Introduction to GPU programming:
When and how to use GPU-acceleration?

Where is my performance?

Mirko Myllykoski

mirkom@cs.umu.se

Department of Computing Science / HPC2N
Umea University

5 November 2019

S N IC UMEA UNIVERSITY

1/45

Performance

How do we measure performance?

S%F\éERsITY [P SNIC n‘?ﬁjHPC2N

2/45

Floprate (definition)

» The raw computing performance of a CPU or a GPU is
usually measured in Flops. That is,

number of floating-point operations [FI
Floprate = g P P [OP].
time [s]

S%I]E\I}ERSITY [y SNIC EFHPC2N 3/45

Floprate (definition)

» The raw computing performance of a CPU or a GPU is
usually measured in Flops. That is,

number of floating-point operations [Flop]

Fl te =
OPISES time [s]

» Usually the number of additions and multiplications the
hardware can perform per second.
» Additions and multiplications are usually faster. FMA.
» Division and special functions are usually slower.

S%I]E\I}ERSITY [y SNIC :‘fFHPC2N 3/45

Floprate (theoretical peak floprate, double precision)

> A theoretical peak floprate can be calculated for each
device.

S%F\éERSITY Cp SNIC :fﬁ“ HPC2N

4/45

Floprate (theoretical peak floprate, double precision)

> A theoretical peak floprate can be calculated for each
device.

» Quad-core Intel Skylake CPU:

[~ 200 GFlops]

S%F\éERSITY Cp SNIC :fﬁ“ HPC2N

4/45

Floprate (theoretical peak floprate, double precision)

> A theoretical peak floprate can be calculated for each
device.

» Quad-core Intel Skylake CPU:

[~ 200 GFlops

» 14-core Intel Xeon Gold 6132 CPU:

[~ 1200 GFlops

S%F\éERSITY Cp SNIC :\Sy HPC2N

4/45

Floprate (theoretical peak floprate, double precision)

> A theoretical peak floprate can be calculated for each
device.

» Quad-core Intel Skylake CPU:

[~ 200 GFlops

» 14-core Intel Xeon Gold 6132 CPU:

~ 1200 GFlops

. J

» Nvidia Tesla V100 GPU:

~ 7000 GFlops

S%F\éERSITY Cp SNIC :\Sy HPC2N

4/45

Floprate (theoretical speedup)

The Nvidia Tesla V100 GPU is over
11 times faster than the 14-core
Intel Xeon CPU!

QB%F&ERSITY «* SNIC . HPC2N 5/45

Floprate (single and half precision)

» The difference is even larger if we are willing to reduce the
precision.

S%F\éERSITY [y SNIC :ffHPCZN 6/45

Floprate (single and half precision)

» The difference is even larger if we are willing to reduce the
precision.
» Typical numbers (single precision):
» Quad-core Intel Skylake CPU: ~ 400 GFlops

» 14-core Intel Xeon Gold 6132 CPU: ~ 2400 GFlops
» Nvidia Tesla V100 GPU: ~ 14000 GFlops

S%F\éERSITY [y SNIC :R?FHPC2N 6/45

Floprate (single and half precision)

» The difference is even larger if we are willing to reduce the
precision.
» Typical numbers (single precision):
» Quad-core Intel Skylake CPU: ~ 400 GFlops
» 14-core Intel Xeon Gold 6132 CPU: ~ 2400 GFlops
» Nvidia Tesla V100 GPU: ~ 14000 GFlops
» Typical numbers (half precision):
» Quad-core Intel Skylake CPU: ~ — GFlops

> 2 x Intel Xeon Gold 6132 CPU: ~ — GFlops
» Nvidia Tesla V100 GPU: ~ 112000 GFlops

S%I]E\I}ERSITY [y SNIC 3FHPC2N 6/45

Floprate (single and half precision, theoretical speedup)

The Nvidia Tesla V100 GPU is over
00 times faster than the 14-core
Intel Xeon CPU!

