Introduction to GPU programming: When and how to use GPU-acceleration?

Where is my performance?

Mirko Myllykoski mirkom@cs.umu.se

Department of Computing Science / HPC2N Umeå University

5 November 2019

How do we measure performance?

Floprate (definition)

The raw computing performance of a CPU or a GPU is usually measured in Flops. That is,

 $\textit{Floprate} = \frac{\textit{number of floating-point operations [Flop]}}{\textit{time [s]}}$

Floprate (definition)

 The raw computing performance of a CPU or a GPU is usually measured in Flops. That is,

 $Floprate = \frac{number of floating-point operations [Flop]}{time [s]}$

- Usually the number of additions and multiplications the hardware can perform per second.
 - Additions and multiplications are usually faster. FMA.
 - Division and special functions are usually slower.

 A theoretical peak floprate can be calculated for each device.

- A theoretical peak floprate can be calculated for each device.
- Quad-core Intel Skylake CPU:

 \sim 200 GFlops

- A theoretical peak floprate can be calculated for each device.
- Quad-core Intel Skylake CPU:

 \sim 200 GFlops

▶ 14-core Intel Xeon Gold 6132 CPU:

 \sim 1200 GFlops

- A theoretical peak floprate can be calculated for each device.
- Quad-core Intel Skylake CPU:

 \sim 200 GFlops

▶ 14-core Intel Xeon Gold 6132 CPU:

 \sim 1200 GFlops

Nvidia Tesla V100 GPU:

 $\sim 7\,000$ GFlops

Floprate (theoretical speedup)

The Nvidia Tesla V100 GPU is **over 11 times faster** than the 14-core Intel Xeon CPU!

Floprate (single and half precision)

The difference is even larger if we are willing to reduce the precision.

Floprate (single and half precision)

- The difference is even larger if we are willing to reduce the precision.
- Typical numbers (single precision):
 - ▶ Quad-core Intel Skylake CPU: ~ 400 GFlops
 - 14-core Intel Xeon Gold 6132 CPU: ~ 2400 GFlops
 - Nvidia Tesla V100 GPU: ~ 14 000 GFlops

Floprate (single and half precision)

- The difference is even larger if we are willing to reduce the precision.
- Typical numbers (single precision):
 - Quad-core Intel Skylake CPU: ~ 400 GFlops
 - ▶ 14-core Intel Xeon Gold 6132 CPU: ~ 2400 GFlops
 - Nvidia Tesla V100 GPU: ~ 14 000 GFlops
- Typical numbers (half precision):
 - ▶ Quad-core Intel Skylake CPU: ~ GFlops
 - ▶ 2 × Intel Xeon Gold 6132 CPU: \sim GFlops
 - Nvidia Tesla V100 GPU: ~ 112 000 GFlops

Floprate (single and half precision, theoretical speedup)

The Nvidia Tesla V100 GPU is **over 90 times faster** than the 14-core Intel Xeon CPU!

AXPY example (CPU)

Lets perform a small experiments:

 $oldsymbol{x},oldsymbol{y}\in\mathbb{R}^n$ $oldsymbol{y}\leftarrow 2oldsymbol{x}+oldsymbol{y}$

AXPY example (CPU)

Lets perform a small experiments:

 $egin{aligned} oldsymbol{x},oldsymbol{y} \in \mathbb{R}^n \ oldsymbol{y} \leftarrow 2oldsymbol{x}+oldsymbol{y} \end{aligned}$

CPU code would looks like this:

```
double *x = malloc(n*sizeof(double));
double *y = malloc(n*sizeof(double));
for (int i = 0; i < n; i++) {
    x[i] = 2.0 * rand()/RAND_MAX - 1.0;
    y[i] = 2.0 * rand()/RAND_MAX - 1.0;
}
// compute y <- 2 * x + y (level 1 BLAS routine)
cblas_daxpy(n, 2.0, x, 1, y, 1);
```

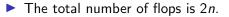

AXPY example (CPU)

