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Preface

These proceedings contain a set of papers presented at the PARA 2012 conference
held during June 10–13, 2012, in Helsinki, Finland. It was the 11th in the PARA
conference series. The general theme of the PARA conference series is the “State
of the Art in Scientific and Parallel Computing,” and a special theme of the
PARA 2012 conference was “Toward Exascale.”

June in Helsinki means long days. The sun approaches the horizon not before
11 pm, which gives plenty of time for long and interesting discussions. For the
PARA 2012 participants, many of the discussions were likely around this year’s
theme, exascale computing. Exascale supercomputers are predicted to emerge in
6 to 10 years’ time. The path toward this regime of computing has been pretty
clear for more than a decade and implies dramatically increased parallelism in
all levels of the computing systems. We already know how to handle massive
parallelism, but now we are talking about excessively massive parallelism: two
or three orders of magnitude above today’s leading petaflop/s systems. The real
challenge is not just to build a computer system of theoretical exascale perfor-
mance, but rather to be able to devise real-world scientific applications that har-
ness the exaflop/s computing power. This fact was the background for the choice
of the theme for the conference: Addressing the challenges due to exploiting the
ever-increasing parallelism and to the changing balance between the computers’
subsystems performance requires novel, more suitable algorithms, programming
models, performance optimization techniques, and numerical libraries.

The conference itself consisted of a number of selected contributed talks di-
vided into topical parallel sessions, and five thematic minisymposia. These were
accompanied by keynote talks and interactive sessions. In these proceedings,
we have, based on a peer-review process, selected 35 technical full articles for
publication, categorized as follows:

• Advances in HPC Applications
• Parallel Algorithms
• Performance Analysis and Optimization
• Applications of Parallel Computing in Industry and Engineering
• HPC Interval Methods

In addition to these, three of the topical minisymposia are described by a
corresponding overview article on the minisymposium topic. In order to cover the
state of the art of the field, we have included at the end of the proceedings a set
of extended abstracts that describe some of the conference talks not elaborated
by a full article. These extended abstracts have not been peer-reviewed.

We would like to thank everyone who contributed to the PARA 2012 con-
ference: keynote speakers Jack Dongarra, Björn Engquist, and Mark Parsons;
Minisymposium Chairs; presenters of contributed talks; tutorial instructors; all
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attendees; and everyone involved in practical arrangements. Especially all the
authors of these proceedings as well as the numerous reviewers are gratefully
acknowledged.

December 2012 P. Manninen
P. Öster
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J.A. Åström, A. Carter, J. Hetherington, K. Ioakimidis,
E. Lindahl, G. Mozdzynski, R.W. Nash, P. Schlatter,
A. Signell, and J. Westerholm

PRACE DECI (Distributed European Computing Initiative)
Minisymposium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chris Johnson, Adam Carter, Iain Bethune, Kevin Statford,
Mikko Alava, Vitor Cardoso, Muhammad Asif,
Bernhard S.A. Schuberth, and Tobias Weinzierl

Part II: Advances in HPC Applications

Parallel Electronic Structure Calculations Using Multiple Graphics
Processing Units (GPUs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Samuli Hakala, Ville Havu, Jussi Enkovaara, and Risto Nieminen

An Environment for Service Composition, Execution and Resource
Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Jan Kwiatkowski, Krzysztof Juszczyszyn, and Grzegorz Kolaczek

Multicore and Accelerator Development for a Leadership-Class Stellar
Astrophysics Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

O.E. Bronson Messer, J. Austin Harris, Suzanne Parete-Koon, and
Merek A. Chertkow

Steering and In-situ Visualization for Simulation of Seismic Wave
Propagation on Graphics Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

David Michéa, Joachim Pouderoux, Fabrice Dupros, and Hideo Aochi

PCJ - New Approach for Parallel Computations in Java . . . . . . . . . . . . . . 115
Marek Nowicki and Piotr Ba�la

Porting Production Level Quantum Chromodynamics Code to Graphics
Processing Units – A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Teemu Rantalaiho



