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Performance

How do we measure performance?
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Floprate (definition)

I The raw computing performance of a CPU or a GPU is
usually measured in Flops. That is,

Floprate =
number of floating-point operations [Flop]

time [s]
.

I Usually the number of additions and multiplications the
hardware can perform per second.
I Additions and multiplications are usually faster. FMA.
I Division and special functions are usually slower.
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Floprate (theoretical peak floprate, double precision)

I A theoretical peak floprate can be calculated for each
device.

I Quad-core Intel Skylake CPU:

∼ 200 GFlops

I 14-core Intel Xeon Gold 6132 CPU:

∼ 1200 GFlops

I Nvidia Tesla V100 GPU:

∼ 7 000 GFlops
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Floprate (theoretical speedup)

The Nvidia Tesla V100 GPU is over
11 times faster than the 14-core

Intel Xeon CPU!
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Floprate (single and half precision)

I The difference is even larger if we are willing to reduce the
precision.

I Typical numbers (single precision):
I Quad-core Intel Skylake CPU: ∼ 400 GFlops
I 14-core Intel Xeon Gold 6132 CPU: ∼ 2 400 GFlops
I Nvidia Tesla V100 GPU: ∼ 14 000 GFlops

I Typical numbers (half precision):
I Quad-core Intel Skylake CPU: ∼ — GFlops
I 2 × Intel Xeon Gold 6132 CPU: ∼ — GFlops
I Nvidia Tesla V100 GPU: ∼ 112 000 GFlops
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Floprate (single and half precision, theoretical speedup)

The Nvidia Tesla V100 GPU is over
90 times faster than the 14-core

Intel Xeon CPU!
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AXPY example (CPU)

I Lets perform a small experiments:

x , y ∈ Rn

y ← 2x + y

I CPU code would looks like this:
double *x = malloc(n*sizeof(double));

double *y = malloc(n*sizeof(double));

for (int i = 0; i < n; i++) {

x[i] = 2.0 * rand()/RAND_MAX - 1.0;

y[i] = 2.0 * rand()/RAND_MAX - 1.0;

}

// compute y <- 2 * x + y (level 1 BLAS routine)

cblas_daxpy(n, 2.0, x, 1, y, 1);

I The total number of flops is 2n.
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AXPY example (CUDA)

I CUDA code would looks like this:
// allocate managed memory

double *x, *y;

cudaMallocManaged (&x, n*sizeof(double));

cudaMallocManaged (&y, n*sizeof(double));

for (int i = 0; i < n; i++) {

x[i] = 2.0 * rand()/RAND_MAX - 1.0;

y[i] = 2.0 * rand()/RAND_MAX - 1.0;

}

// prefetch data to GPU memory

int device = -1;

cudaGetDevice (& device);

cudaMemPrefetchAsync(x, n*sizeof(double), device , NULL);

cudaMemPrefetchAsync(y, n*sizeof(double), device , NULL);

cudaDeviceSynchronize ();

// initialize cuBLAS

cublasHandle_t handle;

cublasCreate (& handle);

// compute y <- 2 * x + y (level 1 BLAS routine)

double alpha = 2.0;

cublasDaxpy(handle , n, &alpha , x, 1, y, 1);
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AXPY example (actual performance)

I Quad-core Intel Skylake CPU (∼ 200 GFlops):

$ ./axpy.cpu 500E6

Runtime was 0.484 s.

I 14-core Intel Xeon Gold 6132 CPU (∼ 1 200 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cpu 500E6

Runtime was 0.184 s.

I Nvidia Tesla V100 GPU (∼ 7 000 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cuda 500E6

Runtime was 0.014 s.
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AXPY example (actual speedup)

The V100 is over 13 times faster
than the Xeon but ...
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AXPY example (actual floprate)

I Quad-core Intel Skylake CPU (∼ 200 GFlops):

$ ./axpy.cpu 500E6

Runtime was 0.484 s.

Floprate was 2 GFlops.

I 14-core Intel Xeon Gold 6132 CPU (∼ 1 200 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cpu 500E6

Runtime was 0.184 s.

Floprate was 5 GFlops.

I Nvidia Tesla V100 GPU (∼ 7 000 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cuda 500E6

Runtime was 0.014 s.

Floprate was 70 GFlops.
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AXPY example (actual floprate)

The V100 is over 13 times faster
than the Xeon but we are using
only 1% of the performance!