[LJTJI\VAIE\}L\ERSITY == SNIC Q‘FHPC2N 7/45

AXPY example (CPU)

P Lets perform a small experiments:

x,y € R”
y<2x+y

S%F\éERSITY Cp SNIC :fﬁ“ HPC2N

8 /45

AXPY example (CPU)

P Lets perform a small experiments:

x,y € R"
y<2x+y

» CPU code would looks like this:

double *x
double x*y

= malloc(n*sizeof (double));
= malloc(n*sizeof (double));
for (int
x[i]
y[il

= 0; i < nj i++) {
2.0 * rand () /RAND_MAX - 1.0;
2.0 * rand () /RAND_MAX - 1.0;

e

}

// compute y <- 2 * ¢ + y (level I BLAS routine)
cblas_daxpy(n, 2.0, x, 1, y, 1);

S%F\éERSITY [y SNIC KfHPCZN 8/45

AXPY example (CPU)

P Lets perform a small experiments:

x,y € R"
y<2x+y

» CPU code would looks like this:

double *x malloc (n*sizeof (double));

double *y malloc (n*sizeof (double));
for (int i = 0; i < nj; i++) {
x[i]l = 2.0 * rand()/RAND_MAX - 1.0;
y[il = 2.0 * rand()/RAND_MAX - 1.0;

}

// compute y <- 2 * ¢ + y (level I BLAS routine)
cblas_daxpy(n, 2.0, x, 1, y, 1);

» The total number of flops is 2n.

S%F\éERSITY [y SNIC :ffHPCZN 8/45

AXPY example (CUDA)

» CUDA code would looks like this:

// allocate managed memory

double *x, *y;

cudaMallocManaged (&x, n*sizeof (double));
cudaMallocManaged (&y, n*sizeof (double));

for (int i = 0; i < n; i++) {
x[i] = 2.0 * rand () /RAND_MAX - 1.0;
y[il = 2.0 * rand () /RAND_MAX - 1.0;

}

// prefetch data to GPU memory

int device = -1;

cudaGetDevice (&device) ;

cudaMemPrefetchAsync(x, n*sizeof (double), device, NULL);
cudaMemPrefetchAsync (y, n*sizeof (double), device, NULL);
cudaDeviceSynchronize();

// initialize cuBLAS
cublasHandle_t handle;
cublasCreate (¢handle);

// compute y <- 2 * ¢ + y (level I BLAS routine)
double alpha = 2.0;
cublasDaxpy (handle, n, &alpha, x, 1, y, 1);

S%F\éERSITY [y SNIC :(kHPC2N 9/45

AXPY example (actual performance)

» Quad-core Intel Skylake CPU (~ 200 GFlops):

$./axpy.cpu 500E6
Runtime was 0.484 s.

S%F\éERSITY [y SNIC :ffHPCZN 10/45

AXPY example (actual performance)

» Quad-core Intel Skylake CPU (~ 200 GFlops):

$./axpy.cpu 500E6
Runtime was 0.484 s.

» 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl/axpy.cpu 500E6
Runtime was 0.184 s.

@ iy SNIC 7 HPC2N

10/45

AXPY example (actual performance)

» Quad-core Intel Skylake CPU (~ 200 GFlops):

$./axpy.cpu 500E6
Runtime was 0.484 s.

» 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl/axpy.cpu 500E6
Runtime was 0.184 s.

» Nvidia Tesla V100 GPU (~ 7000 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl/axpy.cuda 500E6
Runtime was 0.014 s.

@ iy SNIC 7 HPC2N

10/45

AXPY example (actual speedup)

The V100 is over 13 times faster
than the Xeon but ...

8%F$ERSITY [P SNIC ;/‘EFHPC2N

11/45

AXPY example (actual floprate)

» Quad-core Intel Skylake CPU (~ 200 GFlops):

$./axpy.cpu 500E6
Runtime was 0.484 s.
Floprate was 2 GFlops.

» 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl/axpy.cpu 500E6
Runtime was 0.184 s.
Floprate was 5 GFlops.

» Nvidia Tesla V100 GPU (~ 7000 GFlops):
$ srun --gres=gpu:v100:1,gpuexcl/axpy.cuda 500E6

Runtime was 0.014 s.
Floprate was 70 GFlops.

© sy = SNIC ¥ HPC2N

12/45

AXPY example (actual floprate)

The V100 is over 13 times faster
than the Xeon but we are using
only 1% of the performance!

Why?
What else could effect the
performance?

QS%F&ERSITY = SNIC W HPC2N

13/45

Memory throughput (definition)

» The memory performance of a CPU or a GPU is usually
measured in terms of memory throughput. That is,

number of bytes moved [Byte]
time [s] '

throughput =

@ iy SNIC 7 HPC2N

14 /45

Memory throughput (definition)

» The memory performance of a CPU or a GPU is usually
measured in terms of memory throughput. That is,

number of bytes moved [Byte]

th hput =
roughpu time [s]

» Usually the bandwidth is measured between the CPU cores
and the RAM; or the CUDA cores and the VRAM.

