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Example codes

$ cd ~/pfs

$ git clone https://git.cs.umu.se/mirkom/gpu_course.git

$ cd gpu_course

$ ml purge

$ ml intelcuda/2019a buildenv

$ make
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CUDA basics

Lets go through some CUDA basics...
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Hello world

I A ”Hello world” program (hello.cu) is a good place to start:

#include <stdlib.h>

#include <stdio.h>

__global__ void say_hello ()

{

printf("GPU says , Hello world!\n");

}

int main()

{

printf("Host says , Hello world!\n");

say_hello <<<1,1>>>();

cudaDeviceSynchronize ();

return EXIT_SUCCESS;

}
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Hello world (compile and run)

I Load the correct toolchain:

$ ml intelcuda/2019a buildenv

I Compile the source code with nvcc:

$ nvcc -o hello.cuda hello.cu

I Queue a job:

$ srun -A SNIC2019-5-142 --gres=gpu:v100:1,gpuexcl \

--time=00:05:00 --ntasks=1 ./hello.cuda

Host says, Hello world!

GPU says, Hello world!
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Hello world (what is happening)

Host (CPU) Device (GPU)

RAM
core core

core core

PCI-E

Host says,
Hello world! GPU says,

Hello world!

We have three objects:

Host CPU cores + RAM memory

Device CUDA cores + VRAM

PCI-E Fast interconnect between the host and the device
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Hello world (kernels)

I The GPU code is written inside special functions called
kernels.

I A kernel is declared with global keyword:

__global__ void say_hello ()

{

printf("GPU says , Hello world!\n");

}

I The host launches the say hello kernel as follows:

say_hello <<<1,1>>>();

I This places the kernel call into a queue known as stream.
I The cudaDeviceSynchronize(); call causes the host to wait

until the kernel has finished.
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Hello world (summary)

#include <stdlib.h>

#include <stdio.h>

// kernel

__global__ void say_hello ()

{

// the device (GPU) executes these lines

printf("GPU says , Hello world!\n");

}

int main()

{

// the host (CPU) executes these lines

printf("Host says , Hello world!\n");

// launch the say_hello kernel

say_hello <<<1,1>>>();

// wait until the kernel has finished

cudaDeviceSynchronize ();

return EXIT_SUCCESS;

}
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AX example (scalar multiplication)

I Lets try something more complicated:

α ∈ R, x , ∈ Rn

x ← αx

I The kernel is still relatively simple:

__global__ void ax_kernel(int n, double alpha , double *x)

{

// query the global thread index

int thread_id = blockIdx.x * blockDim.x + threadIdx.x;

// each thread updates one row

if (thread_id < n)

x[thread_id] = alpha * x[thread_id ];

}

I What are blockIdx.x, blockDim.xand threadIdx.x?
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AX example (CUDA cores and SMPs)

RAM
core core

core core

PCI-E

CUDA cores

Streaming MultiProcessors (SMPs)

Host (CPU) Device (GPU)
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AX example (CUDA cores and SMPs)

I Each Streaming MultiProcessor (SMP) consist from several
CUDA cores.

I Each CUDA core can execute several threads
simultaneously.
I The scheduler select the next instruction among a pool of

active threads.

I Thus, the total number of threads can be in the millions.

I How do we decide which thread does what?
I How do we manage all these threads?

I Different problems sizes might require different number of
threads.

I Different GPUs might have different number of SMPs and
CUDA cores.
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AX example (threads and thread blocks)

I The threads are divided into thread blocks:

blockDim.x
b

lo
ckD

im
.y

thread blocks

threads
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AX example (threads and thread blocks)

I Each tread block gets an index number:

blockIdx.x

0

0

b
lo
ck
Id
x
.y

1 2

1

(x=2,y=1)

(x=0,y=0)

13 / 30



AX example (threads and thread blocks)

I The overall idea is to partition the work into self-contained
tasks.

I Each task is assign to one thread block.
I The thread block indices are used to identify the task.

0

0

1 2

1

2

Work
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AX example (threads and thread blocks)

I The CUDA runtime is responsible from scheduling the thread
blocks.