X Table of Contents

Time Propagation of Many-Body Quantum States on Graphics
Processing Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Topi Siro and Ari Harju

Parallel Numerical Simulation of Seismic Waves Propagation with Intel
Math Kernel Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Mikhail A. Belonosov, Clement Kostov, Galina V. Reshetova,
Sergey A. Soloviev, and Vladimir A. Tcheverda

Part III: Parallel Algorithms

Blocked Schur Algorithms for Computing the Matrix Square Root . . . . . 171
Edvin Deadman, Nicholas J. Higham, and Rui Ralha

Distributed Evolutionary Computing System Based on Web Browsers
with JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Jerzy Duda and Wojciech D�lubacz

Use of Direct Solvers in TFETI Massively Parallel Implementation . . . . . 192
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Computational Physics on Graphics Processing

Units

Ari Harju1,2, Topi Siro1,2, Filippo Federici Canova3,
Samuli Hakala1, and Teemu Rantalaiho2,4

1 COMP Centre of Excellence, Department of Applied Physics,
Aalto University School of Science, Helsinki, Finland

2 Helsinki Institute of Physics, Helsinki, Finland
3 Department of Physics, Tampere University of Technology, Tampere, Finland

4 Department of Physics, University of Helsinki, Helsinki, Finland

Abstract. The use of graphics processing units for scientific compu-
tations is an emerging strategy that can significantly speed up various
algorithms. In this review, we discuss advances made in the field of com-
putational physics, focusing on classical molecular dynamics and quan-
tum simulations for electronic structure calculations using the density
functional theory, wave function techniques and quantum field theory.

Keywords: graphics processing units, computational physics.

1 Introduction

The graphics processing unit (GPU) has been an essential part of personal com-
puters for decades. Their role became much more important in the 90s when
the era of 3D graphics in gaming started. One of the hallmarks of this is the
violent first-person shooting game DOOM by the id Software company, released
in 1993. Wandering around the halls of slaughter, it was hard to imagine these
games leading to any respectable science. However, twenty years after the release
of DOOM, the gaming industry of today is enormous, and the continuous need
for more realistic visualizations has led to a situation where modern GPUs have
tremendous computational power. In terms of theoretical peak performance, they
have far surpassed the central processing units (CPU).

The games started to have real 3D models and hardware acceleration in the
mid 90s, but an important turning point for the scientific use of GPUs for com-
puting was around the first years of this millennium [1], when the widespread
programmability of GPUs was introduced. Combined with the continued in-
crease in computational power as shown in Fig. 1, the GPUs are nowadays a
serious platform for general purpose computing. Also, the memory bandwidth
in GPUs is very impressive. The three main vendors for GPUs, Intel, NVIDIA,
and ATI/AMD, are all actively developing computing on GPUs. At the moment,
none of the technologies listed above dominate the field, but NVIDIA with its
CUDA programming environment is perhaps the current market leader.

P. Manninen and P. Öster (Eds.): PARA 2012, LNCS 7782, pp. 3–26, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Floating point operations (FLOPS) per second for GPUs and CPUs from
NVIDIA and Intel Corporations, figure taken from [2]. The processing power of the
currently best GPU hardware by the AMD Corporation is comparable to NVIDIA at
around 2600 GFLOPS/s.

1.1 The GPU as a Computational Platform

At this point, we have hopefully convinced the reader that GPUs feature a pow-
erful architecture also for general computing, but what makes GPUs different
from the current multi-core CPUs? To understand this, we can start with tradi-
tional graphics processing, where hardware vendors have tried to maximize the
speed at which the pixels on the screen are calculated. These pixels are indepen-
dent primitives that can be processed in parallel, and the number of pixels on
computer displays has increased over the years from the original DOOM resolu-
tion of 320× 200, corresponding to 64000 pixels, to millions. The most efficient
way to process these primitives is to have a very large number of arithmetic
logical units (ALUs) that are able to perform a high number of operations for
each video frame. The processing is very data-parallel, and one can view this
as performing the same arithmetic operation in parallel for each primitive. Fur-
thermore, as the operation is the same for each primitive, there is no need for
very sophisticated flow control in the GPU and more transistors can be used for
arithmetics, resulting in an enormously efficient hardware for performing parallel
computing that can be classified as “single instruction, multiple data” (SIMD).