Lets perform a small experiments:

 $egin{aligned} oldsymbol{x},oldsymbol{y}\in\mathbb{R}^n\ oldsymbol{y}\leftarrow 2oldsymbol{x}+oldsymbol{y} \end{aligned}$

CPU code would looks like this:

```
double *x = malloc(n*sizeof(double));
double *y = malloc(n*sizeof(double));
for (int i = 0; i < n; i++) {
    x[i] = 2.0 * rand()/RAND_MAX - 1.0;
    y[i] = 2.0 * rand()/RAND_MAX - 1.0;
}
// compute y <- 2 * x + y (level 1 BLAS routine)
cblas_daxpy(n, 2.0, x, 1, y, 1);
```



AXPY example (CUDA)

```
CUDA code would looks like this:
```

```
// allocate managed memory
double *x, *y;
cudaMallocManaged(&x, n*sizeof(double));
cudaMallocManaged(&y, n*sizeof(double));
for (int i = 0; i < n; i++) {
    x[i] = 2.0 * rand()/RAND_MAX - 1.0;
    y[i] = 2.0 * rand()/RAND_MAX - 1.0;</pre>
// prefetch data to GPU memory
int device = -1:
cudaGetDevice(&device);
cudaMemPrefetchAsync(x, n*sizeof(double), device, NULL);
cudaMemPrefetchAsync(y, n*sizeof(double), device, NULL);
cudaDeviceSynchronize();
// initialize cuBLAS
cublasHandle_t handle;
cublasCreate(&handle);
// compute y <-2 * x + y (level 1 BLAS routine)
double alpha = 2.0;
cublasDaxpy(handle, n, &alpha, x, 1, y, 1);
```


AXPY example (actual performance)

Quad-core Intel Skylake CPU (~ 200 GFlops):
 \$./axpy.cpu 500E6
 Runtime was 0.484 s.

AXPY example (actual performance)

 Quad-core Intel Skylake CPU (~ 200 GFlops):
 \$./axpy.cpu 500E6 Runtime was 0.484 s.

► 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):

\$ srun --gres=gpu:v100:1,gpuexcl/axpy.cpu 500E6
Runtime was 0.184 s.

AXPY example (actual performance)

Quad-core Intel Skylake CPU (~ 200 GFlops):
 \$./axpy.cpu 500E6
 Runtime was 0.484 s.

 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):
 \$ srun --gres=gpu:v100:1,gpuexcl/axpy.cpu 500E6 Runtime was 0.184 s.

```
    Nvidia Tesla V100 GPU (~ 7000 GFlops):
    $ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cuda 500E6
Runtime was 0.014 s.
```


AXPY example (actual speedup)

The V100 is over 13 times faster than the Xeon but ...

AXPY example (actual floprate)

 Quad-core Intel Skylake CPU (~ 200 GFlops):
 \$./axpy.cpu 500E6 Runtime was 0.484 s. Floprate was 2 GFlops.
 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):

\$ srun --gres=gpu:v100:1,gpuexcl/axpy.cpu 500E6
Runtime was 0.184 s.
Floprate was 5 GFlops.

▶ Nvidia Tesla V100 GPU (~ **7 000** GFlops):

\$ srun --gres=gpu:v100:1,gpuexcl/axpy.cuda 500E6
Runtime was 0.014 s.
Floprate was 70 GFlops.

AXPY example (actual floprate)

The V100 is over 13 times faster than the Xeon but we are using only 1% of the performance!

Why? What else could effect the performance?

13 / 45

Memory throughput (definition)

The memory performance of a CPU or a GPU is usually measured in terms of memory throughput. That is,

 $\label{eq:throughput} throughput = \frac{number \ of \ bytes \ moved \ [Byte]}{time \ [s]}.$

Memory throughput (definition)

The memory performance of a CPU or a GPU is usually measured in terms of memory throughput. That is,

$$throughput = \frac{number \ of \ bytes \ moved \ [Byte]}{time \ [s]}$$

Usually the bandwidth is measured between the CPU cores and the RAM; or the CUDA cores and the VRAM.

