
Introduction to HPC2N

Birgitte Brydsø

HPC2N, Ume̊a University

5 November 2019

1 / 18

Kebnekaise

1 544 nodes / 17552 cores (of which 2448 are KNL)

432 Intel Xeon E5-2690v4, 2x14 cores, 128G/node
20 Intel Xeon E7-8860v4, 4x18 cores, 3072GB/node
32 Intel Xeon E5-2690v4, 2x NVidia K80, 2x14, 2x4992, 128GB/node
4 Intel Xeon E5-2690v4, 4x NVidia K80, 2x14, 4x4992, 128GB/node

36 Intel Xeon Phi 7250, 68 cores, 192GB/node, 16GB MCDRAM/node

2 399360 CUDA “cores” (80 * 4992 cores/K80)

3 More than 125 TB memory total

4 Interconnect: Mellanox 56 Gb/s FDR Infiniband

5 Theoretical performance: 728 TF

6 HP Linpack: 629 TF

7 Date installed: Fall 2016 / Spring 2017

2 / 18

Using Kebnekaise
Connecting to HPC2N’s systems

Linux, OS X:
ssh username@kebnekaise.hpc2n.umu.se

Use ssh -Y if you want to open graphical displays.

Windows:
Get SSH client (MobaXterm, PuTTY, Cygwin ...)
Get X11 server if you need graphical displays (Xming, ...)
Start the client and login with your HPC2N username to

kebnekaise.hpc2n.umu.se

More information here:

https://www.hpc2n.umu.se/documentation/guides/windows-connection

Mac/OSX: Guide here:
https://www.hpc2n.umu.se/documentation/guides/mac-connection

3 / 18

Using Kebnekaise
Transfer your files and data

Linux, OS X:
Use scp (or sftp) for file transfer. Example, scp:

local> scp username@kebnekaise.hpc2n.umu.se:file .

local> scp file username@kebnekaise.hpc2n.umu.se:file

Windows:
Download client: WinSCP, FileZilla (sftp), PSCP/PSFTP, ...
Transfer with sftp or scp

Mac/OSX:
Transfer with sftp or scp (as for Linux) using Terminal
Or download client: Cyberduck, Fetch, ...

More information in guides (see previous slide) and here:
https://www.hpc2n.umu.se/documentation/filesystems/filetransfer

4 / 18

Using Kebnekaise
Editors

Editing your files

Various editors: vi, vim, nano, emacs ...

Example, vi/vim:

vi <filename>
Insert before: i
Save and exit vi/vim: Esc :wq

Example, nano:

nano <filename>
Save and exit nano: Ctrl-x

Example, Emacs:

Start with: emacs
Open (or create) file: Ctrl-x Ctrl-f
Save: Ctrl-x Ctrl-s
Exit Emacs: Ctrl-x Ctrl-c

5 / 18

The File System

AFS
Your home directory is here
($HOME)
Regularly backed up
NOT accessible by the batch system
(ticket-forwarding doesn’t work)

secure authentification with

Kerberos tickets

PFS
Parallel File System
NO BACKUP
High performance when accessed
from the nodes
Accessible by the batch system
Create symbolic link from $HOME
to pfs:

ln -s /pfs/nobackup/$HOME

$HOME/pfs

6 / 18

The Module System (Lmod)

Most programs are accessed by first loading them as a ’module’

Modules are:

used to set up your environment (paths to executables,
libraries, etc.) for using a particular (set of) software
package(s)

a tool to help users manage their Unix/Linux shell
environment, allowing groups of related environment-variable
settings to be made or removed dynamically

allows having multiple versions of a program or package
available by just loading the proper module

installed in a hierarchial layout. This means that some
modules are only available after loading a specific compiler
and/or MPI version.

7 / 18

The Module System (Lmod)

Most programs are accessed by first loading them as a ’module’

See which modules exists:
module spider or ml spider

Modules depending only on what is currently loaded:
module avail or ml av

See which modules are currently loaded:
module list or ml

Example: loading a compiler toolchain and version, here for GCC,
OpenMPI, OpenBLAS/LAPACK, FFTW, ScaLAPACK and CUDA:
module load fosscuda/2019a or ml fosscuda/2019a

Example: Unload the above module:
module unload fosscuda/2019a or ml -fosscuda/2019a

More information about a module:
module show <module> or ml show <module>

Unload all modules except the ’sticky’ modules:

module purge or ml purge

8 / 18

The Module System
Compiler Toolchains

Compiler toolchains load bundles of software making up a complete envi-

ronment for compiling/using a specific prebuilt software. Includes some/all

of: compiler suite, MPI, BLAS, LAPACK, ScaLapack, FFTW, CUDA.