Now, for general computing on the GPU, the primitives are no longer the
pixels on the video stream, but can range from matrix elements in linear al-
gebra to physics related cases where the primitives can be particle coordinates
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in classical molecular dynamics or quantum field values. Traditional graphics
processing teaches us that the computation would be efficient when we have a
situation where the same calculation needs to be performed for each member of a
large data set. It is clear that not all problems or algorithms have this structure,
but there are luckily many cases where this applies, and the list of successful
examples is long.

However, there are also limitations on GPU computing. First of all, when
porting a CPU solution of a given problem to the GPU, one might need to
change the algorithm to suit the SIMD approach. Secondly, the communication
from the host part of the computer to the GPU part is limited by the speed
of the PCIe bus coupling the GPU and the host. In practice, this means that
one needs to perform a serious amount of computing on the GPU between the
data transfers before the GPU can actually speed up the overall computation.
Of course, there are also cases where the computation as a whole is done on
GPU, but these cases suffer from the somewhat slower serial processing speed
of the GPU.

Additional challenges in GPU computing include the often substantial pro-
gramming effort to get a working and optimized code. While writing efficient
GPU code has become easier due to libraries and programmer friendly hardware
features, it still requires some specialized thinking. For example, the programmer
has to be familiar with the different kinds of memory on the GPU to know how
and when to use them. Further, things like occupancy of the multiprocessors
(essentially, how full the GPU is) and memory access patterns of the threads are
something one has to consider to reach optimal performance. Fortunately, each
generation of GPUs has alleviated the trouble of utilizing their full potential.
For example, a badly aligned memory access in the first CUDA capable GPUs
from NVIDIA could cripple the performance by drastically reducing the memory
bandwidth, while in the Fermi generation GPUs the requirements for memory
access coalescing are much more forgiving.

2 Molecular Dynamics

Particle dynamics simulation, often simply called Molecular dynamics (MD),
refers to the type of simulation where the behaviour of a complex system is
calculated by integrating the equation of motion of its components within a
given model, and its goal is to observe how some ensemble-averaged properties
of the system originate from the detailed configuration of its constituent particles
(Fig. 2).

In its classical formulation, the dynamics of a system of particles is described
by their Newtonian equations:

mi
d2xi

dt2
=

∑
j

F ij (1)

wheremi is the particle’s mass, xi its position, and F ij is the interaction between
the i-th and j-th particles as provided by the model chosen for the system under
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Fig. 2. Schematic presentation of the atomistic model of a macroscopic system

study. These second order differential equations are then discretised in the time
domain, and integrated step by step until a convergence criterion is satisfied.

The principles behind MD are so simple and general that since its first ap-
pearance in the 70s, it has been applied to a wide range of systems, at very
different scales. For example, MD is the dominant theoretical tool of investiga-
tion in the field of biophysics, where structural changes in proteins [3,4,5,6] and
lipid bilayers [7,8] interacting with drugs can be studied, ultimately providing a
better understanding of drug delivery mechanisms.

At larger scales, one of the most famous examples is known as the Millenium
Simulation, where the dynamics of the mass distribution of the universe at the
age of 380000 years was simulated up to the present day [9], giving an estimate
of the age of cosmic objects such as galaxies, black holes and quasars, greatly
improving our understanding of cosmological models and providing a theoretical
comparison to satellite measurements.

Despite the simplicity and elegance of its formulation, MD is not a compu-
tationally easy task and often requires special infrastructure. The main issue is
usually the evaluation of all the interactions F ij , which is the most time consum-
ing procedure of any MD calculation for large systems. Moreover, the processes
under study might have long characteristic time scales, requiring longer simula-
tion time and larger data storage; classical dynamics is chaotic, i.e. the outcome
is affected by the initial conditions, and since these are in principle unknown
and chosen at random, some particular processes of interest might not occur
just because of the specific choice, and the simulation should be repeated several
times. For these reasons, it is important to optimise the evaluation of the forces
as much as possible.