A theoretical memory bandwidth can be calculated for each device.

- A theoretical memory bandwidth can be calculated for each device.
- Quad-core Intel Skylake CPU:

$$\sim$$
 35 GB/s

- A theoretical memory bandwidth can be calculated for each device.
- Quad-core Intel Skylake CPU:

$$\sim$$
 35 GB/s

▶ 14-core Intel Xeon Gold 6132 CPU:

 $\sim 100 \; \text{GB/s}$

- A theoretical memory bandwidth can be calculated for each device.
- Quad-core Intel Skylake CPU:

$$\sim$$
 35 GB/s

▶ 14-core Intel Xeon Gold 6132 CPU:

 $\sim 100~\text{GB/s}$

Nvidia Tesla V100 GPU:

 $\sim 900 \text{ GB/s}$

Quad-core Intel Skylake CPU (~ 35 GB/s):
 \$./axpy.cpu 500E6
 Runtime was 0.484 s.
 Memory throughput 25 GB/s.


```
Quad-core Intel Skylake CPU (~ 35 GB/s):
$ ./axpy.cpu 500E6
Runtime was 0.484 s.
Memory throughput 25 GB/s.
14-core Intel Xeon Gold 6132 CPU (~ 100 GB/s):
$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cpu 500E6
Runtime was 0.184 s.
```

Memory throughput 65 GB/s.


```
Quad-core Intel Skylake CPU (~ 35 GB/s):
$ ./axpy.cpu 500E6
Runtime was 0.484 s.
Memory throughput 25 GB/s.
14-core Intel Xeon Gold 6132 CPU (~ 100 GB/s):
$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cpu 500E6
Runtime was 0.184 s.
Memory throughput 65 GB/s.
Nvidia Tesla V100 GPU (~ 900 GB/s):
```

```
$ srun --gres=gpu:v100:1,gpuexcl ... ./axpy.cuda 500E6
Runtime was 0.014 s.
Memory throughput 845 GB/s.
```


We are using between 65% and **95%** of the memory bandwidth!

The AXPY kernel is **memory bound!**

GEMM example (CPU)

Lets perform a second experiments:

$$oldsymbol{A},oldsymbol{B}\in\mathbb{R}^{n imes n}$$
 $oldsymbol{C}\leftarrowoldsymbol{A}oldsymbol{B},oldsymbol{C}\in\mathbb{R}^{n imes n}$

GEMM example (CPU)

Lets perform a second experiments:

```
oldsymbol{A},oldsymbol{B}\in\mathbb{R}^{n	imes n}
oldsymbol{C}\leftarrowoldsymbol{A}oldsymbol{B},oldsymbol{C}\in\mathbb{R}^{n	imes n}
```

CPU code would looks like this:

```
double *A = malloc(n*ldA*sizeof(double));
double *B = malloc(n*ldB*sizeof(double));
double *C = malloc(n*ldC*sizeof(double));
for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
        A[i*ldA+j] = 2.0 * rand()/RAND_MAX - 1.0;
for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
        B[i*ldB+j] = 2.0 * rand()/RAND_MAX - 1.0;
// compute C <- A * B (level 3 BLAS routine)
    cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans,
        n, n, n, 1.0, A, ldA, B, ldB, 0.0, C, ldC);
```


GEMM example (CUDA)

