

HPC2N @ Umeå University

Introduction to HPC2N and Kebnekaise

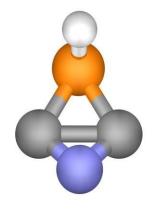
Jerry Eriksson, Pedro Ojeda-May, and Birgitte Brydsö

Outline

- Short presentation of HPC2N
- HPC at a glance.
- HPC2N Abisko, Kebnekaise
- HPC Programming models how to develope your own code (separate slides packages)
 - Nvidia, GPU: OpenAcc, Cuda
 - Intel OpenMP

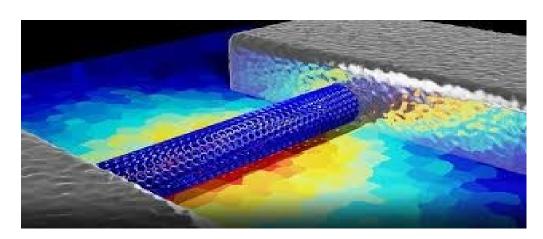
HPC2N "HPC to North"

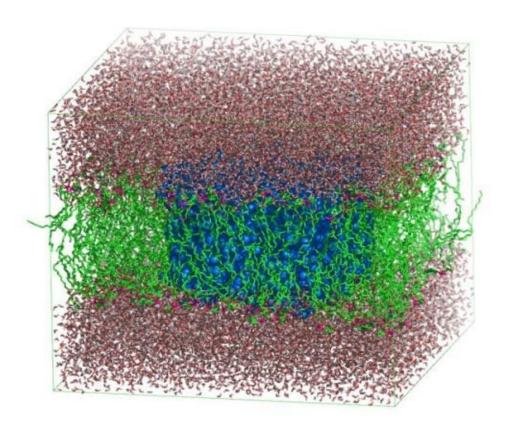
- A national center for Parallel and Scientific Computing
- Five partners:
 - Luleå University of Technology
 - Mid Sweden University
 - Swedish Institute of Space Physics
 - Swedish University of Agricultural Sciences SLU
 - Umeå University
- Funded by the **Swedish Research Council (VR)** and its Meta-Center **SNIC** togheter with the **partners**.



From macro scale to micro scale

- Provides state-of-the-art resources and expertise for Swedish eScience
 - Scalable and parallel HPC
 - Large-scale storage facilities
 - Grid and cloud computing
 - Software and advanced support for eScience applications
 - International network for research and development

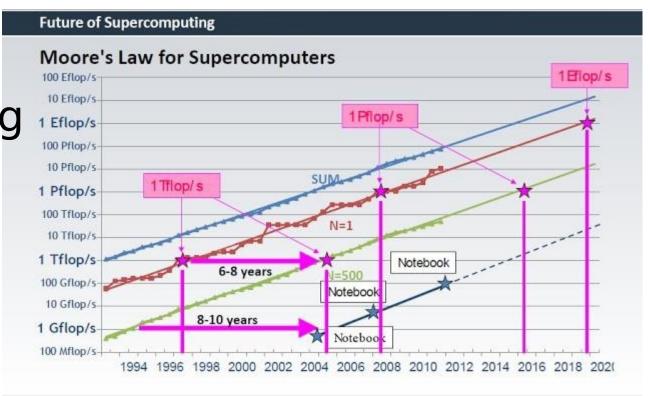

DFT computation, semi-stable, binding energy 15eV; Sven Öberg, LTU



- Biosciences and medicine
- Chemistry
- Computing science
- Engineering
- Materials science
- Mathematics and statistics
- Physics including space physics

