Introduction to HPC2N

Birgitte Brydsg
HPC2N, Umea University
5 November 2019

P UMEA
&@J UNIVERSITET

© 544 nodes / 17552 cores (of which 2448 are KNL)

432 Intel Xeon E5-2690v4, 2x14 cores, 128G /node

20 Intel Xeon E7-8860v4, 4x18 cores, 3072GB/node

32 Intel Xeon E5-2690v4, 2x NVidia K80, 2x14, 2x4992, 128GB/node
4 Intel Xeon E5-2690v4, 4x NVidia K80, 2x14, 4x4992, 128GB/node

@ 36 Intel Xeon Phi 7250, 68 cores, 192GB/node, 16GB MCDRAM /node
@ 399360 CUDA “cores” (80 * 4992 cores/K80)
© More than 125 TB memory total
@ Interconnect: Mellanox 56 Gb/s FDR Infiniband
@ Theoretical performance: 728 TF
@ HP Linpack: 629 TF

@ Date installed: Fall 2016 / Spring 2017

Using Kebnekaise

Connecting to HPC2N's systems

e Linux, OS X:
e ssh username@kebnekaise.hpc2n.umu.se
e Use ssh -Y if you want to open graphical displays.

e Windows:

Get SSH client (MobaXterm, PuTTY, Cygwin ...)

Get X11 server if you need graphical displays (Xming, ...)
e Start the client and login with your HPC2N username to

kebnekaise.hpc2n.umu.se
e More information here:
https://www.hpc2n.umu.se/documentation/guides/windows-connection
@ Mac/OSX: Guide here:

https://www.hpc2n.umu.se/documentation/guides/mac-connection

Using Kebnekaise

Transfer your files and data

@ Linux, OS X:
o Use scp (or sftp) for file transfer. Example, scp:
local> scp username@kebnekaise.hpc2n.umu.se:file .
local> scp file username@kebnekaise.hpc2n.umu.se:file
o Windows:

o Download client: WinSCP, FileZilla (sftp), PSCP/PSFTP, ...
e Transfer with sftp or scp

e Mac/OSX:

o Transfer with sftp or scp (as for Linux) using Terminal
e Or download client: Cyberduck, Fetch, ...

@ More information in guides (see previous slide) and here:

https://www.hpc2n.umu.se/documentation/filesystems/filetransfer

Using Kebnekaise

Editors

Editing your files

@ Various editors: vi, vim, nano, emacs ...
e Example, vi/vim:
o vi <filename>
o Insert before: i
e Save and exit vi/vim: Esc :wq
@ Example, nano:
e nano <filename>
e Save and exit nano: Ctrl-x
@ Example, Emacs:

Start with: emacs

Open (or create) file: Ctrl-x Ctrl-f
Save: Ctrl-x Ctrl-s

Exit Emacs: Ctrl-x Ctrl-c

The File System

o AFS -»

@ Your home directory is here <
(SHOME)

o Regularly backed up

@ NOT accessible by the batch system
(ticket-forwarding doesn’t work)

@ secure authentification with
Kerberos tickets

e PFS
o Parallel File System
o NO BACKUP

o High performance when accessed
from the nodes

@ Accessible by the batch system

o Create symbolic link from $HOME
to pfs:
1n -s /pfs/nobackup/$HOME
$HOME/pfs

The Module System (Lmod)

Most programs are accessed by first loading them as a 'module’

Modules are:

@ used to set up your environment (paths to executables,
libraries, etc.) for using a particular (set of) software
package(s)

@ a tool to help users manage their Unix/Linux shell
environment, allowing groups of related environment-variable
settings to be made or removed dynamically

@ allows having multiple versions of a program or package
available by just loading the proper module

@ installed in a hierarchial layout. This means that some
modules are only available after loading a specific compiler
and/or MPI version.

Most programs are accessed by first loading them as a 'module’

See which modules exists:
module spider or ml spider

Modules depending only on what is currently loaded:
module avail or ml av

See which modules are currently loaded:
module list or ml

Example: loading a compiler toolchain and version, here for GCC,
OpenMPI, OpenBLAS/LAPACK, FFTW, ScaLAPACK and CUDA:
module load fosscuda/2019a or ml fosscuda/2019a

Example: Unload the above module:
module unload fosscuda/2019a or ml -fosscuda/2019a

More information about a module:
module show <module> or ml show <module>

Unload all modules except the 'sticky’ modules:

module purge or ml purge

The Module System

Compiler Toolchains

Compiler toolchains load bundles of software making up a complete envi-
ronment for compiling/using a specific prebuilt software. Includes some/all
of: compiler suite, MPI, BLAS, LAPACK, Scalapack, FFTW, CUDA.

