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Performance

How do we measure performance?
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Floprate (definition)

» The raw computing performance of a CPU or a GPU is
usually measured in Flops. That is,

number of floating-point operations [FI
Floprate = g P P [ OP].
time [s]
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Floprate (definition)

» The raw computing performance of a CPU or a GPU is
usually measured in Flops. That is,

number of floating-point operations [Flop]

Fl te =
OPISES time [s]

» Usually the number of additions and multiplications the
hardware can perform per second.
» Additions and multiplications are usually faster. FMA.
» Division and special functions are usually slower.
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Floprate (theoretical peak floprate, double precision)

> A theoretical peak floprate can be calculated for each
device.
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Floprate (theoretical peak floprate, double precision)

> A theoretical peak floprate can be calculated for each
device.

» Quad-core Intel Skylake CPU:

[ ~ 200 GFlops ]
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Floprate (theoretical peak floprate, double precision)

> A theoretical peak floprate can be calculated for each
device.

» Quad-core Intel Skylake CPU:

[ ~ 200 GFlops

» 14-core Intel Xeon Gold 6132 CPU:

[ ~ 1200 GFlops
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Floprate (theoretical peak floprate, double precision)

> A theoretical peak floprate can be calculated for each
device.

» Quad-core Intel Skylake CPU:

[ ~ 200 GFlops

» 14-core Intel Xeon Gold 6132 CPU:

~ 1200 GFlops

. J

» Nvidia Tesla V100 GPU:

~ 7000 GFlops
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Floprate (theoretical speedup)

The Nvidia Tesla V100 GPU is over
11 times faster than the 14-core
Intel Xeon CPU!
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Floprate (single and half precision)

» The difference is even larger if we are willing to reduce the
precision.
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Floprate (single and half precision)

» The difference is even larger if we are willing to reduce the
precision.
» Typical numbers (single precision):
» Quad-core Intel Skylake CPU: ~ 400 GFlops

» 14-core Intel Xeon Gold 6132 CPU: ~ 2400 GFlops
» Nvidia Tesla V100 GPU: ~ 14000 GFlops
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Floprate (single and half precision)

» The difference is even larger if we are willing to reduce the
precision.
» Typical numbers (single precision):
» Quad-core Intel Skylake CPU: ~ 400 GFlops
» 14-core Intel Xeon Gold 6132 CPU: ~ 2400 GFlops
» Nvidia Tesla V100 GPU: ~ 14000 GFlops
» Typical numbers (half precision):
» Quad-core Intel Skylake CPU: ~ — GFlops

> 2 x Intel Xeon Gold 6132 CPU: ~ — GFlops
» Nvidia Tesla V100 GPU: ~ 112000 GFlops
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Floprate (single and half precision, theoretical speedup)

The Nvidia Tesla V100 GPU is over
00 times faster than the 14-core
Intel Xeon CPU!
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AXPY example (CPU)

P Lets perform a small experiments:

x,y € R”
y<2x+y
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AXPY example (CPU)

P Lets perform a small experiments:

x,y € R"
y<2x+y

» CPU code would looks like this:

double *x
double x*y

= malloc(n*sizeof (double));
= malloc(n*sizeof (double));
for (int
x[i]
y[il

= 0; i < nj i++) {
2.0 * rand () /RAND_MAX - 1.0;
2.0 * rand () /RAND_MAX - 1.0;

e

}

// compute y <- 2 * ¢ + y (level I BLAS routine)
cblas_daxpy(n, 2.0, x, 1, y, 1);
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AXPY example (CPU)

P Lets perform a small experiments:

x,y € R"
y<2x+y

» CPU code would looks like this:

double *x malloc (n*sizeof (double));

double *y malloc (n*sizeof (double));
for (int i = 0; i < nj; i++) {
x[i]l = 2.0 * rand()/RAND_MAX - 1.0;
y[il = 2.0 * rand()/RAND_MAX - 1.0;

}

// compute y <- 2 * ¢ + y (level I BLAS routine)
cblas_daxpy(n, 2.0, x, 1, y, 1);

