
OpenACC

Birgitte Brydsø

HPC2N, Ume̊a University

12 December 2017

1 / 27

OpenACC
Overview

What is OpenACC?

1 a software accelerator that offers portability between compilers

2 a programming standard for parallel computing developed by
Cray, CAPS, Nvidia and PGI

3 designed to simplify parallel programming of heterogeneous
CPU/GPU systems

4 Like OpenMP, it is compiler directive-based - C, C++ and
Fortran code can be annotated to identify areas to accelerate
using compiler directives and additional functions

5 works on Nvidia, AMD and Intel accelerators

6 works for PGI and Cray compilers - and mostly for GCC

2 / 27

OpenACC
Overview

The OpenACC Accelerator Model

OpenACC supports offloading of both computation and data
from a host device to an accelerator device.

These devices may be the same or may be completely
different architectures (like a CPU host and GPU accelerator)

The two devices may also have separate memory spaces or a
single memory space

3 / 27

OpenACC
Overview

Steps to add OpenACC to your code

1 Include the OpenACC header file

C: #include "openacc.h"

Fortran: use openacc or #include "openacc lib.h"

2 Analyze code to determine which areas would benefit

3 Add compute directives

4 Add directives to optimize data movement

5 Optimize your application using kernel scheduling

4 / 27

OpenACC
Using OpenACC

Identify high-level, expensive loops

Place OpenMP directives on high-level loops

Vectorize low-level loops

Eliminate dependencies

Add OpenACC directives now when OpenMP parallelism and
low-level vector parallelism is exposed

5 / 27

OpenACC
Overview

Grammar

All openACC directives start with

C: #pragma acc

Fortran: !$acc

This is followed by the directive name and an optional list of
clauses.

Most directives are followed by a structured block.

6 / 27

OpenACC
Grammar

Extensive list of pragmas (directives) (Fortran in parentheses)

Define parallel computation kernels to be executed on the
accelerator

#pragma acc parallel (!$acc parallel)
#pragma acc kernels (!$acc kernels)

Define and copy data to and from the accelerator

#pragma acc data (!$acc data)

Define the type of parallelism in a parallel or kernels region

#pragma acc loop (!$acc loop)

Other

Fortran: !$acc directive [clause [,] clause] ...]

Often with matching end directive around structured code
block !$acc end directive

C: #pragma acc directive [clause [,] clause] ...]

Often followed by a structured code block

7 / 27

OpenACC
#pragma acc parallel (!$acc parallel)

#pragma acc parallel (!$acc parallel)

Tells the compiler to parallelize the code block.

Compiler can decompose however it feels is best

Gangs of workers created to run the code in the block.

Code not in a loop is run in gang-redundant mode (execute
same code across all gangs)

Parallelism achieved in loops by splitting work among several
gangs - that each split work among workers

8 / 27

OpenACC
#pragma acc kernels (!$acc kernels)

#pragma acc kernels (!$acc kernels)

Similar to parallel, but loops within the kernels region will be
independent kernels

Independent kernels and associated data transfers may be
overlapped with other kernels

9 / 27

OpenACC
#pragma acc data (!$acc data)

#pragma acc data (!$acc data)

Defines regions where data may be left on the device

Useful for reducing PCIe transfers by creating temporary arrays or leaving
data on device until needed

The PGI compiler can automatically migrate data with the managed

option. Don’t use that option if you add the directive!

#pragma acc data copy (A, Anew)
while (e r r o r > t o l && i t e r < i t e r m a x) {

e r r o r =0. f ;

#pragma acc p a r a l l e l
for (int j = 1 ; j < n−1; j++) {

for (int i = 1 ; i < m−1; i++) {
Anew [j] [i] = 0 . 2 5 f ∗ (A [j] [i +1] + A [j] [i −1]

+ A [j −1] [i] + A [j +1] [i]) ;
e r r o r = max (e r r o r , abs (Anew [j] [i] − A [j] [i]) ;

}
}

10 / 27

OpenACC
Other important directives

#pragma acc host data (!$acc host data)

Define a region in which host (CPU) arrays will be used,
unless specified with use device()

The use device() clause exposes device pointer to the CPU

Useful for overlapping with CPU computation or calling library
routines that expect device memory

11 / 27

OpenACC
Other important directives

#pragma acc wait (!$acc wait)

Synchronize with asynchronous activities

May declare specific conditions or wait on all outstanding
requests

#pragma acc update (!$acc update)

Update a host or device array within a data region

Allows updating parts of arrays

Frequently used around MPI

#pragma acc loop (!$acc loop)

Useful for optimizing how the compiler treats specific loops

May be used to specify the decomposition of the work

May be used to collapse loop nests for additional parallelism

May be used to declare kernels as independent of each other
12 / 27

OpenACC
Terminology

Gang

Highest level of parallelism, equivalent to CUDA Threadblock.
(num gangs => number of threadblocks in the grid)

