
Introduction to HPC2N

Birgitte Brydsø, Jerry Eriksson, and Pedro Ojeda-May

HPC2N, Ume̊a University

12 September 2019

1 / 42

Overview

Our systems - Kebnekaise (and Abisko)

Using our systems

The File System

The Module System

Overview
Compiler Tool Chains
Examples

Compiling/linking with libraries

The Batch System (SLURM)

Overview
Simple example

2 / 42

Kebnekaise and Abisko
Abisko

1 328 nodes / 15744 cores (10 fat, 318 thin)

2 Thin: 4 AMD Opteron 6238, 12 core 2.6 GHz proc.

3 Fat: 4 AMD Opteron 6344, 12 core 2.6 GHz proc.

4 10 with 512 GB RAM/node, 318 with 128 GB RAM/node

5 Interconnect: Mellanox 4X QSFP 40 Gb/s

6 Theoretical performance: 163.74 TF

7 HP Linpack: 131.9 TF

8 Date installed: Fall 2011. Upgraded Jan 2014. Retired: ??

3 / 42

Kebnekaise and Abisko
Kebnekaise

1 602 nodes / 19288 cores (of which 2448 are KNL)

432 Intel Xeon E5-2690v4, 2x14 cores, 128 GB/node
52 Intel Xeon Gold 6132, 2x14 cores, 192 GB/node
20 Intel Xeon E7-8860v4, 4x18 cores, 3072 GB/node
32 Intel Xeon E5-2690v4, 2x NVidia K80, 2x14, 2x4992, 128 GB/node
4 Intel Xeon E5-2690v4, 4x NVidia K80, 2x14, 4x4992, 128 GB/node
10 Intel Xeon Gold 6132, 2x NVidia V100, 2x14, 2x5120, 192 GB/node

36 Intel Xeon Phi 7250, 68 cores, 192 GB/node, 16 GB MCDRAM/node

2 501760 CUDA “cores” (80*4992 cores/K80+20*5120 cores/V100)

3 More than 136 TB memory

4 Interconnect: Mellanox FDR / EDR Infiniband

5 Theoretical performance: 728 TF (+ expansion)

6 Date installed: Fall 2016 / Spring 2017 / Spring 2018 4 / 42

Using our systems

1 Get an account (https://www.hpc2n.umu.se/documentation/access-and-accounts/users)

2 Connect to:

kebnekaise.hpc2n.umu.se

or
abisko.hpc2n.umu.se

3 Transfer your files and data (optionally)

4 Compile own code, install software, or run pre-installed
software

5 Create batch script, submit batch job

6 Download data/results

5 / 42

Using our systems
Connecting to HPC2N’s systems

Linux, OS X:
ssh username@kebnekaise.hpc2n.umu.se

Use ssh -Y if you want to open graphical displays.

Windows:
Get an SSH client (PuTTY, Cygwin, MobaXterm ...)
Get an X11 server if you need graphical displays (Xming ...)
Start the client and login to

kebnekaise.hpc2n.umu.se

More information here:

https://www.hpc2n.umu.se/documentation/guides/windows-connection

Mac/OSX: Guide here:
https://www.hpc2n.umu.se/documentation/guides/mac-connection

6 / 42

Using our systems
Connecting from a Windows System with PuTTY

Get the Zip file (http://www.putty.org/) with both PuTTY, PSCP,
and PSFTP. Unzip, run putty.exe

7 / 42

Using our systems
Connecting from a Windows System with PuTTY

Enter your username and then your password.

8 / 42

Using our systems
Transfer your files and data

Linux, OS X:
Use scp for file transfer:

local> scp username@kebnekaise.hpc2n.umu.se:file .

local> scp file username@kebnekaise.hpc2n.umu.se:file

Windows:
Download client: WinSCP, FileZilla (sftp), PSCP/PSFTP, ...
Transfer with sftp or scp

https://www.hpc2n.umu.se/documentation/filesystems/filetransfer

Mac/OSX:
Transfer with sftp or scp (as for Linux) using Terminal
Or download client: Cyberduck, Fetch, ...

More info in guides (see previous slide) and here:
https://www.hpc2n.umu.se/documentation/filesystems/filetransfer

9 / 42

Using our systems
Editors

Editing your files

Various editors: vi, vim, nano, emacs ...