S%I]E\I}ERSITY [P SNIC 3FHPC2N 14 /45

Memory throughput (theoretical memory bandwidth)

> A theoretical memory bandwidth can be calculated for each
device.

S%F\éERSITY Cp SNIC :fﬁ“ HPC2N

15/45

Memory throughput (theoretical memory bandwidth)

> A theoretical memory bandwidth can be calculated for each
device.

» Quad-core Intel Skylake CPU:

[~ 35 GB/s]

S%F\éERSITY Cp SNIC :fﬁ“ HPC2N

15/45

Memory throughput (theoretical memory bandwidth)

> A theoretical memory bandwidth can be calculated for each
device.

» Quad-core Intel Skylake CPU:

[~ 35 GB/s

» 14-core Intel Xeon Gold 6132 CPU:

[~ 100 GB/s

S%F\éERSITY Cp SNIC :\Sy HPC2N

15/45

Memory throughput (theoretical memory bandwidth)

> A theoretical memory bandwidth can be calculated for each
device.

» Quad-core Intel Skylake CPU:

[~ 35 GB/s

» 14-core Intel Xeon Gold 6132 CPU:

~ 100 GB/s

. J

» Nvidia Tesla V100 GPU:

~ 900 GB/s

@ Ny W SNIC &7 HPC2N

15/45

AXPY example (actual memory througput)

» Quad-core Intel Skylake CPU (~ 35 GB/s):

$./axpy.cpu 500E6
Runtime was 0.484 s.
Memory throughput 25 GB/s.

S%F\éERSITY [y SNIC :ffHPCZN 16 /45

AXPY example (actual memory througput)

» Quad-core Intel Skylake CPU (~ 35 GB/s):

$./axpy.cpu 500E6
Runtime was 0.484 s.
Memory throughput 25 GB/s.

» 14-core Intel Xeon Gold 6132 CPU (~ 100 GB/s):

$ srun --gres=gpu:v100:1,gpuexcl/axpy.cpu 500E6
Runtime was 0.184 s.
Memory throughput 65 GB/s.

@ iy SNIC 7 HPC2N

16 /45

AXPY example (actual memory througput)

» Quad-core Intel Skylake CPU (~ 35 GB/s):

$./axpy.cpu 500E6
Runtime was 0.484 s.
Memory throughput 25 GB/s.

» 14-core Intel Xeon Gold 6132 CPU (~ 100 GB/s):

$ srun --gres=gpu:v100:1,gpuexcl/axpy.cpu 500E6
Runtime was 0.184 s.
Memory throughput 65 GB/s.

» Nvidia Tesla V100 GPU (~ 900 GB/s):

$ srun --gres=gpu:v100:1,gpuexcl/axpy.cuda 500E6
Runtime was 0.014 s.
Memory throughput 845 GB/s.

8%F$ERSITY [P SNIC ;/‘EFHPC2N

16 /45

AXPY example (actual memory througput)

We are using between 65% and 95%
of the memory bandwidth!

The AXPY kernel is memory
bound!

e B%IE&ERSITY == SNIC «"\Lgﬂ HPC2N

17/45

GEMM example (CPU)

» Lets perform a second experiments:

A’B ERan
C<+ AB,Cc RNXn

S%F\éERSITY Cp SNIC :fﬁ“ HPC2N

18/45

GEMM example (CPU)

» Lets perform a second experiments:

A, B e R™"

C « AB,C € R™"

» CPU code would looks like this:

double *A = malloc(n*1ldA*sizeof (double));
double *B = malloc(n*1dB*sizeof (double));
double *C = malloc(n*1dCx*sizeof (double));
for (int i = 0; i < nj; i++)

for (int j = 0; j < n; j++)

for (int i = 0; i < nj; i++)
for (int j = 0; j < n; j++)

cblas_dgemm(CblasColMajor, CblasNoTrans,
n, n, n, 1.0, A, 1dA, B, 1dB, 0.0, C,

S%F\éERSITY Cp SNIC :fﬁ“ HPC2N

A[i*1dA+j] = 2.0 * rand()/RAND_MAX - 1.0;

B[i*1dB+j] = 2.0 * rand()/RAND_MAX - 1.0;