An early attempt to implement MD on the GPU was proposed in 2004 [10] and
showed promising performance; at that time, general purpose GPU computing
was not yet a well established framework and the N-body problem had to be
formulated as a rendering task: a shader program computed each pair interaction
F ij and stored them as the pixel color values (RBG) in an N×N texture. Then,
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another shader would simply sum these values row-wise to obtain the total force
on each particle and finally integrate their velocities and positions. The method
is called all-pairs calculation, and as the name might suggest, it is quite expensive
as it requires O(N2) force evaluations. The proposed implementation was in no
way optimal since the measured performance was about a tenth of the nominal
value of the device, and it immediately revealed one of the main issues of the
architecture that still persists nowadays: GPUs can have a processing power
exceeding the teraflop, but, at the same time, they are extremely slow at handling
the data to process since a memory read can require hundreds of clock cycles.
The reason for the bad performance was in fact the large amount of memory read
instructions compared to the amount of computation effectively performed on
the fetched data, but despite this limitation, the code still outperformed a CPU
by a factor of 8 because every interaction was computed concurrently. A wide
overview of optimisation strategies to get around the memory latency issues can
be found in Ref. [11], while, for the less eager to get their hands dirty, a review
of available MD software packages is included in Ref. [12].

In the current GPU programming model, the computation is distributed in
different threads, grouped together as blocks in a grid fashion, and they are
allowed to share data and synchronise throughout the same block; the hardware
also offers one or two levels of cache to enhance data reuse, thus reducing the
amount of memory accesses, without harassing the programmer with manual pre-
fetching. A more recent implementation of the all-pair calculation [13] exploiting
the full power of the GPU can achieve a performance close to the nominal values,
comparable to several CPU nodes.

The present and more mature GPGPU framework allows for more elaborate
kernels to fit in the device, enabling the implementation of computational tricks
developed during the early days of MD [14] that make it possible to integrate N-
body dynamics accurately with much better scaling than O(N2). For example, in
many cases the inter-particle forces are short range, and it would be unnecessary
to evaluate every single interaction F ij since quite many of them would be close
to zero and just be neglected. It is good practice to build lists of neighbours for
each particle in order to speed up the calculation of forces: this also takes an
O(N2) operation, although the list is usually only recalculated every 100-1000
timesteps, depending on the average mobility of the particles. The optimal way
to build neighbour lists is to divide the simulation box in voxels and search for a
partcle’s neighbours only within the adjacent voxels (Fig. 3a), as this procedure
requires only O(N) instructions. Performance can be further improved by sorting
particles depending on the index of the voxel they belong, making neighbouring
particles in space, to a degree, close in memory, thus increasing coalescence
and cache hit rate on GPU systems; such a task can be done with radix count
sort [15,16,17] in O(N) with excellent performance, and it was shown to be the
winning strategy [18].

Unfortunately, most often the inter-particle interactions are not exclusively
short range and can be significant even at larger distances (electrostatic and
gravitational forces). Therefore, introducing an interaction cut-off leads to the
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Fig. 3. Illustration of different space partition methods. In dense systems (a) a regular
grid is preferred, and neighbouring particles can be searched in only a few adjacent
voxels. Sparse systems (b) are better described by hierarchical trees, excluding empty
regions from the computation.

wrong dynamics. For dense systems, such as bulk crystals or liquids, the electro-
static interaction length largely exceeds the size of the simulation space, and in
principle one would have to include the contributions from several periodic im-
ages of the system, although their sum is not always convergent. The preferred
approach consists of calculating the electrostatic potential V (r) generated by
the distribution of point charges ρ(r) from Poisson’s equation:

∇2V (r) = ρ(r) (2)