A ”gang” loop affects the ”CUDA Grid”

Worker

A member of the gang, equivalent to CUDA thread within a
threadblock (num workers => threadblock size)

A ”worker” loop affects the ”CUDA Threadblock”

Vector

Tightest level of SIMT/SIMD/Vector parallelism, roughly
equivalent to CUDA warp or SIMD vector length
(vector length should be a multiple of warp size)

A ”vector” loop affects the SIMT parallelism

13 / 27

OpenACC
Other directives

async clause

Declares that control should return to the CPU immediately

If an integer is passed to async, that integer can be passed as
a handle to wait

cache construct

Cache data in software managed data cache (CUDA shared
memory)

declare directive

Specify that data is to allocated in device memory for the
duration of an implicit data region created during the
execution of a subprogram

14 / 27

OpenACC
Further optimization

Use loop collapse() to merge loops and increase parallelism at
particular levels

Improve data movement

Use compilers existing directives regarding loop optimizations

Loop unrolling
Loop fusion/fission
Loop blocking

Appropriate data access patterns

Memory coalescing (make sure threads run simultaneously, try
to access memory that is nearby)
bank conflicts (arise because of some specific access pattern of
data in shared memory)
striding (stride of an array = number of locations in memory
between beginnings of successive array elements. An array
with stride of exactly the same size as the size of each of its
elements is contiguous in memory)

15 / 27

OpenACC
Examples parallel loop

Matrix-matrix multiplication

/* C <- C + A x B */

/* Create a parallel region, fork a team of threads. A, B, C are
shared among threads. Iterators i, j, k are private to each thread.
*/

#pragma acc p a r a l l e l l o o p
for (i =0; i<s i z e ; i ++) {

for (j =0; j<s i z e ; j ++) {
for (k=0; k<s i z e ; k++) {

C [i] [j] += A [i] [k]∗B [k] [j] ;
}

}
}

16 / 27

OpenACC
Examples - kernels

Matrix-matrix multiplication

/* C <- C + A x B */

/* Use kernels to mark a region which contain parallelism and let
the compiler determine what can safely be parallelized. */

#pragma acc k e r n e l s
{

for (i =0; i<s i z e ; i ++) {
for (j =0; j<s i z e ; j ++) {

for (k=0; k<s i z e ; k++) {
C [i] [j] += A [i] [k]∗B [k] [j] ;

}
}

}
}

17 / 27

OpenACC
Parallel Loop vs. Kernels

18 / 27

OpenACC
Parallel Loop Gang Collapse

#pragma acc p a r a l l e l l o o p gang c o l l a p s e (2)
for (i =0; i<s i z e ; i ++) {

for (j =0; j<s i z e ; j ++) {
for (k=0; k<s i z e ; k++) {

C [i] [j] += A [i] [k]∗B [k] [j] ;
}

}
}

19 / 27

OpenACC
Comparison

Table: Matrix-Matrix Multiplication, Comparison of Serial, OpenMP,
OpenACC (various directives). Time in s

Size Serial OpenMP parallel+loop collapse kernels kernels+loop kernels+data kernels+data+copyin
128 0.05 0.102 0.872 0.743 0.841 0.65 0.71 0.66
256 0.076 0.14 0.704 0.702 0.662 0.557 0.668 0.561
512 0.443 0.675 0.72 0.679 0.696 0.682 0.686 0.652

1024 3.523 3.814 0.77 0.730 0.858 0.703 0.693 0.693
2048 30.84 28.574 2.685 0.966 0.936 0.94 1.002 0.933

20 / 27

OpenACC
Serial, OpenMP, OpenACC - graphs

21 / 27

OpenACC
OpenACC graphs

22 / 27

OpenACC
Parallel Loop vs. Kernels

23 / 27

OpenACC
Parallel Loop vs. Kernels

24 / 27

OpenACC
Compiling at HPC2N

ml pomkl/2017.10

C: pgcc -acc -ta=tesla -Minfo=accel <filename>.c -o
<filename>

Fortran: pgf90 -acc -ta=tesla -Minfo=accel <filename>.f90
-o <filename>

25 / 27

OpenACC
Batch file, example

#!/bin/bash

Change to your own project later!

#SBATCH -A SNIC2017-3-108

#SBATCH --time=00:10:00

#SBATCH --gres=gpu:k80:1

ml purge

ml pomkl/2017.10

time ./openacc-matrix-multiply

26 / 27

OpenACC
More information

https://www.openacc.org/

https://www.openacc.org/resources

http://developer.download.nvidia.com/CUDA/training/
OpenACC 1 0 intro jan2012.pdf

http://on-demand.gputechconf.com/gtc/2015/webinar/Intro-to-
OpenACC.pdf

https://www.olcf.ornl.gov/wp-

content/uploads/2013/02/Intro to OpenACC-JL.pdf

27 / 27