CUDA code would looks like this:

```
// allocate managed memory
double *A. *B. *C:
cudaMallocManaged(&A, n*ldA*sizeof(double));
cudaMallocManaged(&B, n*ldB*sizeof(double));
cudaMallocManaged(&c. n*ldC*sizeof(double));
for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
        A[i*ldA+i] = 2.0 * rand()/RAND MAX - 1.0;
for (int i = 0; i < n; i++)
    for (int i = 0; i < n; i++)
        B[i*ldB+j] = 2.0 * rand()/RAND_MAX - 1.0;
// prefetch data to GPU memory
int device = -1:
cudaGetDevice(&device);
cudaMemPrefetchAsync(A. n*ldA*sizeof(double). device. NULL):
cudaMemPrefetchAsync(B. n*ldB*sizeof(double). device. NULL):
cudaDeviceSynchronize();
// initialize cuBLAS
cublasHandle_t handle;
cublasCreate(&handle);
                A * B (level 3 BLAS routine)
double alpha = 1.0, beta = 0.0;
cublasDgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N,
    n, n, n, &alpha, A, ldA, B, ldB, &beta, C, ldC)
```

🕲 UMEÅ 🚼 SNIC 🎆 HPC2N

Quad-core Intel Skylake CPU (~ 200 GFlops):
 \$./gemm.cpu 10000
 Runtime was 12.050 s.
 Floprate was 166 GFlops.

 Quad-core Intel Skylake CPU (~ 200 GFlops):
 \$./gemm.cpu 10000 Runtime was 12.050 s. Floprate was 166 GFlops.
 14-core Intel Xeon Gold 6132 CPU (~ 1200 GFlops):

\$ srun --gres=gpu:v100:1,gpuexcl/gemm.cpu 10000
Runtime was 2.250 s.
Floprate was 889 GFlops.

Quad-core Intel Skylake CPU (~ 200 GFlops):
 \$./gemm.cpu 10000
 Runtime was 12.050 s.
 Floprate was 166 GFlops.

▶ 14-core Intel Xeon Gold 6132 CPU (\sim 1200 GFlops):

\$ srun --gres=gpu:v100:1,gpuexcl/gemm.cpu 10000
Runtime was 2.250 s.
Floprate was 889 GFlops.

▶ Nvidia Tesla V100 GPU (~ **7 000** GFlops):

\$ srun --gres=gpu:v100:1,gpuexcl/gemm.cuda 10000
Runtime was 0.308 s.
Floprate was 6503 GFlops.

We are using between 74% and **92%** of the floating-point performance!

The GEMM kernel is **compute bound!**

Arithmetical intensity (definition)

How do we know which kernels are memory bound and which are compute bound?

Arithmetical intensity (definition)

- How do we know which kernels are memory bound and which are compute bound?
- We begin to answer this question by defining arithmetical intensity:

 $Arithmetical intensity = \frac{number of floating-point operations [Flop]}{number of bytes moved [Byte]}$

Arithmetical intensity (examples)

Double precision AXPY has the arithmetical intensity of

Arithmetical intensity_{AXPY,double} = $\frac{2 \text{ Flop}}{3 \cdot 8 \text{ Byte}} = \frac{1}{12} \text{ Flop/Byte}.$

Arithmetical intensity (examples)

Double precision AXPY has the arithmetical intensity of

Arithmetical intensity_{AXPY,double} = $\frac{2 \text{ Flop}}{3 \cdot 8 \text{ Byte}} = \frac{1}{12} \text{ Flop/Byte}.$

Single precision AXPY has the arithmetical intensity of

Arithmetical intensity_{AXPY,single} =
$$\frac{2 \text{ Flop}}{3 \cdot 4 \text{ Byte}} = \frac{1}{6} \text{ Flop/Byte}.$$

Arithmetical intensity (examples)

Double precision AXPY has the arithmetical intensity of

Arithmetical intensity_{AXPY,double} = $\frac{2 \text{ Flop}}{3 \cdot 8 \text{ Byte}} = \frac{1}{12} \text{ Flop/Byte}.$

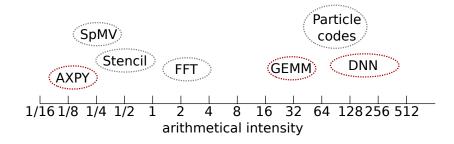
Single precision AXPY has the arithmetical intensity of