The electrostatic potential can be calculated by discretising the charge distri-
bution on a grid, and solving Eq. 2 with a fast Fourier transform (FFT), which
has O(MlogM) complexity (where M is the amount of grid points): this ap-
proach is called particle-mesh Ewald (PME). Despite being heavily non-local,
much work has been done to improve the FFT algorithm and make it cache
efficient [19,20,21,22,23], so it is possible to achieve a 20-fold speed up over the
standard CPU FFTW or a 5-fold speedup when compared to a highly optimised
MKL implementation. The more recent multilevel summation method (MSM)
[24] uses nested interpolations of progressive smoothing of the electrostatic po-
tential on lattices with different resolutions, offering a good approximation of
the electrostatic O(N2) problem in just O(N) operations. The advantage of this
approach is the simplicity of its parallel implementation, since it requires less
memory communication among the nodes, which leads to a better scaling than
the FFT calculation in PME. The GPU implementation of this method gave a
25-fold speedup over the single CPU [25]. Equation 2 can also be translated into
a linear algebra problem using finite differences, and solved iteratively on multi-
grids [26,27] in theoretically O(M) operations. Even though the method initially
requires several iterations to converge, the solution does not change much in one
MD step and can be used as a starting point in the following step, which in turn
will take much fewer iterations.
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On the other hand, for sparse systems such as stars in cosmological simu-
lations, decomposing the computational domain in regular boxes can be quite
harmful because most of the voxels will be empty and some computing power
and memory is wasted there. The optimal way to deal with such a situation is
to subdivide the space hierarchically with an octree [28] (Fig. 3b), where only
the subregions containing particles are further divided and stored. Finding neigh-
bouring particles can be done via a traversal of the tree in O(NlogN) operations.
Octrees are conventionally implemented on the CPU as dynamical data struc-
tures where every node contains reference pointers to its parent and children,
and possibly information regarding its position and content. This method is not
particularly GPU friendly since the data is scattered in memory as well as in the
simulation space. In GPU implementations, the non-empty nodes are stored as
consecutive elements in an array or texture, and they include the indices of the
children nodes [29]. They were proved to give a good acceleration in solving the
N-body problem [13,30,31]. Long range interactions are then calculated explic-
itly for the near neighbours, while the fast multipole method (FMM) [32,33] can
be used to evaluate contributions from distant particles. The advantage of repre-
senting the system with an octree becomes now more evident: there exists a tree
node containing a collection of distant particles, which can be treated as a single
multipole leading to an overall complexity O(N). Although the mathematics
required by FMM is quite intensive to evaluate, the algorithms involved have
been developed and extensively optimised for the GPU architecture [34,35,36],
achieving excellent parallel performance even on large clusters [37].

In all the examples shown here, the GPU implementation of the method out-
performed its CPU counterpart: in many cases the speedup is only 4-5 fold when
compared to a highly optimised CPU code, which seems, in a way, a discouraging
result, because implementing an efficient GPU algorithm is quite a difficult task,
requiring knowledge of the target hardware, and the programming model is not
as intuitive as for a regular CPU. To a degree, the very same is true for CPU
programming, where taking into account cache size, network layout, and details
of shared/distributed memory of the target machine when designing a code leads
to higher performance. These implementation difficulties could be eased by de-
veloping better compilers, that check how memory is effectively accessed and
provide higher levels of GPU optimisation on older CPU codes automatically,
hiding the complexity of the hardware specification from the programmer. In
some cases, up to 100 fold speedups were measured, suggesting that the GPU
is far superior. These cases might be unrealistic since the nominal peak perfor-
mance of a GPU is around 5 times bigger than that of a CPU. Therefore, it is
possible that the benchmark is done against a poorly optimised CPU code, and
the speedup is exaggerated. On the other hand, GPUs were also proven to give
good scaling in MPI parallel calculations, as shown in Refs. [31] and [37]. In par-
ticular, the AMBER code was extensively benchmarked in Ref. [38], and it was
shown how just a few GPUs (and even just one) can outperform the same code
running on 1024 CPU cores: the weight of the communication between nodes
exceeds the benefit of having additional CPU cores, while the few GPUs do not
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suffer from this latency and can deliver better performance, although the size of
the computable system becomes limited by the available GPU memory. It has
to be noted how GPU solutions, even offering a modest 4-5 fold speedup, do so
at a lower hardware and running cost than the equivalent in CPUs, and this will
surely make them more appealing in the future. From the wide range of examples
in computational physics, it is clear that the GPU architecture is well suited for
a defined group of problems, such as certain procedures required in MD, while
it fails for others. This point is quite similar to the everlasting dispute between
raytracing and raster graphics: the former can explicitly calculate photorealistic
images in complex scenes, taking its time (CPU), while the latter resorts to ev-
ery trick in the book to get a visually ”alright” result as fast as possible (GPU).
It would be best to use both methods to calculate what they are good for, and
this sets a clear view of the future hardware required for scientific computing,
where both simple vector-like processors and larger CPU cores could access the
same memory resources, avoiding data transfer.