I The execution order of the thread blocks is relaxed.
I The code can therefore adapt to different GPUs:
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AX example (threads and thread blocks)

I Each tread gets a (local) index number:

threadIdx.x

0 1 2 3 4 5 6 7

0

1

th
re

a
d
Id

x
.y 0 1 2 3 4 5 6 7

0

1

0 1 2 3 4 5 6 7

0

1

0 1 2 3 4 5 6 7

0

1

0 1 2 3 4 5 6 7

0

1

0 1 2 3 4 5 6 7

0

1
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AX example (threads and thread blocks)

I An unique global global index number can be calculated for
each thread:
__global__ void ax_kernel(int n, double alpha , double *x)

{

// query the global thread index

int thread_id = blockIdx.x * blockDim.x + threadIdx.x;

// each thread updates one row

if (thread_id < n)

x[thread_id] = alpha * x[thread_id ];

}

threadIdx.x 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockDim.x

blockIdx.x 0 1 2

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

thread_id = blockIdx.x * blockDim.x + threadIdx.x 
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AX example (memory spaces)

I The host manages the memory:
double *x = (double *) malloc(n*sizeof(double));

for (int i = 0; i < n; i++)

x[i] = i;

double *d_x;

cudaMalloc (&d_x , n*sizeof(double));

Host
memory

core core

core core

PCI-E

Host (CPU) Device (GPU)

Global
memory

Shared
memory

d_x

x
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AX example (memory spaces)

Host memory is accessible by the host (and sometimes by all
threads in all thread blocks).

Global memory is accessible by all threads in all thread blocks.

Shared memory is accessible by threads that belong to a same
thread block.

Host
memory

core core

core core

PCI-E

Host (CPU) Device (GPU)

Global
memory

Shared
memory

d_x

x
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AX example (memory transfers)
I The host initializes a data transfer from the host memory to

the global memory:
double *x = (double *) malloc(n*sizeof(double));

for (int i = 0; i < n; i++)

x[i] = i;

double *d_x;

cudaMalloc (&d_x , n*sizeof(double));

cudaMemcpy(d_x , x, n*sizeof(double), cudaMemcpyHostToDevice);

Host
memory

core core

core core

PCI-E

Host (CPU) Device (GPU)

Global
memory

Shared
memory

d_x

x
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AX example (kernel launch)
I The host launches the ax kernel kernel:

...

cudaMemcpy(d_x , x, n*sizeof(double), cudaMemcpyHostToDevice);

// number of threads per thread block (blockDim.x)

dim3 threads = 256;

// number of thread blocks (gridDim.x)

dim3 blocks = (n+threads.x)/threads.x;

// launch the kernel

ax_kernel <<<blocks , threads >>>(n, alpha , d_x);

Host
memory

core core

core core

PCI-E

Host (CPU) Device (GPU)

Global
memory

Shared
memory

d_x

x
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AX example (memory transfers)

I The host initializes a data transfer from the global memory to
the host memory:
...

dim3 threads = 256;

dim3 blocks = (n+threads.x)/threads.x;

ax_kernel <<<blocks , threads >>>(n, alpha , d_x);

cudaMemcpy(x, d_x , n*sizeof(double), cudaMemcpyDeviceToHost)

Host
memory

core core

core core

PCI-E

Host (CPU) Device (GPU)

Global
memory

Shared
memory

d_x

x
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AX example (compile and run)

I Load the correct toolchain:

$ ml intelcuda/2019a buildenv

I Compile the source code with nvcc:

$ nvcc -o ax.cuda ax.cu

I Queue a job:

$ srun -A SNIC2019-5-142 --gres=gpu:v100:1,gpuexcl \

--time=00:05:00 --ntasks=1 ./ax.cuda

The result was correct.
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Error handling (queries)

I Most CUDA functions return an error code of the type
cudaError t.

I A successful function call returns cudaSuccess.

I The error code can be turned into a string:

__host__ __device__ const char* cudaGetErrorName(cudaError_t error)

I The error code can be turned into a longer description:

__host__ __device__ const char* cudaGetErrorString(cudaError_t error)

I The previous error code can be checked and resetted with:

__host__ __device__ cudaError_t cudaGetLastError ()

I The previous error code can be checked without resetting:

__host__ __device__ cudaError_t cudaPeekAtLastError ()

25 / 30



Error handling (queries)

I Most CUDA functions return an error code of the type
cudaError t.

I A successful function call returns cudaSuccess.

I The error code can be turned into a string:

__host__ __device__ const char* cudaGetErrorName(cudaError_t error)

I The error code can be turned into a longer description:

__host__ __device__ const char* cudaGetErrorString(cudaError_t error)

I The previous error code can be checked and resetted with:

__host__ __device__ cudaError_t cudaGetLastError ()

I The previous error code can be checked without resetting:

__host__ __device__ cudaError_t cudaPeekAtLastError ()

25 / 30



Error handling (queries)

I Most CUDA functions return an error code of the type
cudaError t.

I A successful function call returns cudaSuccess.

I The error code can be turned into a string:

__host__ __device__ const char* cudaGetErrorName(cudaError_t error)

I The error code can be turned into a longer description:

__host__ __device__ const char* cudaGetErrorString(cudaError_t error)

I The previous error code can be checked and resetted with:

__host__ __device__ cudaError_t cudaGetLastError ()

I The previous error code can be checked without resetting:

__host__ __device__ cudaError_t cudaPeekAtLastError ()

25 / 30



Error handling (queries)

I Most CUDA functions return an error code of the type
cudaError t.