Why?
What else could effect the

performance?
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Memory throughput (definition)

I The memory performance of a CPU or a GPU is usually
measured in terms of memory throughput. That is,

throughput =
number of bytes moved [Byte]

time [s]
.

I Usually the bandwidth is measured between the CPU cores
and the RAM; or the CUDA cores and the VRAM.
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Memory throughput (theoretical memory bandwidth)

I A theoretical memory bandwidth can be calculated for each
device.

I Quad-core Intel Skylake CPU:

∼ 35 GB/s

I 14-core Intel Xeon Gold 6132 CPU:

∼ 100 GB/s

I Nvidia Tesla V100 GPU:

∼ 900 GB/s
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AXPY example (actual memory througput)

I Quad-core Intel Skylake CPU (∼ 35 GB/s):

$ ./axpy.cpu 500E6

Runtime was 0.484 s.

Memory throughput 25 GB/s.

I 14-core Intel Xeon Gold 6132 CPU (∼ 100 GB/s):

$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cpu 500E6

Runtime was 0.184 s.

Memory throughput 65 GB/s.

I Nvidia Tesla V100 GPU (∼ 900 GB/s):

$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cuda 500E6

Runtime was 0.014 s.

Memory throughput 845 GB/s.
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AXPY example (actual memory througput)

We are using between 65% and 95%
of the memory bandwidth!

The AXPY kernel is memory
bound!
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GEMM example (CPU)

I Lets perform a second experiments:

A,B ∈ Rn×n

C ← AB,C ∈ Rn×n

I CPU code would looks like this:
double *A = malloc(n*ldA*sizeof(double));

double *B = malloc(n*ldB*sizeof(double));

double *C = malloc(n*ldC*sizeof(double));

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

A[i*ldA+j] = 2.0 * rand()/RAND_MAX - 1.0;

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

B[i*ldB+j] = 2.0 * rand()/RAND_MAX - 1.0;

// compute C <- A * B (level 3 BLAS routine)

cblas_dgemm(CblasColMajor , CblasNoTrans , CblasNoTrans ,

n, n, n, 1.0, A, ldA , B, ldB , 0.0, C, ldC);
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GEMM example (CUDA)

I CUDA code would looks like this:
// allocate managed memory

double *A, *B, *C;

cudaMallocManaged (&A, n*ldA*sizeof(double));

cudaMallocManaged (&B, n*ldB*sizeof(double));

cudaMallocManaged (&c, n*ldC*sizeof(double));

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

A[i*ldA+j] = 2.0 * rand()/RAND_MAX - 1.0;

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

B[i*ldB+j] = 2.0 * rand()/RAND_MAX - 1.0;

// prefetch data to GPU memory

int device = -1;

cudaGetDevice (& device);

cudaMemPrefetchAsync(A, n*ldA*sizeof(double), device , NULL);

cudaMemPrefetchAsync(B, n*ldB*sizeof(double), device , NULL);

cudaDeviceSynchronize ();

// initialize cuBLAS

cublasHandle_t handle;

cublasCreate (& handle);

// compute C <- A * B (level 3 BLAS routine)

double alpha = 1.0, beta = 0.0;

cublasDgemm(handle , CUBLAS_OP_N , CUBLAS_OP_N ,

n, n, n, &alpha , A, ldA , B, ldB , &beta , C, ldC)
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GEMM example (actual floprate)

I Quad-core Intel Skylake CPU (∼ 200 GFlops):

$ ./gemm.cpu 10000

Runtime was 12.050 s.

Floprate was 166 GFlops.

I 14-core Intel Xeon Gold 6132 CPU (∼ 1 200 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl ... ./gemm.cpu 10000

Runtime was 2.250 s.

Floprate was 889 GFlops.

I Nvidia Tesla V100 GPU (∼ 7 000 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl ... ./gemm.cuda 10000

Runtime was 0.308 s.

Floprate was 6503 GFlops.
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GEMM example (actual floprate)

We are using between 74% and 92%
of the floating-point performance!

The GEMM kernel is compute
bound!
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Arithmetical intensity (definition)

I How do we know which kernels are memory bound and which
are compute bound?