3 Density-Functional Theory

Density functional theory (DFT) is a popular method for ab-initio electronic
structure calculations in material physics and quantum chemistry. In the most
commonly used DFT formulation by Kohn and Sham [39], the problem of N
interacting electrons is mapped to one with N non-interacting electrons moving
in an effective potential so that the total electron density is the same as in the
original many-body case [40]. To be more specific, the single-particle Kohn-Sham
orbitals ψn(r) are solutions to the equation

Hψn(r) = εnψn(r), (3)

where the effective Hamiltonian in atomic units is H = − 1
2∇2+vH(r)+vext(r)+

vxc(r). The three last terms in the Hamiltonian define the effective potential, con-
sisting of the Hartree potential vH defined by the Poisson equation ∇2vH(r) =
−4πρ(r), the external ionic potential vext, and the exchange-correlation poten-
tial vxc that contains all the complicated many-body physics the Kohn-Sham
formulation partially hides. In practice, the vxc part needs to be approximated.
The electronic charge density ρ(r) is determined by the Kohn-Sham orbitals as
ρ(r) =

∑
i fi|ψi(r)|2, where the fi:s are the orbital occupation numbers.

There are several numerical approaches and approximations for solving the
Kohn-Sham equations. They relate usually to the discretization of the equations
and the treatment of the core electrons (pseudo-potential and all electron meth-
ods). The most common discretization methods in solid state physics are plane
waves, localized orbitals, real space grids and finite elements. Normally, an iter-
ative procedure called self-consistent field (SCF) calculation is used to find the
solution to the eigenproblem starting from an initial guess for the charge density
[41].

Porting an existing DFT code to GPUs generally includes profiling or discov-
ering with some other method the computationally most expensive parts of the
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SCF loop and reimplementing them with GPUs. Depending on the discretiza-
tion methods, the known numerical bottlenecks are vector operations, matrix
products, Fast Fourier Transforms (FFTs) and stencil operations. There are
GPU versions of many of the standard computational libraries (like CUBLAS
for BLAS and CUFFT for FFTW). However, porting a DFT application is not
as simple as replacing the calls to standard libraries with GPU equivalents since
the resulting intermediate data usually gets reused by non standard and less
computationally intensive routines. Attaining high performance on a GPU and
minimizing the slow transfers between the host and the device requires writing
custom kernels and also porting a lot of the non-intensive routines to the GPU.

Gaussian basis functions are a popular choice in quantum chemistry to inves-
tigate electronic structures and their properties. They are used in both DFT and
Hartree-Fock calculations. The known computational bottlenecks are the eval-
uation of the two-electron repulsion integrals (ERIs) and the calculation of the
exchange-correlation potential. Yasuda was the first to use GPUs in the calcula-
tion of the exchange-correlation term [42] and in the evaluation of the Coulomb
potential [43]. The most complete work in this area was done by Ufimtsev et al..
They have used GPUs in ERIs [44,45,46], in complete SCF calculations [47] and
in energy gradients [48]. Compared to the mature GAMESS quantum chemistry
package running on CPUs, they were able to achieve speedups of more than
100 using mixed precision arithmetic in HF SCF calculations. Asadchev et al..
have also done an ERI implementation on GPUs using the uncontracted Rys
quadrature algorithm [49].