I A successful function call returns cudaSuccess.

I The error code can be turned into a string:

__host__ __device__ const char* cudaGetErrorName(cudaError_t error)

I The error code can be turned into a longer description:

__host__ __device__ const char* cudaGetErrorString(cudaError_t error)

I The previous error code can be checked and resetted with:

__host__ __device__ cudaError_t cudaGetLastError ()

I The previous error code can be checked without resetting:

__host__ __device__ cudaError_t cudaPeekAtLastError ()

25 / 30



Error handling (queries)

I Most CUDA functions return an error code of the type
cudaError t.

I A successful function call returns cudaSuccess.

I The error code can be turned into a string:

__host__ __device__ const char* cudaGetErrorName(cudaError_t error)

I The error code can be turned into a longer description:

__host__ __device__ const char* cudaGetErrorString(cudaError_t error)

I The previous error code can be checked and resetted with:

__host__ __device__ cudaError_t cudaGetLastError ()

I The previous error code can be checked without resetting:

__host__ __device__ cudaError_t cudaPeekAtLastError ()

25 / 30



Error handling (queries)

I Most CUDA functions return an error code of the type
cudaError t.

I A successful function call returns cudaSuccess.

I The error code can be turned into a string:

__host__ __device__ const char* cudaGetErrorName(cudaError_t error)

I The error code can be turned into a longer description:

__host__ __device__ const char* cudaGetErrorString(cudaError_t error)

I The previous error code can be checked and resetted with:

__host__ __device__ cudaError_t cudaGetLastError ()

I The previous error code can be checked without resetting:

__host__ __device__ cudaError_t cudaPeekAtLastError ()

25 / 30



Error handling (some notes)

I Kernel launches and many other CUDA functions (*Async)
are asynchronous.
I The kernel or function call is simply placed into a queue

(stream).

I It is possible that the returned error code is related to one of
the earlier kernels or function calls!

ax_kernel<<<blocks, threads>>>(n, alpha, d_x);
cudaMemcpy(x, d_x, n*sizeof(double), cudaMemcpyDeviceToHost)

ti
m
e

device host

cudaMemcpy(d_x, x, n*sizeof(double), cudaMemcpyHostToDevice);

!=

==cudaSuccess

cudaSuccess
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AXPY hands-on (scalar vector update)

I You try something more complicated:

α ∈ R, x , y ∈ Rn

y ← αx + y

I Modify ax.cu such that it computes y ← αx + y .
I Allocate and initialize y .
I Transfer y to global memory.
I Write a AXPY kernel.
I Transfer the updated y from global memory.
I Validate the updated y .
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Streams (create, destroy and syncronize)

I The kernels and asynchronous function calls (*Async) are
placed into a stream.

I A stream is created with
__host__ cudaError_t cudaStreamCreate(cudaStream_t* pStream)

I A stream is destroyed with

__host__ __device__ cudaError_t cudaStreamDestroy(cudaStream_t stream)

I A stream is synchronized with

__host__ cudaError_t cudaStreamSynchronize(cudaStream_t stream)
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Streams (example)
ti
m
e

device host

cudaMemcpyAsync(d_x1, x1, n*sizeof(double), cudaMemcpyHostToDevice, p1);

cudaStream_t p1, p2;
cudaStreamCreate(p1);
cudaStreamCreate(p2);

cudaMemcpyAsync(d_x2, x2, n*sizeof(double), cudaMemcpyHostToDevice, p2);
ax_kernel<<<blocks, threads, 0, p1>>>(n, alpha, d_x1);
ax_kernel<<<blocks, threads, 0, p2>>>(n, alpha, d_x2);
cudaMemcpyAsync(x1, d_x1, n*sizeof(double), cudaMemcpyDeviceToHost, p1);
cudaMemcpyAsync(x2, d_x2, n*sizeof(double), cudaMemcpyDeviceToHost, p2);
cudaStreamSynchronize(p1);

cudaStreamSynchronize(p2);
==cudaSuccess

==cudaSuccess
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Unified Memory Programming

I Modern GPUs can manage the memory automatically:

// allocate managed memory

double *x;

cudaMallocManaged (&x, n*sizeof(double));

// initialize memory

for (int i = 0; i < n; i++)

x[i] = 2.0 * rand()/RAND_MAX - 1.0;

// launch the kernel directly

dim3 threads = 256;

dim3 blocks = (n+threads.x)/threads.x;

ax_kernel <<<blocks , threads >>>(n, alpha , d_x);

I The array x resides in the host memory.

I Access from the device side causes a page fault and triggers a
data transfer.

I Make things simpler but has some limitations...
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I Access from the device side causes a page fault and triggers a
data transfer.

I Make things simpler but has some limitations...
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