I We begin to answer this question by defining arithmetical
intensity:

Arithmetical intensity =
number of floating-point operations [Flop]

number of bytes moved [Byte]
.
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Arithmetical intensity (examples)

I Double precision AXPY has the arithmetical intensity of

Arithmetical intensityAXPY,double =
2 Flop

3 · 8 Byte
=

1

12
Flop/Byte.

I Single precision AXPY has the arithmetical intensity of

Arithmetical intensityAXPY,single =
2 Flop

3 · 4 Byte
=

1

6
Flop/Byte.

I Double precision GEMM has the arithmetical intensity of

Arithmetical intensityGEMM,double = ∼ 32 Flop/Byte
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Arithmetical intensity (more examples)

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128

GEMM
AXPY

FFT

SpMV
Particle
codes

DNN

256 512

Stencil

arithmetical intensity
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Arithmetical intensity (Deep Neural Networks)

I Half precision numbers from Nvidia:

Operation Arithmetical intensity
Linear layer (4096 outputs, 1024 inputs,
batch size 512)

315 Flop/Byte

Linear layer (4096 outputs, 1024 inputs,
batch size 1)

1 Flop/Byte

Max pooling with 3x3 window and unit stride 2.25 Flop/Byte
ReLU activation 0.25 Flop/Byte
Layer normalization < 10 Flop/Byte
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Arithmetical intensity (Deep Neural Networks)

I Estimated single precision numbers:

Operation Arithmetical intensity
Linear layer (4096 outputs, 1024 inputs,
batch size 512)

158 Flop/Byte

Linear layer (4096 outputs, 1024 inputs,
batch size 1)

0.5 Flop/Byte

Max pooling with 3x3 window and unit stride 1.125 Flop/Byte
ReLU activation 0.125 Flop/Byte
Layer normalization < 5 Flop/Byte
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Arithmetical intensity (Deep Neural Networks)

I Estimated double precision numbers:

Operation Arithmetical intensity
Linear layer (4096 outputs, 1024 inputs,
batch size 512)

79 Flop/Byte

Linear layer (4096 outputs, 1024 inputs,
batch size 1)

0.25 Flop/Byte

Max pooling with 3x3 window and unit stride 0.56 Flop/Byte
ReLU activation 0.06 Flop/Byte
Layer normalization < 2.5 Flop/Byte
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Arithmetical intensity (optimal intensity)

I An optimal arithmetical intensity can be calculated for each
device:

optimal intensity =
theoretical peak floprate

theoretical memory bandwidth
.

I If the arithmetical intensity is smaller than the optimal
intensity, the kernel is memory bound.

I If the arithmetical intensity is larger than the optimal
intensity, the kernel is compute bound.

28 / 45



Arithmetical intensity (optimal intensity)

I An optimal arithmetical intensity can be calculated for each
device:

optimal intensity =
theoretical peak floprate

theoretical memory bandwidth
.

I If the arithmetical intensity is smaller than the optimal
intensity, the kernel is memory bound.

I If the arithmetical intensity is larger than the optimal
intensity, the kernel is compute bound.

28 / 45



Arithmetical intensity (optimal intensity)

I An optimal arithmetical intensity can be calculated for each
device:

optimal intensity =
theoretical peak floprate

theoretical memory bandwidth
.

I If the arithmetical intensity is smaller than the optimal
intensity, the kernel is memory bound.

I If the arithmetical intensity is larger than the optimal
intensity, the kernel is compute bound.

28 / 45



Arithmetical intensity (optimal intensity, double precision)

I Quad-core Intel Skylake CPU:

∼ 5.7 Flop/Byte

I 14-core Intel Xeon Gold 6132 CPU:

∼ 12 Flop/Byte

I Nvidia Tesla V100 GPU:

∼ 7.7 Flop/Byte
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Arithmetical intensity (optimal intensity, double precision)
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Arithmetical intensity (optimal intensity, single precision)

I Quad-core Intel Skylake CPU:

∼ 11.4 Flop/Byte

I 14-core Intel Xeon Gold 6132 CPU:

∼ 24 Flop/Byte

I Nvidia Tesla V100 GPU:

∼ 15.6 Flop/Byte
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Arithmetical intensity (optimal intensity, double precision)
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Arithmetical intensity (optimal intensity, single precision)

I Quad-core Intel Skylake CPU:

— Flop/Byte

I 14-core Intel Xeon Gold 6132 CPU:

— Flop/Byte

I Nvidia Tesla V100 GPU:

∼ 124 Flop/Byte
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Arithmetical intensity (optimal intensity, half precision)