Arithmetical intensity_{AXPY,single} = $\frac{2 \text{ Flop}}{3 \cdot 4 \text{ Byte}} = \frac{1}{6} \text{ Flop/Byte}.$

Double precision GEMM has the arithmetical intensity of

Arithmetical intensity_{{\sf GEMM}, {\sf double}} = \sim 32 Flop/Byte

Arithmetical intensity (more examples)



Arithmetical intensity (Deep Neural Networks)

► Half precision numbers from Nvidia:

Operation	Arithmetical intensity
Linear layer (4096 outputs, 1024 inputs,	315 Flop/Byte
batch size 512)	
Linear layer (4096 outputs, 1024 inputs,	1 Flop/Byte
batch size 1)	I TOP/ Dyte
Max pooling with 3x3 window and unit stride	2.25 Flop/Byte
ReLU activation	0.25 Flop/Byte
Layer normalization	< 10 Flop/Byte

Arithmetical intensity (Deep Neural Networks)

Estimated single precision numbers:

Operation	Arithmetical intensity
Linear layer (4096 outputs, 1024 inputs,	158 Flop/Byte
batch size 512)	• , 5
Linear layer (4096 outputs, 1024 inputs,	0.5 Flop/Byte
batch size 1)	
Max pooling with 3x3 window and unit stride	1.125 Flop/Byte
ReLU activation	0.125 Flop/Byte
Layer normalization	< 5 Flop/Byte

Arithmetical intensity (Deep Neural Networks)

Estimated double precision numbers:

Operation	Arithmetical intensity
Linear layer (4096 outputs, 1024 inputs, batch size 512)	79 Flop/Byte
Linear layer (4096 outputs, 1024 inputs, batch size 1)	0.25 Flop/Byte
Max pooling with 3x3 window and unit stride ReLU activation Layer normalization	0.56 Flop/Byte 0.06 Flop/Byte < 2.5 Flop/Byte

Arithmetical intensity (optimal intensity)

An optimal arithmetical intensity can be calculated for each device:

optimal intensity $= \frac{\text{theoretical peak floprate}}{\text{theoretical memory bandwidth}}.$

Arithmetical intensity (optimal intensity)

An optimal arithmetical intensity can be calculated for each device:

 $\label{eq:optimal intensity} \mbox{optimal intensity} = \frac{\mbox{theoretical peak floprate}}{\mbox{theoretical memory bandwidth}}.$

If the arithmetical intensity is smaller than the optimal intensity, the kernel is memory bound.

Arithmetical intensity (optimal intensity)

An optimal arithmetical intensity can be calculated for each device:

 $\label{eq:optimal intensity} \mbox{optimal intensity} = \frac{\mbox{theoretical peak floprate}}{\mbox{theoretical memory bandwidth}}.$

- If the arithmetical intensity is smaller than the optimal intensity, the kernel is memory bound.
- If the arithmetical intensity is larger than the optimal intensity, the kernel is compute bound.

Quad-core Intel Skylake CPU:

 $\sim 5.7~{
m Flop}/{
m Byte}$

Quad-core Intel Skylake CPU:

 \sim 5.7 Flop/Byte

▶ 14-core Intel Xeon Gold 6132 CPU:

 $\sim 12~{
m Flop}/{
m Byte}$

Quad-core Intel Skylake CPU:

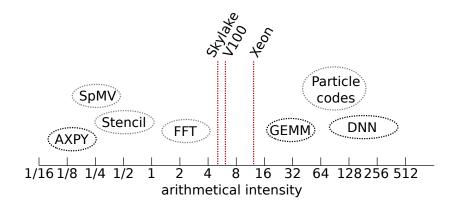
 \sim 5.7 Flop/Byte

► 14-core Intel Xeon Gold 6132 CPU:

 \sim 12 Flop/Byte

Nvidia Tesla V100 GPU:

 $\sim 7.7~{\rm Flop/Byte}$



Quad-core Intel Skylake CPU:

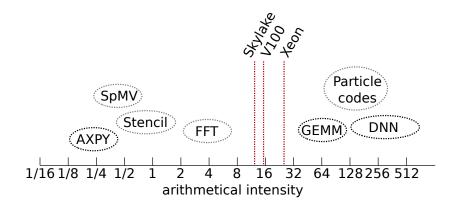
 \sim 11.4 Flop/Byte

► 14-core Intel Xeon Gold 6132 CPU:

 \sim 24 Flop/Byte

Nvidia Tesla V100 GPU:

 \sim 15.6 Flop/Byte



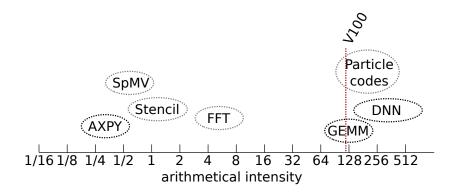
Quad-core Intel Skylake CPU:

▶ 14-core Intel Xeon Gold 6132 CPU:

— $\mathsf{Flop}/\mathsf{Byte}$

Nvidia Tesla V100 GPU:

 $\sim 124~{
m Flop}/{
m Byte}$



When calculated naively, the double precision GEMM has the arithmetical intensity of

Arithmetical intensity_{GEMM,double} = $\frac{2n-1}{8(2n+1)}$ Flop/Byte = $\sim \frac{1}{8}$ Flop/Byte

When calculated naively, the double precision GEMM has the arithmetical intensity of

Arithmetical intensity_{GEMM,double} = $\frac{2n-1}{8(2n+1)}$ Flop/Byte = $\sim \frac{1}{8}$ Flop/Byte

Why is it

Arithmetical intensity_{{\sf GEMM,double}} = \sim 32 Flop/Byte?

When implemented naively, we compute each entry separately:

$$oldsymbol{A},oldsymbol{B}\in\mathbb{R}^{n imes n},oldsymbol{(AB)}_{i,j}=\sum_{k=1}^na_{ik}b_{kj}\quad\left(rac{2n-1}{8(2n+1)} ext{ Flop/Byte}
ight)$$

When implemented naively, we compute each entry separately:

$$oldsymbol{A},oldsymbol{B}\in\mathbb{R}^{n imes n},oldsymbol{(AB)}_{i,j}=\sum_{k=1}^na_{ik}b_{kj}\quad\left(rac{2n-1}{8(2n+1)} extsf{Flop}/ extsf{Byte}
ight)$$

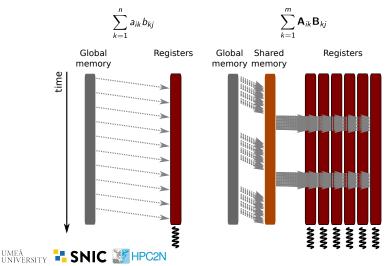
However, we can also do the following:

$$\left(\begin{bmatrix} \mathbf{A}_{11} & \dots & \mathbf{A}_{1m} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{m1} & \dots & \mathbf{A}_{mm} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{11} & \dots & \mathbf{B}_{1m} \\ \vdots & \ddots & \vdots \\ \mathbf{B}_{m1} & \dots & \mathbf{B}_{mm} \end{bmatrix} \right)_{i,j} = \sum_{k=1}^{m} \mathbf{A}_{ik} \mathbf{B}_{kj}$$

If m is small enough, A_{ik} and B_{kj} can be fitted into CPU caches or SMP's shared memory.

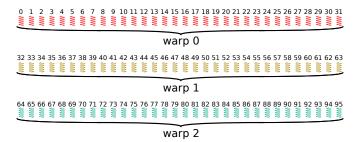
- If m is small enough, A_{ik} and B_{kj} can be fitted into CPU caches or SMP's shared memory.
- Each block is shared among the thread block!

- If m is small enough, A_{ik} and B_{kj} can be fitted into CPU caches or SMP's shared memory.
- Each block is shared among the thread block!