» The total number of flops is 2n.
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AXPY example (CUDA)

» CUDA code would looks like this:

// allocate managed memory

double *x, *y;

cudaMallocManaged (&x, n*sizeof (double));
cudaMallocManaged (&y, n*sizeof (double));

for (int i = 0; i < n; i++) {
x[i] = 2.0 * rand () /RAND_MAX - 1.0;
y[il = 2.0 * rand () /RAND_MAX - 1.0;

}

// prefetch data to GPU memory

int device = -1;

cudaGetDevice (&device) ;

cudaMemPrefetchAsync(x, n*sizeof (double), device, NULL);
cudaMemPrefetchAsync (y, n*sizeof (double), device, NULL);
cudaDeviceSynchronize();

// initialize cuBLAS
cublasHandle_t handle;
cublasCreate (¢handle);

// compute y <- 2 * ¢ + y (level I BLAS routine)
double alpha = 2.0;
cublasDaxpy (handle, n, &alpha, x, 1, y, 1);
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AXPY example (actual performance)

» Quad-core Intel Skylake CPU (~ 200 GFlops):

$ ./axpy.cpu 500E6
Runtime was 0.484 s.
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AXPY example (actual performance)

» Quad-core Intel Skylake CPU (~ 200 GFlops):

$ ./axpy.cpu 500E6
Runtime was 0.484 s.

» 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cpu 500E6
Runtime was 0.184 s.
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AXPY example (actual performance)

» Quad-core Intel Skylake CPU (~ 200 GFlops):

$ ./axpy.cpu 500E6
Runtime was 0.484 s.

» 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cpu 500E6
Runtime was 0.184 s.

» Nvidia Tesla V100 GPU (~ 7000 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cuda 500E6
Runtime was 0.014 s.
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AXPY example (actual speedup)

The V100 is over 13 times faster
than the Xeon but ...
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AXPY example (actual floprate)

» Quad-core Intel Skylake CPU (~ 200 GFlops):

$ ./axpy.cpu 500E6
Runtime was 0.484 s.
Floprate was 2 GFlops.

» 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cpu 500E6
Runtime was 0.184 s.
Floprate was 5 GFlops.

» Nvidia Tesla V100 GPU (~ 7000 GFlops):
$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cuda 500E6

Runtime was 0.014 s.
Floprate was 70 GFlops.
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AXPY example (actual floprate)

The V100 is over 13 times faster
than the Xeon but we are using
only 1% of the performance!

Why?
What else could effect the
performance?
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Memory throughput (definition)

» The memory performance of a CPU or a GPU is usually
measured in terms of memory throughput. That is,

number of bytes moved [Byte]
time [s] '

throughput =
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Memory throughput (definition)

» The memory performance of a CPU or a GPU is usually
measured in terms of memory throughput. That is,

number of bytes moved [Byte]

th hput =
roughpu time [s]

» Usually the bandwidth is measured between the CPU cores
and the RAM; or the CUDA cores and the VRAM.
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Memory throughput (theoretical memory bandwidth)

> A theoretical memory bandwidth can be calculated for each
device.
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Memory throughput (theoretical memory bandwidth)

> A theoretical memory bandwidth can be calculated for each
device.

» Quad-core Intel Skylake CPU:

[ ~ 35 GB/s ]
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Memory throughput (theoretical memory bandwidth)

> A theoretical memory bandwidth can be calculated for each
device.

» Quad-core Intel Skylake CPU:

[ ~ 35 GB/s

» 14-core Intel Xeon Gold 6132 CPU:

[ ~ 100 GB/s
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Memory throughput (theoretical memory bandwidth)

> A theoretical memory bandwidth can be calculated for each
device.

» Quad-core Intel Skylake CPU:

[ ~ 35 GB/s

» 14-core Intel Xeon Gold 6132 CPU:

~ 100 GB/s

. J

» Nvidia Tesla V100 GPU:

~ 900 GB/s
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AXPY example (actual memory througput)

» Quad-core Intel Skylake CPU (~ 35 GB/s):

$ ./axpy.cpu 500E6
Runtime was 0.484 s.
Memory throughput 25 GB/s.