Example, nano:

nano <filename>
Save and exit nano: Ctrl-x

Example, Emacs:

Start with: emacs
Open (or create) file: Ctrl-x Ctrl-f
Save: Ctrl-x Ctrl-s
Exit Emacs: Ctrl-x Ctrl-c
(If you want to run in an a separate emacs window, and with
full functionality, you need to login with ssh -Y or similar, for
X11 forwarding):

10 / 42

The File System

There are 2 file systems
More info here: http://www.hpc2n.umu.se/filesystems/overview

AFS
This is where your home
directory is located (cd
$HOME)
Regularly backed up

NOT accesseable by the

batch system (except the folder

Public with the right settings)

PFS
Parallel File System
NO BACKUP
Accessible by the batch
system

11 / 42

The File System
AFS

Your home directory is located in /home/u/username and can
also be accessed with the environment variable $HOME

It is located on the AFS (Andrew File System) file system

Important! The batch system cannot access AFS since
ticket-forwarding to batch jobs do not work

AFS does secure authentification using Kerberos tickets

12 / 42

The File System
PFS

The ’parallel’ file system, where your ’parallel’ home directory
is located in /pfs/nobackup/home/u/username
(/pfs/nobackup/$HOME)

Offers high performance when accessed from the nodes

The correct place to run all your batch jobs

NOT backed up, so you should not leave files there that
cannot easily be recreated

For easier access, create a symbolic link from your home on
AFS to your home on PFS:

ln -s /pfs/nobackup/$HOME $HOME/pfs

You can now access your pfs with cd pfs from your home
directory on AFS

13 / 42

The Module System (Lmod)

Most programs are accessed by first loading them as a ’module’

Modules are

used to set up your environment (paths to executables,
libraries, etc.) for using a particular (set of) software
package(s)

a tool to help users manage their Unix/Linux shell
environment, allowing groups of related environment-variable
settings to be made or removed dynamically

allows having multiple versions of a program or package
available by just loading the proper module

are installed in a hierarchial layout. This means that some
modules are only available after loading a specific compiler
and/or MPI version.

14 / 42

The Module System (Lmod)

Useful commands (Lmod)

See which modules exists:
ml spider

Modules depending only on what is currently loaded:
module avail or ml av

See which modules are currently loaded:
module list or ml

Example: loading a compiler toolchain, here for GCC:
module load foss/version or ml foss/version

Example: Unload the above module:
module unload foss or ml -foss

More information about a module:
ml show <module>

Unload all modules except the ’sticky’ modules:

ml purge

15 / 42

The Module System
Compiler Toolchains

Compiler toolchains load bundles of software making up a complete envi-

ronment for compiling/using a specific prebuilt software. Includes some/all

of: compiler suite, MPI, BLAS, LAPACK, ScaLapack, FFTW, CUDA.

Some currently available toolchains (check ml av for versions and full,

updated list):
GCC: GCC only
gcccuda: GCC and CUDA
foss: GCC, OpenMPI, OpenBLAS/LAPACK, FFTW, ScaLAPACK
gimkl: GCC, IntelMPI, IntelMKL
gimpi: GCC, IntelMPI
gompi: GCC, OpenMPI
gompic: GCC, OpenMPI, CUDA
goolfc: gompic, OpenBLAS/LAPACK, FFTW, ScaLAPACK
icc: Intel C and C++ only
iccifort: icc, ifort
iccifortcuda: icc, ifort, CUDA
ifort: Intel Fortran compiler only
iimpi: icc, ifort, IntelMPI
intel: icc, ifort, IntelMPI, IntelMKL
intelcuda: intel and CUDA
iomkl: icc, ifort, Intel MKL, OpenMPI
pomkl: PGI C, C++, and Fortran compilers, IntelMPI
pompi: PGI C, C++, and Fortran compilers, OpenMPI

16 / 42

The Module System
Examples, listing loaded modules

module list

ml list

ml

17 / 42

The Module System
Examples, directly loadable modules

module avail

ml avail

ml av

18 / 42

The Module System
Examples, listing all modules

module spider

ml spider

19 / 42

The Module System
Examples, show more info about a module

module show <module>
ml show <module>

20 / 42

The Module System
Examples, loading and unloading modules

module load <module>/<version> and module unload <module>/<version>
ml <module>/<version> and ml -<module>/<version>
In general, you should always load the specific version of a module

21 / 42

Compiling and Linking with Libraries

MPI and OpenMP - load the desired version found with ml spider. Some

examples. There are other toolchains that will work.