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128

GEMMAXPY
FFT

SpMV
Particle
codes

DNN

256 512

Stencil

arithmetical intensity

V
10

0
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Arithmetical intensity (Caches and shared memory)

I When calculated naively, the double precision GEMM has the
arithmetical intensity of

Arithmetical intensityGEMM,double =
2n − 1

8(2n + 1)
Flop/Byte

= ∼ 1

8
Flop/Byte

I Why is it

Arithmetical intensityGEMM,double = ∼ 32 Flop/Byte?
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Arithmetical intensity (Caches and shared memory)

I When implemented naively, we compute each entry separately:

A,B ∈ Rn×n, (AB)i ,j =
n∑

k=1

aikbkj

(
2n − 1

8(2n + 1)
Flop/Byte

)

I However, we can also do the following:
A11 . . . A1m

...
. . .

...
Am1 . . . Amm


B11 . . . B1m

...
. . .

...
Bm1 . . . Bmm




i ,j

=
m∑

k=1

AikBkj
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Arithmetical intensity (Caches and shared memory)
I If m is small enough, Aik and Bkj can be fitted into CPU

caches or SMP’s shared memory.

I Each block is shared among the thread block!
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Warps

I The GPU hardware divisions each thread block into
sub-groups called warps:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

warp 0

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

warp 1
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

warp 2

I Each warp consists of 32 threads and all of them are
scheduled together.
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Warps (diverging paths)

I The fact the all threads within a warp are scheduled together
causes problems:

if (threadIdx.x % 2 == 0) {

// all threads within the warp enter , only even numbered threads

commit the result

}

else {

// all threads within the warp enter , only odd numbered threads commit

the result

}

I The cost is the same as if all threads executed both
branches!
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Warps (cost of diverging paths)

I If a single thread diverges with the probability p ∈ [0, 1], then
probability that at least one thread within a warp diverges is

1− (1− p)32
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PCI-E bandwidth (AXPY example)

I Remember this:
// allocate managed memory

double *x, *y;

cudaMallocManaged (&x, n*sizeof(double));

cudaMallocManaged (&y, n*sizeof(double));

for (int i = 0; i < n; i++) {

x[i] = 2.0 * rand()/RAND_MAX - 1.0;

y[i] = 2.0 * rand()/RAND_MAX - 1.0;

}

// prefetch data to GPU memory

int device = -1;

cudaGetDevice (& device);

cudaMemPrefetchAsync(x, n*sizeof(double), device , NULL);

cudaMemPrefetchAsync(y, n*sizeof(double), device , NULL);

cudaDeviceSynchronize ();

// initialize cuBLAS

cublasHandle_t handle;

cublasCreate (& handle);

// compute y <- 2 * x + y (level 1 BLAS routine)

double alpha = 2.0;

cublasDaxpy(handle , n, &alpha , x, 1, y, 1);
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PCI-E bandwidth (AXPY performance)

I Nvidia Tesla V100 GPU (∼ 900 GB/s):

$ srun ... ./axpy.cuda 500E6

Runtime was 0.014 s.

Floprate was 70 GFlops.

Memory throughput 844 GB/s.
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PCI-E bandwidth (comment out prefetch lines)

I Lets comment out some lines:
// allocate managed memory

double *x, *y;

cudaMallocManaged (&x, n*sizeof(double));

cudaMallocManaged (&y, n*sizeof(double));

for (int i = 0; i < n; i++) {

x[i] = 2.0 * rand()/RAND_MAX - 1.0;

y[i] = 2.0 * rand()/RAND_MAX - 1.0;

}

// prefetch data to GPU memory

// int device = -1;

// cudaGetDevice (& device);

// cudaMemPrefetchAsync (x, n*sizeof(double), device , NULL);

// cudaMemPrefetchAsync (y, n*sizeof(double), device , NULL);

// cudaDeviceSynchronize ();

// initialize cuBLAS

cublasHandle_t handle;

cublasCreate (& handle);

// compute y <- 2 * x + y (level 1 BLAS routine)

double alpha = 2.0;

cublasDaxpy(handle , n, &alpha , x, 1, y, 1);
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PCI-E bandwidth (AXPY performance without prefetch)

I Nvidia Tesla V100 GPU (∼ 900 GB/s):

$ srun ... ./axpy.cuda 500E6

Runtime was 1.462 s.

Floprate was 1 GFlops.

Memory throughput 8 GB/s.

44 / 45



PCI-E bandwidth (bandwidth)
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