Some of the currently available toolchains (check ml av for all/versions):

GCC: GCC only
gcccuda: GCC and CUDA
foss: GCC, OpenMPI, OpenBLAS/LAPACK, FFTW, ScaLAPACK
fosscuda: GCC, OpenMPI, OpenBLAS/LAPACK, FFTW, ScaLAPACK, and CUDA
gimkl: GCC, IntelMPI, IntelMKL
gimpi: GCC, IntelMPI
gompi: GCC, OpenMPI
gompic: GCC, OpenMPI, CUDA
goolfc: gompic, OpenBLAS/LAPACK, FFTW, ScaLAPACK
icc: Intel C and C++ only
iccifort: icc, ifort
iccifortcuda: icc, ifort, CUDA
ifort: Intel Fortran compiler only
iimpi: icc, ifort, IntelMPI
intel: icc, ifort, IntelMPI, IntelMKL
intelcuda: intel and CUDA
iomkl: icc, ifort, Intel MKL, OpenMPI
pomkl: PGI C, C++, and Fortran compilers, IntelMPI
pompi: PGI C, C++, and Fortran compilers, OpenMPI

9 / 18

Compiling and Linking with Libraries
Linking

Figuring out how to link

Intel and Intel MKL linking:
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

Buildenv

After loading a compiler toolchain, load ’buildenv’ and use
’ml show buildenv’ to get useful linking info
Example, fosscuda, version 2019a:
ml fosscuda/2019a

ml buildenv

ml show buildenv

Using the environment variable (prefaced with $) is highly
recommended!
You have to load the buildenv module in order to be able to
use the environment variables for linking!

10 / 18

The Batch System (SLURM)

Large/long/parallel jobs must be run through the batch
system

SLURM is an Open Source job scheduler, which provides
three key functions

Keeps track of available system resources
Enforces local system resource usage and job scheduling
policies
Manages a job queue, distributing work across resources
according to policies

In order to run a batch job, you need to create and submit a
SLURM submit file (also called a batch submit file, a batch
script, or a job script).

Guides and documentation at:
http://www.hpc2n.umu.se/support

11 / 18

The Batch System (SLURM)
Useful Commands

Submit job: sbatch <jobscript>

Get list of your jobs: squeue -u <username>

srun <commands for your job/program>

salloc <commands to the batch system>

Check on a specific job: scontrol show job <job id>

Delete a specific job: scancel <job id>

Useful info about job: sacct -l -j <jobid> | less -S

12 / 18

The Batch System (SLURM)
Job Output

Output and errors in:
slurm-<job-id>.out

To get output and error files split up, you can give these flags
in the submit script:
#SBATCH --error=job.%J.err

#SBATCH --output=job.%J.out

To specify Broadwell or Skylake only:
#SBATCH --constraint=broadwell or
#SBATCH --constraint=skylake

To run on the GPU nodes, add this to your script:
#SBATCH --gres=gpu:<card>:x
where <card> is k80 or v100, x = 1, 2, or 4 (4 only if K80).

http://www.hpc2n.umu.se/resources/hardware/kebnekaise

13 / 18

The Batch System (SLURM)
Simple example, serial

Example: Serial job, compiler toolchain ’fosscuda/2019a’

#!/bin/bash

Project id - change to your own after the course!

#SBATCH -A SNIC2019-5-142

Asking for 1 core

#SBATCH -n 1

Asking for a walltime of 5 min

#SBATCH --time=00:05:00

Always purge modules before loading new in a script.

ml purge > /dev/null 2>&1
ml fosscuda/2019a

./my serial program

Submit with:

sbatch <jobscript>
14 / 18

The Batch System (SLURM)
parallel example

#!/bin/bash

#SBATCH -A SNIC2019-5-142

#SBATCH -n 14

#SBATCH --time=00:05:00

ml purge < /dev/null 2>&1
ml fosscuda/2019a

srun ./my mpi program

15 / 18

The Batch System (SLURM)
Requesting GPU nodes

Currently there is no separate queue for the GPU nodes

Request GPU nodes by adding this to your batch script:

#SBATCH --gres=gpu:<type-of-card>:x

where <type-of-card> is either k80 or v100 and x

= 1, 2, or 4 (4 only for the K80 type)

There are 32 nodes (broadwell) with dual K80 cards and 4
nodes with quad K80 cards

There are 10 nodes (skylake) with dual V100 cards

16 / 18

The Batch System (SLURM)
Example: Asking for a GPU

#!/bin/bash

#SBATCH -A SNIC2019-5-142

#SBATCH --time=00:10:00

Asking for one V100 card

#SBATCH --gres=gpu:v100:1

Load any modules you need

...

./my program

17 / 18

Various useful info

A project has been set up for the workshop: SNIC2019-5-142

You use it in your batch submit file by adding:

#SBATCH -A SNIC2019-5-142

There is a reservation for 2 V100 GPU nodes. This reservation
is accessed by adding this to your batch submit file:

#SBATCH --reservation=intro-gpu

The reservation is ONLY valid for the duration of the course.

18 / 18