@ Some of the currently available toolchains (check m1 av for all/versions):

GCC: GCC only

geecuda: GCC and CUDA

foss: GCC, OpenMPI, OpenBLAS/LAPACK, FFTW, ScaLAPACK
fosscuda: GCC, OpenMPI, OpenBLAS/LAPACK, FFTW, ScaLAPACK, and CUDA
gimkl: GCC, IntelMPI, IntelMKL

gimpi: GCC, IntelMPI

gompi: GCC, OpenMPI

gompic: GCC, OpenMPI, CUDA

goolfc: gompic, OpenBLAS/LAPACK, FFTW, ScaLAPACK

icc: Intel C and C++ only

iccifort: icc, ifort

iccifortcuda: icc, ifort, CUDA

ifort: Intel Fortran compiler only

iimpi: icc, ifort, IntelMPI

intel: icc, ifort, IntelMPI, IntelMKL

intelcuda: intel and CUDA

iomkl: icc, ifort, Intel MKL, OpenMPI

pomkl: PGl C, C++, and Fortran compilers, IntelMPI

pompi: PGl C, C++, and Fortran compilers, OpenMPI

Compiling and Linking with Libraries

Linking

Figuring out how to link

@ Intel and Intel MKL linking:

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
@ Buildenv

o After loading a compiler toolchain, load *buildenv’ and use
’ml show buildenv’ to get useful linking info

e Example, fosscuda, version 2019a:
ml fosscuda/2019a
ml buildenv
ml show buildenv

o Using the environment variable (prefaced with $) is highly
recommended!

e You have to load the buildenv module in order to be able to
use the environment variables for linking!

The Batch System (SLURM)

o Large/long/parallel jobs must be run through the batch
system
@ SLURM is an Open Source job scheduler, which provides
three key functions
o Keeps track of available system resources
e Enforces local system resource usage and job scheduling
policies
e Manages a job queue, distributing work across resources
according to policies
@ In order to run a batch job, you need to create and submit a
SLURM submit file (also called a batch submit file, a batch
script, or a job script).
@ Guides and documentation at:
http://www.hpc2n.umu.se/support

The Batch System (SLURM)

Useful Commands

Submit job: sbatch <jobscript>
Get list of your jobs: squeue -u <username>

srun <commands for your job/program>

Check on a specific job: scontrol show job <job id>

°
°
°
@ salloc <commands to the batch system>
°
@ Delete a specific job: scancel <job id>

°

Useful info about job: sacct -1 -j <jobid> | less -S

The Batch System (SLURM)

Job Output

@ Output and errors in:
slurm-<job-id>.out

@ To get output and error files split up, you can give these flags
in the submit script:
#SBATCH --error=job.%J.err
#SBATCH --output=job.%J.out

@ To specify Broadwell or Skylake only:
#SBATCH --constraint=broadwell or
#SBATCH --constraint=skylake

@ To run on the GPU nodes, add this to your script:
#SBATCH --gres=gpu:<card>:x
where <card> is k80 or v100, x = 1, 2, or 4 (4 only if K80).

@ http://www.hpc2n.umu.se/resources/hardware/kebnekaise

The Batch System (SLURM)

Simple example, serial
Example: Serial job, compiler toolchain 'fosscuda/2019a’

#!/bin/bash

Project id - change to your own after the course!
#SBATCH -A SNIC2019-5-142

Asking for 1 core

#SBATCH -n 1

Asking for a walltime of 5 min

#SBATCH --time=00:05:00

Always purge modules before loading new in a script.
ml purge > /dev/null 2>&1
ml fosscuda/2019a

./my_serial program

Submit with:
sbatch <jobscript>

The Batch System (SLURM)

parallel example

#!/bin/bash

#SBATCH -A SNIC2019-5-142
#SBATCH -n 14

#SBATCH --time=00:05:00

ml purge < /dev/null 2>&1
ml fosscuda/2019a

srun ./my_mpi_program

The Batch System (SLURM)

Requesting GPU nodes

Currently there is no separate queue for the GPU nodes

@ Request GPU nodes by adding this to your batch script:
#SBATCH --gres=gpu:<type-of-card>:x

where <type-of-card> is either k80 or v100 and x
=1, 2, or 4 (4 only for the K80 type)

@ There are 32 nodes (broadwell) with dual K80 cards and 4
nodes with quad K80 cards

@ There are 10 nodes (skylake) with dual V100 cards

The Batch System (SLURM)

Example: Asking for a GPU

#!/bin/bash

#SBATCH -A SNIC2019-5-142
#SBATCH --time=00:10:00

Asking for one V100 card
#SBATCH --gres=gpu:v100:1

Load any modules you need

./my_program

Various useful info

@ A project has been set up for the workshop: SNIC2019-5-142
@ You use it in your batch submit file by adding:

#SBATCH -A SNIC2019-5-142

@ There is a reservation for 2 V100 GPU nodes. This reservation
is accessed by adding this to your batch submit file:
#SBATCH --reservation=intro-gpu

@ The reservation is ONLY valid for the duration of the course.