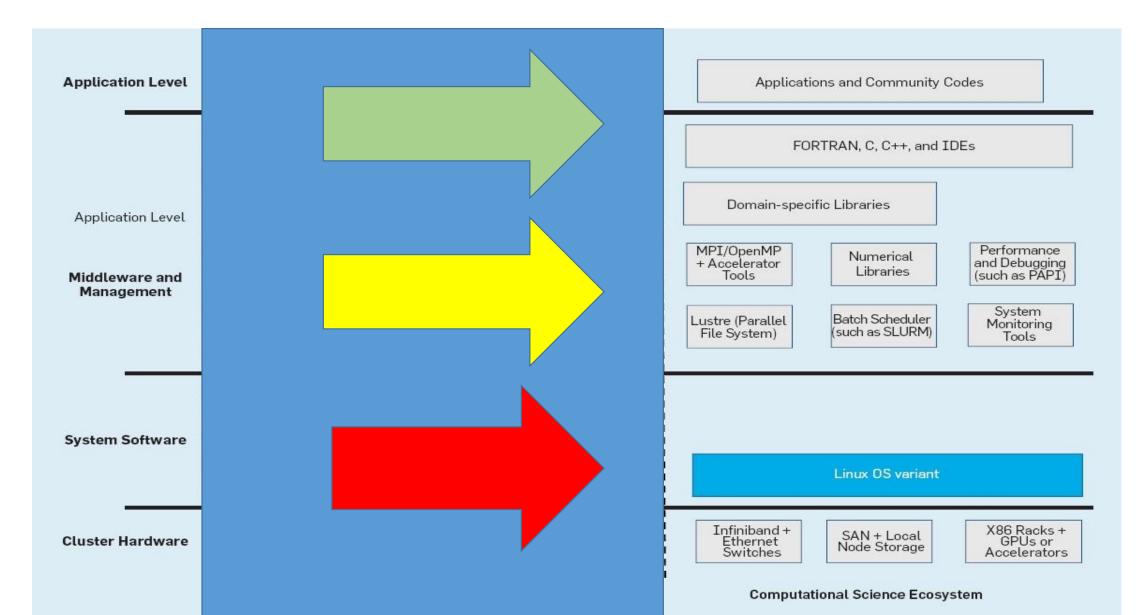
Basically three types of storage are available at HPC2N:

- Center Storage Parallel file system (fast discs)
 - Closely connected to our computing resources; Abisko and Kebnekaise
- SweStore disk based (dCache)
 - part of SNIC Storage, responsible for national accessible storage
- Tape Storage
 - Backup
 - Long term storage

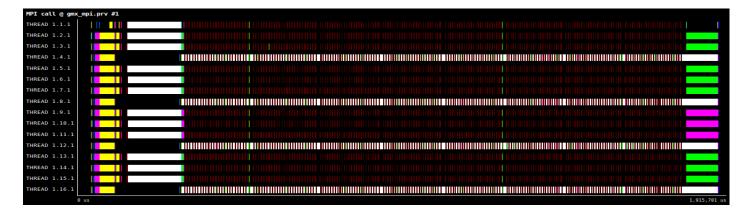


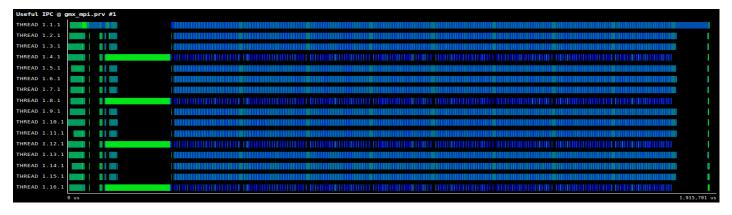


- User support (primary, advanced, tailored)
 - Research group meetings @ UmU
- User training and education program
- Workshops & Colloquia
- Research & Development Technology transfer
- Provide various state-of-the-art HPC resources


HPC- Towards Exascale Computing

- Moore's law: the number of transistors in a chip doubles every second years.
- Parallel Computing:
 - Increase number of cores.
- Heterogenous clusters
 - Different processors and memories.
- Power efficiency !