// compute C <- A * B (level 3 BLAS routine)

18/45

GEMM example (CUDA)
» CUDA code would looks like this:

// allocate managed memory

double *A, *B, *C;

cudaMallocManaged (§A, n*1ldA*sizeof (double));
cudaMallocManaged (4B, n*1dB*sizeof (double));
cudaMallocManaged (&c, n*1ldC*sizeof (double));

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
A[i*1dA+j] = 2.0 * rand()/RAND_MAX - 1.0;

for (int i = 0; i < nj; i++)
for (int j = 0; j < n; j++)
B[i*1dB+j] = 2.0 * rand()/RAND_MAX - 1.0;

// prefetch data to GPU memory

int device = -1;

cudaGetDevice (&device) ;

cudaMemPrefetchAsync (A, n*ldA*sizeof (double), device, NULL);
cudaMemPrefetchAsync (B, n*1dB*sizeof (double), device, NULL);
cudaDeviceSynchronize ();

// initialize cuBLAS
cublasHandle_t handle;
cublasCreate (&handle) ;

// compute C <- A * B (level 3 BLAS routine)
double alpha = 1.0, beta = 0.0;
cublasDgemm (handle, CUBLAS_OP_N, CUBLAS_OP_N,
n, n, n, &alpha, A, 1dA, B, 1dB, &beta, C, 1dC)

S%F\éERSITY [P SNIC :(‘HPCZN

19/45

GEMM example (actual floprate)

» Quad-core Intel Skylake CPU (~ 200 GFlops):

$./gemm.cpu 10000
Runtime was 12.050 s.
Floprate was 166 GFlops.

@ Ny W SNIC &7 HPC2N

20/ 45

GEMM example (actual floprate)

» Quad-core Intel Skylake CPU (~ 200 GFlops):

$./gemm.cpu 10000
Runtime was 12.050 s.
Floprate was 166 GFlops.
» 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl/gemm.cpu 10000
Runtime was 2.250 s.
Floprate was 889 GFlops.

S%I]E\I}ERSITY [y SNIC EFHPC2N 20 /45

GEMM example (actual floprate)

» Quad-core Intel Skylake CPU (~ 200 GFlops):
$./gemm.cpu 10000
Runtime was 12.050 s.
Floprate was 166 GFlops.
» 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl/gemm.cpu 10000
Runtime was 2.250 s.
Floprate was 889 GFlops.

» Nvidia Tesla V100 GPU (~ 7000 GFlops):

$ srun --gres=gpu:v100:1,gpuexcl/gemm.cuda 10000
Runtime was 0.308 s.
Floprate was 6503 GFlops.

S%I]E\I}ERSITY [y SNIC n‘?ﬁjHPC2N 20 /45

GEMM example (actual floprate)

We are using between 74% and 92%
of the floating-point performance!

The GEMM kernel is compute
bound!

Q B%F&ERSITY == SNIC «"\';%aﬂ HPC2N

21/45

Arithmetical intensity (definition)

» How do we know which kernels are memory bound and which
are compute bound?

S%F\éERSITY Cp SNIC :fﬁ“ HPC2N

22/45

Arithmetical intensity (definition)

» How do we know which kernels are memory bound and which
are compute bound?

> We begin to answer this question by defining arithmetical
intensity:

number of floating-point operations [Flop]

Arithmetical intensity =
number of bytes moved [Byte]

@ iy SNIC 7 HPC2N

22/45

Arithmetical intensity (examples)

» Double precision AXPY has the arithmetical intensity of

2 Flop

1
2P _ Z Flop/Byte.
3.8Bye 12 OP/Byte

Arithmetical intensityaxpy double =

@ Ny W SNIC &7 HPC2N

23 /45

Arithmetical intensity (examples)

» Double precision AXPY has the arithmetical intensity of

2 Flop

Arithmetical intensity axpy double = 3 8 Bvic
:] yte

» Single precision AXPY has the arithmetical intensity of

2 Fl 1
Arithmetical intensityaxpy single = ﬁ =3 Flop/Byte.
: “4 Byte

@ iy SNIC 7 HPC2N

1
=35 Flop/Byte.