MPI C program:

Intel compilers, Intel MPI:
ml iimpi/version

mpicc <program.c> -o <outfile>

GCC compilers, OpenMPI:
ml gompi/version

mpicc <program.c> -o <outfile>

OpenMP Fortran program:

Intel compilers:
ml iccifort/version

ifort -qopenmp <program.f90> -o <outfile>

GCC compilers:
ml GCC/version

gfortran -fopenmp <program.f90> -o <outfile>

22 / 42

Compiling and Linking with Libraries
Linking

Figuring out how to link

Intel and Intel MKL linking:
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

GCC, etc. Use buildenv
After loading a compiler toolchain, load ’buildenv’ and use
’ml show buildenv’ to get useful linking info
Example, foss (add relevant version):

ml foss/version

ml buildenv

ml show buildenv

Using the environment variable (prefaced with $) for linking is
highly recommended!

23 / 42

Compiling and Linking with Libraries
Example: ml foss, ml buildenv, ml show buildenv

24 / 42

The Batch System (SLURM)

Large/long/parallel jobs must be run through the batch
system

SLURM is an Open Source job scheduler, which provides
three key functions

Keeps track of available system resources
Enforces local system resource usage and job scheduling
policies
Manages a job queue, distributing work across resources
according to policies

Same batch system on Abisko and Kebnekaise. The
differences are that there are GPUs and KNLs which can be
allocated on Kebnekaise

Guides and documentation at:
http://www.hpc2n.umu.se/support

25 / 42

The Batch System
Accounting, Compute nodes, Abisko

Physically, a socket is 12 cores, but for SLURM allocation
purposes a socket is 6 cores (a NUMA node)

Thus allocation is in groups of 6 cores (one NUMA island).
This also means 6 cores is the smallest unit you can allocate.

This is how your project is charged, depending on how many
cores you ask for:

You ask for Cores you get Project is charged

1 core 6 cores 6 cores

6 cores 6 cores 6 cores

7 cores 12 cores 12 cores

c cores ceil(c/6) cores ceil(c/6) cores

If you request resources using #SBATCH -c you request c cores per task, and
SLURM only allocates cores on a single node.
If you request resources using #SBATCH -n you request tasks which can be allocated
on multiple nodes. 26 / 42

The Batch System
Accounting, Compute nodes, Kebnekaise

27 / 42

The Batch System
Accounting, largemem nodes, Kebnekaise

28 / 42

The Batch System
Accounting, GPU nodes, Kebnekaise. Same for the V100 as for the K80.

Note: V100s accounts like K80s and have one engine per card.
29 / 42

The Batch System (SLURM)
Useful Commands

Submit job: sbatch <jobscript>

Get list of your jobs: squeue -u <username>

srun <commands for your job/program>

salloc <commands to the batch system>

Check on a specific job: scontrol show job <job id>

Delete a specific job: scancel <job id>

Info about jobs:
sacct -l -j <jobid> -o jobname,NTasks,nodelist,MaxRSS,MaxVMSize...

More flags can be found with man sacct

The output will be very wide. Use something like
sacct -l -j | less -S

to view (makes it sideways scrollable, using the left/right arrow
key)

Use man sbatch, man srun, man for more information 30 / 42

The Batch System (SLURM)
Job Output

Output and errors in:
slurm-<job id>.out

Look at it with vi, nano, emacs, cat, less...

To get output and error files split up, you can give these flags
in the submit script:
#SBATCH --error=job.%J.err

#SBATCH --output=job.%J.out

31 / 42

The Batch System (SLURM)
Using different parts of Abisko/Kebnekaise

To run on the ’fat’ nodes, add this flag to your script:
#SBATCH -p largemem (Kebnekaise - largemem does not
have general access)
#SBATCH -p bigmem (Abisko)

Specifying Intel Broadwell or Skylake CPUs only (Kebnekaise):
#SBATCH --constraint=broadwell

or
#SBATCH --constraint=skylake

Using the GPU nodes (Kebnekaise
#SBATCH --gres=gpu:<type-of-card>:x where
<type-of-card> is either k80 or v100 and x = 1, 2, or 4 (4
only for the K80 type).

More on
https://www.hpc2n.umu.se/documentation/guides/using kebnekaise

32 / 42

The Batch System (SLURM)
Simple example, serial

Example: Serial job on Kebnekaise, compiler toolchain ’foss’

#!/bin/bash

Project id - change to your own after the course!