HPC EcoSystems



PRACE - Partnership for Advanced Computing in Europe

Tracing tools (GROMACS, 16 Cores)

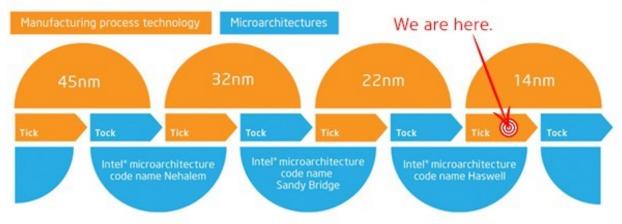
Now to the clusters and programming m

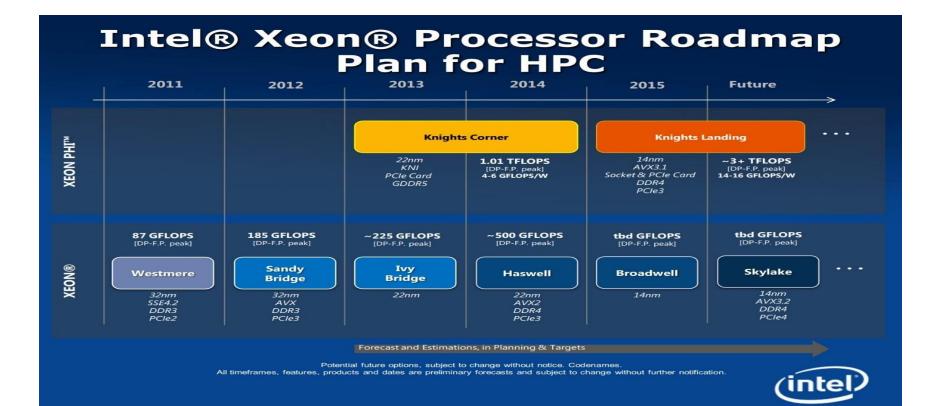
A large amount of numbers and technical information will follow!!

Relax, you do not need to now everything in detail, and we offer training for those things you should know.

Abisko

- 332 nodes with a total of 15936 CPU cores.
- AMD Opteron 6238 (Interlagos)
- The 10 'fat' nodes have 512 GB RAM each, and the 322 'thin' nodes have 128 GB RAM each.
- (More details can be found on our web-pages)


Kebnekaise



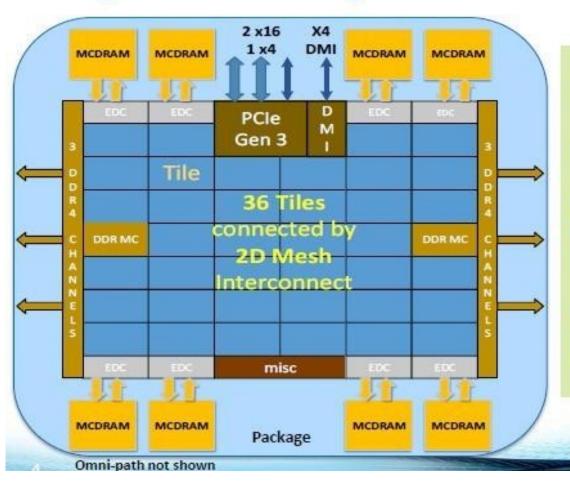
Intels processors

The Tick-Tock model through the years

- 432 nodes
- Intel Broadwell (E5-2690v4)
- 2x14 cores/node
- 128GB memory
- Infiniband FDR

Large memory nodes

- 20 nodes
- Intel Broadwell (E7-8860v4)
- 4x18 cores/node
- 3TB memory
- Infiniband EDR



- 36 nodes
 - 68 cores
 - 1.4GHz (1.2GHz AVX)
- 192 GB memory 16 GB MCDRAM
- Infiniband FDR
- Installation in February

Knights Landing Overview

Chip: 36 Tiles interconnected by 2D Mesh

Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW

DDR4: 6 channels @ 2400 up to 384GB

IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset

Node: 1-Socket only

Fabric: Omni-Path on-package (not shown)