23 /45

Arithmetical intensity (examples)

» Double precision AXPY has the arithmetical intensity of

2 Flop

Arithmetical intensity axpy double = 3 8 Bvic
:] yte

» Single precision AXPY has the arithmetical intensity of

2 Fl 1
Arithmetical intensityaxpy single = ﬁ =3 Flop/Byte.
: “4 Byte

» Double precision GEMM has the arithmetical intensity of

Arithmetical intensitygepmm double = ~ 32 Flop/Byte

8%F$ERSITY [P SNIC ;/‘EFHPC2N

1
=35 Flop/Byte.

23 /45

Arithmetical intensity (more examples)

*._codes ./

| | | | | | | | | | | | | |
1/161/8 1/4 1/2 1 2 4 8 16 32 64 128256512
arithmetical intensity

S%F\éERSITY Cp SNIC :fﬁ“ HPC2N

24 /45

Arithmetical intensity (Deep Neural Networks)

» Half precision numbers from Nvidia:

Operation Arithmetical intensity
Linear layer (4096 outputs, 1024 inputs,

batch size 512) 315 Flop/Byte
Linear layer (4096 outputs, 1024 inputs,

batch size 1) 1 Flop/Byte

Max pooling with 3x3 window and unit stride 2.25 Flop/Byte
ReLU activation 0.25 Flop/Byte
Layer normalization < 10 Flop/Byte

8%F$ERSITY [P SNIC ;/‘EFHPC2N

25 /45

Arithmetical intensity (Deep Neural Networks)

P> Estimated single precision numbers:

Operation Arithmetical intensity
Linear layer (4096 outputs, 1024 inputs,
batch size 512) 158 Flop/Byte

Linear layer (4096 outputs, 1024 inputs,

batch size 1) 0.5 Flop/Byte

Max pooling with 3x3 window and unit stride 1.125 Flop/Byte
ReLU activation 0.125 Flop/Byte
Layer normalization < 5 Flop/Byte

@ iy SNIC 7 HPC2N

26 /45

Arithmetical intensity (Deep Neural Networks)

» Estimated double precision numbers:

Operation

Arithmetical intensity

Linear layer (4096 outputs, 1024 inputs,
batch size 512)

Linear layer (4096 outputs, 1024 inputs,
batch size 1)

Max pooling with 3x3 window and unit stride
ReLU activation

Layer normalization

@ iy SNIC 7 HPC2N

79 Flop/Byte

0.25 Flop/Byte

0.56 Flop/Byte
0.06 Flop/Byte
< 2.5 Flop/Byte

27 /45

Arithmetical intensity (optimal intensity)

> An optimal arithmetical intensity can be calculated for each
device:

. . . theoretical peak floprate
optimal intensity =

theoretical memory bandwidth’

8?\1/1]]-:\§ERSITY [P SNIC ‘.?fHPC2N

28 /45

Arithmetical intensity (optimal intensity)

> An optimal arithmetical intensity can be calculated for each
device:

theoretical peak floprate

optimal intensity = 8 - .
P Y= Yheoretical memory bandwidth

» If the arithmetical intensity is smaller than the optimal
intensity, the kernel is memory bound.

S%I]E\I}ERSITY [y SNIC 3FHPC2N 28 /45

Arithmetical intensity (optimal intensity)

> An optimal arithmetical intensity can be calculated for each
device:

theoretical peak floprate

optimal intensity = 8 - .
P y theoretical memory bandwidth

» If the arithmetical intensity is smaller than the optimal
intensity, the kernel is memory bound.

> If the arithmetical intensity is larger than the optimal
intensity, the kernel is compute bound.

© sy = SNIC ¥ HPC2N

28 /45

Arithmetical intensity (optimal intensity, double precision)

» Quad-core Intel Skylake CPU:

~ 5.7 Flop/Byte]

S%F\éERSITY [y SNIC :{fHPCZN 29 /45

Arithmetical intensity (optimal intensity, double precision)

» Quad-core Intel Skylake CPU:

~ 5.7 Flop/Byte

» 14-core Intel Xeon Gold 6132 CPU:

~ 12 Flop/Byte

S%F\éERSITY [y SNIC :{?{HPCZN 29 /45

Arithmetical intensity (optimal intensity, double precision)

» Quad-core Intel Skylake CPU:

~ 5.7 Flop/Byte

» 14-core Intel Xeon Gold 6132 CPU:

~ 12 Flop/Byte

» Nvidia Tesla V100 GPU:

~ 7.7 Flop/Byte

S%F\éERSITY Cp SNIC :ff HPC2N

29 /45

Arithmetical intensity (optimal intensity, double precision)