S%F\éERSITY [y SNIC :ffHPCZN 16 /45



AXPY example (actual memory througput)

» Quad-core Intel Skylake CPU (~ 35 GB/s):

$ ./axpy.cpu 500E6
Runtime was 0.484 s.
Memory throughput 25 GB/s.

» 14-core Intel Xeon Gold 6132 CPU (~ 100 GB/s):

$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cpu 500E6
Runtime was 0.184 s.
Memory throughput 65 GB/s.
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AXPY example (actual memory througput)

» Quad-core Intel Skylake CPU (~ 35 GB/s):

$ ./axpy.cpu 500E6
Runtime was 0.484 s.
Memory throughput 25 GB/s.

» 14-core Intel Xeon Gold 6132 CPU (~ 100 GB/s):

$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cpu 500E6
Runtime was 0.184 s.
Memory throughput 65 GB/s.

» Nvidia Tesla V100 GPU (~ 900 GB/s):

$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cuda 500E6
Runtime was 0.014 s.
Memory throughput 845 GB/s.
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AXPY example (actual memory througput)

We are using between 65% and 95%
of the memory bandwidth!

The AXPY kernel is memory
bound!
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GEMM example (CPU)

» Lets perform a second experiments:

A’B ERan
C<+ AB,Cc RNXn
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GEMM example (CPU)

» Lets perform a second experiments:

A, B e R™"

C « AB,C € R™"

» CPU code would looks like this:

double *A = malloc(n*1ldA*sizeof (double));
double *B = malloc(n*1dB*sizeof (double));
double *C = malloc(n*1dCx*sizeof (double));
for (int i = 0; i < nj; i++)

for (int j = 0; j < n; j++)

for (int i = 0; i < nj; i++)
for (int j = 0; j < n; j++)

cblas_dgemm(CblasColMajor, CblasNoTrans,
n, n, n, 1.0, A, 1dA, B, 1dB, 0.0, C,

S%F\éERSITY Cp SNIC :fﬁ“ HPC2N

A[i*1dA+j] = 2.0 * rand()/RAND_MAX - 1.0;

B[i*1dB+j] = 2.0 * rand()/RAND_MAX - 1.0;

// compute C <- A * B (level 3 BLAS routine)
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GEMM example (CUDA)
» CUDA code would looks like this:

// allocate managed memory

double *A, *B, *C;

cudaMallocManaged (§A, n*1ldA*sizeof (double));
cudaMallocManaged (4B, n*1dB*sizeof (double));
cudaMallocManaged (&c, n*1ldC*sizeof (double));

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
A[i*1dA+j] = 2.0 * rand()/RAND_MAX - 1.0;

for (int i = 0; i < nj; i++)
for (int j = 0; j < n; j++)
B[i*1dB+j] = 2.0 * rand()/RAND_MAX - 1.0;

// prefetch data to GPU memory

int device = -1;

cudaGetDevice (&device) ;

cudaMemPrefetchAsync (A, n*ldA*sizeof (double), device, NULL);
cudaMemPrefetchAsync (B, n*1dB*sizeof (double), device, NULL);
cudaDeviceSynchronize ();

// initialize cuBLAS
cublasHandle_t handle;
cublasCreate (&handle) ;

// compute C <- A * B (level 3 BLAS routine)
double alpha = 1.0, beta = 0.0;
cublasDgemm (handle, CUBLAS_OP_N, CUBLAS_OP_N,
n, n, n, &alpha, A, 1dA, B, 1dB, &beta, C, 1dC)
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GEMM example (actual floprate)

» Quad-core Intel Skylake CPU (~ 200 GFlops):

$ ./gemm.cpu 10000
Runtime was 12.050 s.
Floprate was 166 GFlops.
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GEMM example (actual floprate)

» Quad-core Intel Skylake CPU (~ 200 GFlops):

$ ./gemm.cpu 10000
Runtime was 12.050 s.
Floprate was 166 GFlops.
» 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl ... ./gemm.cpu 10000
Runtime was 2.250 s.
Floprate was 889 GFlops.
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GEMM example (actual floprate)

» Quad-core Intel Skylake CPU (~ 200 GFlops):
$ ./gemm.cpu 10000
Runtime was 12.050 s.
Floprate was 166 GFlops.
» 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl ... ./gemm.cpu 10000
Runtime was 2.250 s.
Floprate was 889 GFlops.