#SBATCH -A SNIC2019-5-82

Asking for 1 core

#SBATCH -n 1

Asking for a walltime of 5 min

#SBATCH --time=00:05:00

Purge modules before loading new ones in a script.

ml purge

ml foss/2019a

./my serial program

Submit with:

sbatch <jobscript>
33 / 42

The Batch System (SLURM)
Example, MPI C program

#include <stdio.h>
#include <mpi.h>

int main (int argc, char *argv[])

int myrank, size;

MPI Init(&argc, &argv);

MPI Comm rank(MPI COMM WORLD, &myrank);

MPI Comm size(MPI COMM WORLD, &size);

printf("Processor %d of %d: Hello World!\n", myrank,

size);

MPI Finalize();

34 / 42

The Batch System (SLURM)
Simple example, parallel

Example: MPI job on Kebnekaise, compiler toolchain ’foss’

#!/bin/bash

#SBATCH -A SNIC2019-5-82

#SBATCH -n 14

#SBATCH --time=00:05:00

##SBATCH --exclusive

#SBATCH --reservation=intro-cpu

module purge

ml foss/2019a

srun ./my parallel program

35 / 42

The Batch System (SLURM)
Simple example, output

Example: Output from a MPI job on Kebnekaise, run on 14 cores
(one NUMA island)

b-an01 [~/pfs/slurm]$ cat slurm-15952.out

The following modules were not unloaded:

(Use "module --force purge" to unload all):

1) systemdefault 2) snicenvironment

Processor 12 of 14: Hello World!

Processor 5 of 14: Hello World!

Processor 9 of 14: Hello World!

Processor 4 of 14: Hello World!

Processor 11 of 14: Hello World!

Processor 13 of 14: Hello World!

Processor 0 of 14: Hello World!

Processor 1 of 14: Hello World!

Processor 2 of 14: Hello World!

Processor 3 of 14: Hello World!

Processor 6 of 14: Hello World!

Processor 7 of 14: Hello World!

Processor 8 of 14: Hello World!

Processor 10 of 14: Hello World!

36 / 42

The Batch System (SLURM)
Longer example

#!/bin/bash

#SBATCH -A SNIC2019-5-82

#SBATCH -n 14

#SBATCH --time=00:05:00

module purge

ml foss/2019a

echo "Running on hosts: $SLURM NODELIST"

echo "Running on $SLURM NNODES nodes."

echo "Running on $SLURM NPROCS processors."

echo "Current working directory is ‘pwd‘"

echo "Output of srun hostname:"

srun /bin/hostname

srun ./mpi hello

37 / 42

The Batch System (SLURM)
Starting more than one serial job in the same submit file

#!/bin/bash

#SBATCH -A SNIC2019-5-82

#SBATCH -n 5

#SBATCH --time=00:15:00

module purge

ml foss/2018b

srun -n 1 ./job1.batch &

srun -n 1 ./job2.batch &

srun -n 1 ./job3.batch &

srun -n 1 ./job4.batch &

srun -n 1 ./job5.batch

38 / 42

The Batch System (SLURM)
Multiple Parallel Jobs Sequentially

#!/bin/bash

#SBATCH -A SNIC2019-5-82

#SBATCH -n 14

Remember to ask for enough time for all jobs to complete

#SBATCH --time=02:00:00

module purge

ml foss/2018b

Here 14 tasks with 2 cores per task. Output to file.

Not needed if your job creates output in a file

I also copy the output somewhere else and then run

another executable...

srun -n 14 -c 2 ./a.out > myoutput1 2>&1

cp myoutput1 /pfs/nobackup/home/u/username/mydatadir

srun -n 14 -c 2 ./b.out > myoutput2 2>&1

cp myoutput2 /pfs/nobackup/home/u/username/mydatadir

srun -n 14 -c 2 ./c.out > myoutput3 2>&1

cp myoutput3 /pfs/nobackup/home/u/username/mydatadir

...

39 / 42

The Batch System (SLURM)
Multiple Parallel Jobs Simultaneously

Make sure you ask for enough cores that all jobs can run at the same time, and

have enough memory. Of course, this will also work for serial jobs - just remove

the srun from the command line.

#!/bin/bash

#SBATCH -A SNIC2019-5-82

Total number of cores the jobs need

#SBATCH -n 56

Remember to ask for enough time for all of the jobs to

complete, even the longest

#SBATCH --time=02:00:00

module purge

ml foss/2018b

srun -n 14 --cpu bind=cores ./a.out &

srun -n 28 --cpu bind=cores ./b.out &

srun -n 14 --cpu bind=cores ./c.out &

...

wait
40 / 42