L1 1 [N I N I I
1/161/8 1/4 1/2 1 2 4 8 16 32 64 128256 512
arithmetical intensity

S%F\éERSITY [y SNIC :ffHPCZN 30/45

Arithmetical intensity (optimal intensity, single precision)

» Quad-core Intel Skylake CPU:

~ 11.4 Flop/Byte

» 14-core Intel Xeon Gold 6132 CPU:

~ 24 Flop/Byte

» Nvidia Tesla V100 GPU:

~ 15.6 Flop/Byte

S%F\éERSITY Cp SNIC :ff HPC2N

31/45

Arithmetical intensity (optimal intensity, double precision)

L1 1 [I A I I
1/161/8 1/4 1/2 1 2 4 8 16 32 64 128256 512
arithmetical intensity

S%F\éERSITY Cp SNIC :fﬁ“ HPC2N

32/45

Arithmetical intensity (optimal intensity, single precision)

» Quad-core Intel Skylake CPU:

— Flop/Byte

» 14-core Intel Xeon Gold 6132 CPU:

— Flop/Byte

» Nvidia Tesla V100 GPU:

~ 124 Flop/Byte

S%F\éERSITY Cp SNIC :ff HPC2N

33/45

Arithmetical intensity (optimal intensity, half precision)

o FFT GE

I Y I N B B
1/161/8 1/41/2 1 2 4 8 16 32 64 128256 512

arithmetical intensity

S%F\éERSITY Cp SNIC :fﬁ“ HPC2N

34/45

Arithmetical intensity (Caches and shared memory)

» When calculated naively, the double precision GEMM has the
arithmetical intensity of

Arithmetical intensitygemm double =

S%F\éERSITY [y SNIC :‘ngPC2N 35/45

Arithmetical intensity (Caches and shared memory)

» When calculated naively, the double precision GEMM has the
arithmetical intensity of

Arithmetical intensitygemm double =

> Why is it

Arithmetical intensityGEMM'douMe =~ 32 Flop/Byte7

S%F\éERSITY [P SNIC :‘ngPC2N

35/45

Arithmetical intensity (Caches and shared memory)

» When implemented naively, we compute each entry separately:

g 2n—1
A BcR™ (AB).. = ik Bii —— Flop/Byt
,B € ,(AB), ; kz_:lak ki <8(2n+1) op/ ye>

S%F\éERSITY [y SNIC :fﬁHPC2N 36 /45

Arithmetical intensity (Caches and shared memory)

» When implemented naively, we compute each entry separately:

g 2n—1
A BcR™ (AB).. = ik Bii —— Flop/Byt
,B € ,(AB), ; kz_:lak ki <8(2n+1) op/ ye>

» However, we can also do the following:

= Z A By
.. k=1

l?.j

@ iy SNIC 7 HPC2N

36 /45

Arithmetical intensity (Caches and shared memory)

» If mis small enough, Ajx and By; can be fitted into CPU
caches or SMP's shared memory.

S%F\éERSITY [y SNIC :ffHPCZN 37/45

Arithmetical intensity (Caches and shared memory)

» If mis small enough, Ajx and By; can be fitted into CPU
caches or SMP's shared memory.
» Each block is shared among the thread block!

S%F\éERSITY [y SNIC :R?FHPC2N 37 /45

Arithmetical intensity (Caches and shared memory)

» If mis small enough, Ajx and By; can be fitted into CPU
caches or SMP's shared memory.

» Each block is shared among the thread block!
Z ajk by Z AyByj
k=1 k=1

Global Registers Global Shared Registers
memory memory memory

. ‘ | §‘

g%l]a\éERSITY Cp SNIC :fj@y HPC2N

time

gEEEs

37/45

Warps

» The GPU hardware divisions each thread block into

sub-groups called warps:

Pl

2w
e
N
Qe
Qe
e

Qe
~

<
@

=
1w
e
vy
o

S
o W
o MW
~ W
©
(W
< W
o W
oW
W
© MW,

warp 0

00
o
o
S
Q
Q
T
2w
10 0
o
o
N
R
Q
e
2w
I~
0
2 0w
3w
i
o
=R
QW
@
Q
U
2w
F
5w
o
oL

warp 1

S

Sww
S
o
S e
e
e

S
o

S
o

=
4
@
o
i

o
o
e
<o
S

o
Sww
S
S
e

warp 2

38/45

S%F\éERSITY Cp SNIC :ff HPC2N

Warps

» The GPU hardware divisions each thread block into
sub-groups called warps:

warp 0

» Each warp consists of 32 threads and all of them are
scheduled together.