» Nvidia Tesla V100 GPU (~ 7000 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl ... ./gemm.cuda 10000
Runtime was 0.308 s.
Floprate was 6503 GFlops.

S%I]E\I}ERSITY [y SNIC n‘?ﬁjHPC2N 20 /45



GEMM example (actual floprate)

We are using between 74% and 92%
of the floating-point performance!

The GEMM kernel is compute
bound!
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Arithmetical intensity (definition)

» How do we know which kernels are memory bound and which
are compute bound?
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Arithmetical intensity (definition)

» How do we know which kernels are memory bound and which
are compute bound?

> We begin to answer this question by defining arithmetical
intensity:

number of floating-point operations [Flop]

Arithmetical intensity =
number of bytes moved [Byte]
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Arithmetical intensity (examples)

» Double precision AXPY has the arithmetical intensity of

2 Flop

1
2P _ Z Flop/Byte.
3.8Bye 12 OP/Byte

Arithmetical intensityaxpy double =
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Arithmetical intensity (examples)

» Double precision AXPY has the arithmetical intensity of

2 Flop

Arithmetical intensity axpy double = 3 8 Bvic
: ] yte

» Single precision AXPY has the arithmetical intensity of

2 Fl 1
Arithmetical intensityaxpy single = ﬁ =3 Flop/Byte.
: “4 Byte
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Arithmetical intensity (examples)

» Double precision AXPY has the arithmetical intensity of

2 Flop

Arithmetical intensity axpy double = 3 8 Bvic
: ] yte

» Single precision AXPY has the arithmetical intensity of

2 Fl 1
Arithmetical intensityaxpy single = ﬁ =3 Flop/Byte.
: “4 Byte

» Double precision GEMM has the arithmetical intensity of

Arithmetical intensitygepmm double = ~ 32 Flop/Byte
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Arithmetical intensity (more examples)

*._codes ./

| | | | | | | | | | | | | |
1/161/8 1/4 1/2 1 2 4 8 16 32 64 128256512
arithmetical intensity
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Arithmetical intensity (Deep Neural Networks)

» Half precision numbers from Nvidia:

Operation Arithmetical intensity
Linear layer (4096 outputs, 1024 inputs,

batch size 512) 315 Flop/Byte
Linear layer (4096 outputs, 1024 inputs,

batch size 1) 1 Flop/Byte

Max pooling with 3x3 window and unit stride 2.25 Flop/Byte
ReLU activation 0.25 Flop/Byte
Layer normalization < 10 Flop/Byte
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Arithmetical intensity (Deep Neural Networks)

P> Estimated single precision numbers:

Operation Arithmetical intensity
Linear layer (4096 outputs, 1024 inputs,
batch size 512) 158 Flop/Byte

Linear layer (4096 outputs, 1024 inputs,

batch size 1) 0.5 Flop/Byte

Max pooling with 3x3 window and unit stride 1.125 Flop/Byte
ReLU activation 0.125 Flop/Byte
Layer normalization < 5 Flop/Byte
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Arithmetical intensity (Deep Neural Networks)

» Estimated double precision numbers:

Operation

Arithmetical intensity

Linear layer (4096 outputs, 1024 inputs,
batch size 512)

Linear layer (4096 outputs, 1024 inputs,
batch size 1)

Max pooling with 3x3 window and unit stride
ReLU activation

Layer normalization
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79 Flop/Byte

0.25 Flop/Byte

0.56 Flop/Byte
0.06 Flop/Byte
< 2.5 Flop/Byte
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Arithmetical intensity (optimal intensity)

> An optimal arithmetical intensity can be calculated for each
device:

. . . theoretical peak floprate
optimal intensity =

theoretical memory bandwidth’
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Arithmetical intensity (optimal intensity)

> An optimal arithmetical intensity can be calculated for each
device:

theoretical peak floprate

optimal intensity = 8 - .
P Y= Yheoretical memory bandwidth

» If the arithmetical intensity is smaller than the optimal
intensity, the kernel is memory bound.
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Arithmetical intensity (optimal intensity)

> An optimal arithmetical intensity can be calculated for each
device:

theoretical peak floprate

optimal intensity = 8 - .
P y theoretical memory bandwidth

» If the arithmetical intensity is smaller than the optimal
intensity, the kernel is memory bound.

