. 
• With no change to the code, the same applications can

be run on clusters or clouds (using MATLAB Parallel 
Server™). 

• You can also use the toolbox with MATLAB Parallel
Server to execute calculations on data too large to fit 
into the memory of a single machine.

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 3

https://se.mathworks.com/products/matlab-parallel-server.html


Interactively Run a Loop in Parallel

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 4

Create a sine waveform and plot it

for i = 1:1024
A(i) = 

sin(i*2*pi/1024);
end
plot(A)

parfor i = 1:1024
A(i) = 

sin(i*2*pi/1024);
end
plot(A)

Serial version Parallel version



Must be 
consecutive

for - parfor

parfor loopvar = initval:endval
<statements>

END 

for loopvar = initval:endval
<statements>
END

Do not need to 
be consecutive

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 5



Parfor variables
• Loop Variable: Loop index

• Sliced Variables: Arrays whose segments are operated on by different 
iterations of the loop

• Broadcast Variables: Variables defined before the loop whose value is 
required inside the loop, but never assigned inside the loop

• Reduction Variables: Variables that accumulate a value across iterations 
of the loop, regardless of iteration order

• Temporary Variables: Variables created inside the loop, and not accessed 
outside the loop

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 6



What if my loop is nested?

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 7

M1 = magic(100);

M2=zeros(size(M1));

tic;

[j,k]=size(M1);

for x = 1:j

for y = 1:k

M2(x,y) = x*10 + y + M1(x,y)/10000;

end

end

t(1)=toc;

0.3993 sec

parfor x = 1:j
for y = 1:k

M2(x,y) = x*10 + y + M1(x,y)/10000;
end

end
t(2)=toc;

for x = 1:j
parfor y = 1:k

M2(x,y) = x*10 + y + M1(x,y)/10000;
end

end
t(3)=toc;

3.6440 sec



What if my loop is nested?
• The body of a parfor-loop cannot contain another parfor-loop. 
• A parfor-loop can call a function that contains another parfor-loop.
• A worker cannot open a parallel pool. Thus, a worker cannot run an inner nested 

parfor-loop in parallel. 
• Only one level of nested parfor-loops can run in parallel. 
• If the outer loop runs in parallel on a parallel pool, the inner loop runs serially on 

each worker. 
• If the outer loop runs serially in the client, the function that contains the inner loop 

can run the inner loop in parallel on workers in a pool.
• The body of a parfor-loop can contain for-loops. 
• You can use the inner loop variable for indexing the sliced array, but only in plain 

form, not part of an expression.
A = zeros(4,5);
parfor j = 1:4

for k = 1:5
A(j,k) = j + k;

end
end
A

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 8



What if my loop is nested?

A = zeros(100, 200);
parfor i = 1:size(A, 1)
for j = 1:size(A, 2)

A(i, j) = plus(i, j);
end

end

Invalid
A = zeros(100, 200);
n = size(A, 2);

parfor i = 1:size(A,1)
for j = 1:n

A(i, j) = plus(i, j);
end

end

Valid

For proper variable classification, the range of a for-loop nested in a parfor must be defined 
by constant numbers or variables. In the example, the code on the left does not work 
because the for-loop upper limit is defined by a function call. The code on the right works 
around this by defining a broadcast or constant variable outside the parfor first.

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 9



What if my loop is nested?

The index variable for the nested for-loop must never be explicitly assigned other 
than in its for-statement. When using the nested for-loop variable for indexing the 
sliced array, you must use the variable in plain form, not as part of an expression. 
In the example, the code on the left does not work, but the code on the right does.

Invalid Valid
A = zeros(4, 11);
parfor i = 1:4

for j = 1:10
A(i, j + 1) = i + j;

end
end

A = zeros(4, 11);
parfor i = 1:4

for j = 2:11
A(i, j) = i + j - 1;

end
end

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 10



Invalid Valid

If you use a nested for-loop to index into a sliced array, you cannot use that 
array elsewhere in the parfor-loop. In the example, the code on the left does 
not work because A is sliced and indexed inside the nested for-loop; the 
code on the right works because v is assigned to A outside the nested loop.

A = zeros(4, 10);
parfor i = 1:4

for j = 1:10
A(i, j) = i + j;

end
disp(A(i, 1))

end

A = zeros(4, 10);
parfor i = 1:4
v = zeros(1, 10);

for j = 1:10
v(j) = i + j;

end
disp(v(1))

A(i, :) = v;
end

What if my loop is nested?

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 11



What if my loop is nested?

Inside a parfor, if you use multiple for-loops (not nested inside each other) to index into a 
single sliced array, they must loop over the same range of values. Furthermore, a sliced 
output variable can be used in only one nested for-loop. In the example, the code on the 
left does not work because j and k loop over different values; the code on the right works 
to index different portions of the sliced array A.

Invalid Valid
A = zeros(4, 10);
parfor i = 1:4

for j = 1:5
A(i, j) = i + j;

end
for k = 6:10

A(i, k) = pi;
end

end

A = zeros(4, 10);
parfor i = 1:4

for j = 1:10
if j < 6

A(i, j) = i + j;
else

A(i, j) = pi;
end

end
end

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 12



Example: parameter sweep
• Offload parameter sweep to local workers
• Get peak value results when processing is 

complete
• Plot results in local MATLAB 

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 13



Parameter sweep speedup

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 14



feval - parfeval

fun = 'round';
x1 = pi;
y = feval(fun,x1)

x2 = 2;
y = feval(fun,x1,x2)
>>y=3.1400

feval – evaluate function

>>y=3

parfeval - Execute function 
asynchronously on parallel 
pool worker

f = parfeval(p,@magic,1,10);
value = fetchOutputs(f);

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 15



Parfeval example

n = 10000000;
job = cell(1,6);
for idx = 1:6 

jobs(idx) = parfeval(pool, @test, 1, n, idx);
end 

% wait for outputs as they finish 
output = cell(1, 6);
for idx = 1:6 

[completedIdx, value] = fetchNext(jobs); 
output{completedIdx} = value; 

end 
delete(pool); 

MATLAB in HPC. Umeå, Decemer 5-6 2019 Page 16