S%F\éERSITY Cp SNIC :ff HPC2N

38/45

Warps (diverging paths)

» The fact the all threads within a warp are scheduled together
causes problems:
if (threadIdx.x % 2 == 0) {

// all threads within the warp enter, only even numbered threads
commit the result

}
else {
// all threads within the warp enter, only odd numbered threads commit
the result
}

S%F\éERSITY [y SNIC KfHPCZN 39 /45

Warps (diverging paths)

» The fact the all threads within a warp are scheduled together
causes problems:
if (threadIdx.x % 2 == 0) {

// all threads within the warp enter, only even numbered threads
commit the result

}
else {
// all threads within the warp enter, only odd numbered threads commit
the result
}

» The cost is the same as if all threads executed both
branches!

S%F\éERSITY [y SNIC :R?FHPC2N 39/45

Warps (cost of diverging paths)

» If a single thread diverges with the probability p € [0, 1], then
probability that at least one thread within a warp diverges is

1-(1-p)*

warp diverges

20 -

20 40 60 80
thread diverges

S%F\éERSITY Cp SNIC :fﬁ“ HPC2N

100

40 /45

PCI-E bandwidth (AXPY example)

» Remember this:

// allocate managed memory

double *x, *y;

cudaMallocManaged (&x, n*sizeof (double));
cudaMallocManaged (&y, n*sizeof (double));

for (int i = 0; i < n; i++) {
x[i] = 2.0 * rand () /RAND_MAX - 1.0;
y[il = 2.0 * rand () /RAND_MAX - 1.0;

}

// prefetch data to GPU memory

int device = -1;

cudaGetDevice (&device) ;

cudaMemPrefetchAsync(x, n*sizeof (double), device, NULL);
cudaMemPrefetchAsync (y, n*sizeof (double), device, NULL);
cudaDeviceSynchronize();

// initialize cuBLAS
cublasHandle_t handle;
cublasCreate (¢handle);

// compute y <- 2 * ¢ + y (level 1 BLAS routine)
double alpha = 2.0;
cublasDaxpy (handle, n, &alpha, x, 1, y, 1);

S%F\éERSITY [P SNIC :(‘HPCZN

41/45

PCI-E bandwidth (AXPY performance)

» Nvidia Tesla V100 GPU (~ 900 GB/s):

$ srun/axpy.cuda 500E6
Runtime was 0.014 s.
Floprate was 70 GFlops.
Memory throughput 844 GB/s.

@ Ny W SNIC &7 HPC2N

42 /45

PCI-E bandwidth (comment out prefetch lines)

» Lets comment out some lines:

/7

}

/7
/7
/7
/7
/7
/7

/7

for (int i

allocate managed memory

double *x, *y;
cudaMallocManaged (&x, n*sizeof (double));
cudaMallocManaged (&y, n*sizeof (double));

= 0; i < n; i++) {
x[i] = 2.0 * rand () /RAND_MAX - 1.
2.0 * 1

0;
ylil = rand () /RAND_MAX - 1.0

prefetch data to GPU memory
int device = -1;
cudaGetDevice (8device) ;

cudaMemPrefetchAsync (z, n*sizeof (double), device, NULL);
cudaMemPrefetchAsync (y, n*sizeof (double), device, NULL);

cudaDeviceSynchronize ();

initialize cuBLAS

cublasHandle_t handle;
cublasCreate (¢handle);

S%F\éERSITY Cp SNIC :(WHPC2N

// compute y <- 2 * ¢ + y (level I BLAS routine)
double alpha = 2.0;
cublasDaxpy (handle, n, &alpha, x, 1, y,

1);

43 /45

PCI-E bandwidth (AXPY performance without prefetch)

» Nvidia Tesla V100 GPU (~ 900 GB/s):

$ srun/axpy.cuda 500E6
Runtime was 1.462 s.
Floprate was 1 GFlops.
Memory throughput 8 GB/s.

S%F\éERSITY [P SNIC :fﬁHPC2N 44/ 45

PCI-E bandwidth (bandwidth)

With prefetch Without prefetch
Global Registers Host Global Registers
memory memory memory

time

P
3|

B%IEJ\ERSITY [P SNIC :ﬁiHPCZN

45 /45