Vector Peak Perf: 3+TF DP and 6+TF SP Flops

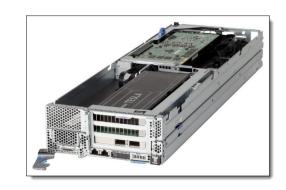
Scalar Perf: ~3x over Knights Corner

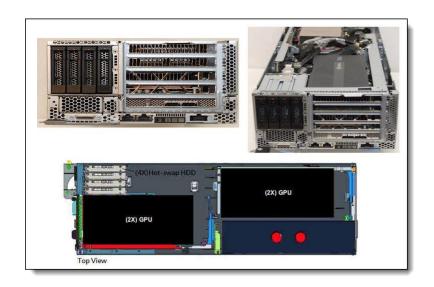
Streams Triad (GB/s): MCDRAM: 400+; DDR: 90+

Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. KNL data are preliminary based on current expectations and are subject to change without notice. Binary Compatible with Intel Xeon processors using Haswell based on STREAM-like memory access pattern who make the first terminary. Results have been estimated based on internal intel analysis, and

Intel Xeon Phi

Xeon	Clock	Cores /	Peak DP	DDR4	MCDRAN	Memory	TDP	lK Tray	\$/
Phi	Speed	Threads	TFLOPS	Memory	Capacity	Speed	(Watts)	Unit Price	TFLOPS
Knigh	ts Landin	5'					_		
7290	15 GHz	72 / 288	3 46	384 GB	16 GB	72 GT/sec	245	\$6,754	\$1.810
7250	1.4 GHz	68 / 272	3.05	384 GB	16 GB	7.2 GT/sec	215	\$4,876	\$1,601
/230	1.3 GHz	64 / 256	2.66	384 GB	I6 GB	/.2 G1/sec	215	\$3,/10	\$1,393
7210	1.3 GHz	64 / 256	2.66	384 GB	16 GB	6.4 GT/sec	215	\$2,438	\$916
Xeon	Clock	Cores /	Peak DP	Cache	GDDR5	Memory	TDP	lK Tray	\$/
Phi	Speed	Threads	TFLOPS	Memory	Capacity	Speed	(Watts)	Unit Price	TFLOPS
Knigh	ts Corner								
7120P	1.24 GHz	61 / 61	1.21	30.5 MB	16 GB	5.5 GT/sec	300	\$4,129	\$3,412
7120X	1.24 GHz	61 / 61	1.21	30.5 MB	16 GB	5.5 GT/sec	300	\$4,129	\$3,412
5110P	1.05 GHz	60 / 60	1.01	30 MB	8 GB	5.0 GT/sec	225	\$2,649	\$2,623
5120D	1.05 GHz	60 / 60	1.01	30 MB	8 GB	5.5 GT/sec	245	\$2,759	\$2,732
3120A	1.10 GHz	57 / 57	1.0	28.5 MB	6 GB	5.0 GT/sec	300	\$1,695	\$1,695
3120P	1.10 GHz	57 / 57	1.0	28.5 MB	6 GB	5.0 GT/sec	300	\$1,695	\$1,695


General or special-purpose processor?



GPU nodes

- 32 nodes with 2x NVidia K80
- 4 nodes with 4x NVidia K80
- Intel Broadwell 2x14 cores (E5-2690v4)
- 128 GB memory
- Infiniband FDR

- Infiniband
- Three level fat tree structure
- FDR cards in nodes (leafs)
- EDR cards in large memory nodes
- EDR in switches

- 13 racks
- 544 nodes
- 17552 cores (of which 2448 cores are KNL-cores)
- 399360 CUDA cores (80 * 4992 cores/K80)
- More than 125TB memory (20*3TB + (432 + 36) * 128GB + 36*192GB)
- 66 switches (Infiniband, Access network, Management network)

- 83% of the system are standard and Large Memory nodes
- 7% GPU-nodes
- 7% KNL-nodes
- 4% Other nodes (login and management nodes, LNET-routers etc)
- 728 TFlops/s Peak performance
- 629 TFLops/s HPL (all parts)
- HPL: 86% of Peak performance

Standard Nodes	374 TFlops/s		
Large Memory Nodes	34 TFlops/s		
2xGPU Nodes	129 TFlops/s		
4xGPU Nodes	30 TFlops/s		
KNL Nodes	62 TFlops/s		
Total (All parts)	629 Flops/s		