> If the arithmetical intensity is larger than the optimal
intensity, the kernel is compute bound.

© sy = SNIC ¥ HPC2N
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Arithmetical intensity (optimal intensity, double precision)

» Quad-core Intel Skylake CPU:

~ 5.7 Flop/Byte ]
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Arithmetical intensity (optimal intensity, double precision)

» Quad-core Intel Skylake CPU:

~ 5.7 Flop/Byte

» 14-core Intel Xeon Gold 6132 CPU:

~ 12 Flop/Byte
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Arithmetical intensity (optimal intensity, double precision)

» Quad-core Intel Skylake CPU:

~ 5.7 Flop/Byte

» 14-core Intel Xeon Gold 6132 CPU:

~ 12 Flop/Byte

» Nvidia Tesla V100 GPU:

~ 7.7 Flop/Byte
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Arithmetical intensity (optimal intensity, double precision)

L1 1 [ N I N I I
1/161/8 1/4 1/2 1 2 4 8 16 32 64 128256 512
arithmetical intensity
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Arithmetical intensity (optimal intensity, single precision)

» Quad-core Intel Skylake CPU:

~ 11.4 Flop/Byte

» 14-core Intel Xeon Gold 6132 CPU:

~ 24 Flop/Byte

» Nvidia Tesla V100 GPU:

~ 15.6 Flop/Byte
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Arithmetical intensity (optimal intensity, double precision)

L1 1 [ I A I I
1/161/8 1/4 1/2 1 2 4 8 16 32 64 128256 512
arithmetical intensity
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Arithmetical intensity (optimal intensity, single precision)

» Quad-core Intel Skylake CPU:

— Flop/Byte

» 14-core Intel Xeon Gold 6132 CPU:

— Flop/Byte

» Nvidia Tesla V100 GPU:

~ 124 Flop/Byte
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Arithmetical intensity (optimal intensity, half precision)

o FFT GE

I Y I N B B
1/161/8 1/41/2 1 2 4 8 16 32 64 128256 512

arithmetical intensity
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Arithmetical intensity (Caches and shared memory)

» When calculated naively, the double precision GEMM has the
arithmetical intensity of

Arithmetical intensitygemm double =
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Arithmetical intensity (Caches and shared memory)

» When calculated naively, the double precision GEMM has the
arithmetical intensity of

Arithmetical intensitygemm double =

> Why is it

Arithmetical intensityGEMM'douMe =~ 32 Flop/Byte7
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Arithmetical intensity (Caches and shared memory)

» When implemented naively, we compute each entry separately:

g 2n—1
A BcR™ (AB).. = ik Bii —— Flop/Byt
,B € ,(AB), ; kz_:lak ki <8(2n+1) op/ ye>

S%F\éERSITY [y SNIC :fﬁHPC2N 36 /45



Arithmetical intensity (Caches and shared memory)

» When implemented naively, we compute each entry separately:

g 2n—1
A BcR™ (AB).. = ik Bii —— Flop/Byt
,B € ,(AB), ; kz_:lak ki <8(2n+1) op/ ye>

» However, we can also do the following:

= Z A By
.. k=1

l?.j
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Arithmetical intensity (Caches and shared memory)

» If mis small enough, Ajx and By; can be fitted into CPU
caches or SMP's shared memory.
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Arithmetical intensity (Caches and shared memory)

» If mis small enough, Ajx and By; can be fitted into CPU
caches or SMP's shared memory.
» Each block is shared among the thread block!
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Arithmetical intensity (Caches and shared memory)

» If mis small enough, Ajx and By; can be fitted into CPU
caches or SMP's shared memory.