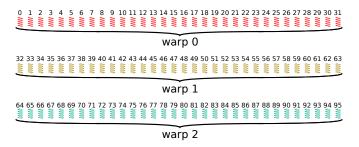
Warps

The GPU hardware divisions each thread block into sub-groups called warps:



Warps

The GPU hardware divisions each thread block into sub-groups called warps:



Each warp consists of 32 threads and all of them are scheduled together.

Warps (diverging paths)

The fact the all threads within a warp are scheduled together causes problems:

```
if (threadIdx.x % 2 == 0) {
    // all threads within the warp enter, only even numbered threads
        commit the result
}
else {
        // all threads within the warp enter, only odd numbered threads commit
        the result
}
```


Warps (diverging paths)

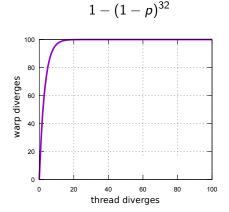
The fact the all threads within a warp are scheduled together causes problems:

```
if (threadIdx.x % 2 == 0) {
    // all threads within the warp enter, only even numbered threads
        commit the result
}
else {
    // all threads within the warp enter, only odd numbered threads commit
        the result
}
```

The cost is the same as if all threads executed both branches!

Warps (cost of diverging paths)

If a single thread diverges with the probability p ∈ [0, 1], then probability that at least one thread within a warp diverges is



PCI-E bandwidth (AXPY example)

Remember this:

```
// allocate managed memory
double *x, *y;
cudaMallocManaged(&x, n*sizeof(double));
cudaMallocManaged(&y, n*sizeof(double));
for (int i = 0; i < n; i++) {
    x[i] = 2.0 * rand()/RAND_MAX - 1.0;
    y[i] = 2.0 * rand()/RAND_MAX - 1.0;</pre>
// prefetch data to GPU memory
int device = -1;
cudaGetDevice(&device);
cudaMemPrefetchAsync(x, n*sizeof(double), device, NULL);
cudaMemPrefetchAsync(y, n*sizeof(double), device, NULL);
cudaDeviceSynchronize();
// initialize cuBLAS
cublasHandle_t handle;
cublasCreate(&handle);
// compute y <- 2 * x + y (level 1 BLAS routine) double alpha = 2.0;
cublasDaxpy(handle, n, &alpha, x, 1, y, 1);
```


PCI-E bandwidth (AXPY performance)

 Nvidia Tesla V100 GPU (~ 900 GB/s):
 \$ srun/axpy.cuda 500E6 Runtime was 0.014 s.
 Floprate was 70 GFlops.
 Memory throughput 844 GB/s.

PCI-E bandwidth (comment out prefetch lines)

```
Lets comment out some lines:
      // allocate managed memory
      double *x, *y;
cudaMallocManaged(&x, n*sizeof(double));
cudaMallocManaged(&y, n*sizeof(double));
     for (int i = 0; i < n; i++) {
    x[i] = 2.0 * rand()/RAND_MAX - 1.0;
    y[i] = 2.0 * rand()/RAND_MAX - 1.0;</pre>
     // prefetch data to GPU memory
// int device = -1;
// cudaGetDevice(@device);
      // cudademPrefetchAsync(x, n*sizeof(double), device, NULL);
// cudaMemPrefetchAsync(y, n*sizeof(double), device, NULL);
// cudaDeviceSynchronize();
      // initialize cuBLAS
     cublasHandle_t handle;
      cublasCreate(&handle);
     // compute y <- 2 * x + y (level 1 BLAS routine) double alpha = 2.0;
      double alpha = 2.0;
cublasDaxpy(handle, n, &alpha, x, 1, y, 1);
```


PCI-E bandwidth (AXPY performance without prefetch)

 Nvidia Tesla V100 GPU (~ 900 GB/s):
 \$ srun/axpy.cuda 500E6 Runtime was 1.462 s.
 Floprate was 1 GFlops.
 Memory throughput 8 GB/s.

PCI-E bandwidth (bandwidth)