» Each block is shared among the thread block!
Z ajk by Z AyByj
k=1 k=1

Global Registers Global Shared Registers
memory memory memory

. ‘ | §‘
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Warps

» The GPU hardware divisions each thread block into

sub-groups called warps:
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Warps

» The GPU hardware divisions each thread block into
sub-groups called warps:

warp 0

» Each warp consists of 32 threads and all of them are
scheduled together.
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Warps (diverging paths)

» The fact the all threads within a warp are scheduled together
causes problems:
if (threadIdx.x % 2 == 0) {

// all threads within the warp enter, only even numbered threads
commit the result

}
else {
// all threads within the warp enter, only odd numbered threads commit
the result
}
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Warps (diverging paths)

» The fact the all threads within a warp are scheduled together
causes problems:
if (threadIdx.x % 2 == 0) {

// all threads within the warp enter, only even numbered threads
commit the result

}
else {
// all threads within the warp enter, only odd numbered threads commit
the result
}

» The cost is the same as if all threads executed both
branches!
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Warps (cost of diverging paths)

» If a single thread diverges with the probability p € [0, 1], then
probability that at least one thread within a warp diverges is

1-(1-p)*

warp diverges

20 -

20 40 60 80
thread diverges
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PCI-E bandwidth (AXPY example)

» Remember this:

// allocate managed memory

double *x, *y;

cudaMallocManaged (&x, n*sizeof (double));
cudaMallocManaged (&y, n*sizeof (double));

for (int i = 0; i < n; i++) {
x[i] = 2.0 * rand () /RAND_MAX - 1.0;
y[il = 2.0 * rand () /RAND_MAX - 1.0;

}

// prefetch data to GPU memory

int device = -1;

cudaGetDevice (&device) ;

cudaMemPrefetchAsync(x, n*sizeof (double), device, NULL);
cudaMemPrefetchAsync (y, n*sizeof (double), device, NULL);
cudaDeviceSynchronize();

// initialize cuBLAS
cublasHandle_t handle;
cublasCreate (¢handle);

// compute y <- 2 * ¢ + y (level 1 BLAS routine)
double alpha = 2.0;
cublasDaxpy (handle, n, &alpha, x, 1, y, 1);
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PCI-E bandwidth (AXPY performance)

» Nvidia Tesla V100 GPU (~ 900 GB/s):

$ srun ... ./axpy.cuda 500E6
Runtime was 0.014 s.
Floprate was 70 GFlops.
Memory throughput 844 GB/s.
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PCI-E bandwidth (comment out prefetch lines)

» Lets comment out some lines:

/7

}

/7
/7
/7
/7
/7
/7

/7

for (int i

allocate managed memory

double *x, *y;
cudaMallocManaged (&x, n*sizeof (double));
cudaMallocManaged (&y, n*sizeof (double));

= 0; i < n; i++) {
x[i] = 2.0 * rand () /RAND_MAX - 1.
2.0 * 1

0;
ylil = rand () /RAND_MAX - 1.0

prefetch data to GPU memory
int device = -1;
cudaGetDevice (8device) ;

cudaMemPrefetchAsync (z, n*sizeof (double), device, NULL);
cudaMemPrefetchAsync (y, n*sizeof (double), device, NULL);

cudaDeviceSynchronize ();

initialize cuBLAS

cublasHandle_t handle;
cublasCreate (¢handle);
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// compute y <- 2 * ¢ + y (level I BLAS routine)
double alpha = 2.0;
cublasDaxpy (handle, n, &alpha, x, 1, y,

1);
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PCI-E bandwidth (AXPY performance without prefetch)

» Nvidia Tesla V100 GPU (~ 900 GB/s):

$ srun ... ./axpy.cuda 500E6
Runtime was 1.462 s.
Floprate was 1 GFlops.
Memory throughput 8 GB/s.
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PCI-E bandwidth (bandwidth)

With prefetch Without prefetch
Global Registers Host Global Registers
memory memory memory

time

P
3|
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