The first complete DFT code on GPUs for solid state physics was presented
by Genovese et al.. [50]. They used double precision arithmetic and a Daubechies
wavelet based code called BIGDFT [51]. The basic 3D operations for a wavelet
based code are based on convolutions. They achieved speedups of factor 20 for
some of these operations on a GPU, and a factor of 6 for the whole hybrid code
using NVIDIA Tesla S1070 cards. These results were obtained on a 12-node
hybrid machine.

For solid state physics, plane wave basis sets are the most common choice.
The computational schemes rely heavily on linear algebra operations and fast
Fourier transforms. The Vienna ab initio Simulation Package (VASP) [52] is a
popular code combining plane waves with the projector augmented wave method.
The most time consuming part of optimizing the wave functions given the trial
wave functions and related routines have been ported to GPUs. Speedups of a
factor between 3 and 8 for the blocked Davinson scheme [53] and for the RMM-
DIIS algorithm [54] were achieved in real-world examples with Fermi C2070
cards. Parallel scalability with 16 GPUs was similar to 16 CPUs. Additionally,
Hutchinson et al. have done an implementation of exact-exchange calculations
on GPUs for VASP [55].

Quantum ESPRESSO [56] is a electronic structure code based on plane wave
basis sets and pseudo-potentials (PP). For the GPU version [57], the most com-
putationally expensive parts of the SCF cycle were gradually transferred to run
on GPUs. FFTs were accelerated by CUFFT, LAPACK by MAGMA and other
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routines were replaced by CUDA kernels. GEMM operations were replaced by
the parallel hybrid phiGEMM [58] library. For single node test systems, running
with NVIDIA Tesla C2050, speedups between 5.5 and 7.8 were achieved and for
a 32 node parallel system speedups between 2.5 and 3.5 were observed. Wand
et al. [59] and Jia et al.. [60] have done an implementation for GPU clusters
of a plane wave pseudo-potential code called PEtot. They were able to achieve
speedups of 13 to 22 and parallel scalability up to 256 CPU-GPU computing
units.

GPAW [61] is a density-functional theory (DFT) electronic structure program
package based on the real space grid based projector augmented wave method.
We have used GPUs to speed up most of the computationally intensive parts of
the code: solving the Poisson equation, iterative refinement of the eigenvectors,
subspace diagonalization and orthonormalization of the wave functions. Overall,
we have achieved speedups of up to 15 on large systems and a good parallel
scalability with up to 200 GPUs using NVIDIA Tesla M2070 cards [62].

Octopus [63,64] is a DFT code with an emphasis on the time-dependent
density-functional theory (TDDFT) using real space grids and pseudo-potentials.
Their GPU version uses blocks of Kohn-Sham orbitals as basic data units. Oc-
topus uses GPUs to accelerate both time-propagation and ground state calcu-
lations. Finally, we would like to mention the linear response Tamm-Dancoff
TDDFT implementation [65] done for the GPU-based TeraChem code.

4 Quantum Field Theory

Quantum field theories are currently our best models for fundamental interac-
tions of the natural world (for a brief introduction to quantum field theories –
or QFTs – see for example [66] or [67] and references therein). Common compu-
tational techniques include perturbation theory, which works well in quantum
field theories as long as the couplings are small enough to be considered as per-
turbations to the free theory. Therefore, perturbation theory is the primary tool
used in pure QED, weak nuclear force and high momentum-transfer QCD phe-
nomena, but it breaks up when the coupling constant of the theory (the measure
of the interaction strength) becomes large, such as in low-energy QCD.

Formulating the quantum field theory on a space-time lattice provides an op-
portunity to study the model non-perturbatively and use computer simulations
to get results for a wide range of phenomena – it enables, for example, one to
compute the hadronic spectrum of QCD (see [68] and references therein) from
first principles and provides solutions for many vital gaps left by the perturba-
tion theory, such as structure functions of composite particles [69], form-factors
[70] and decay-constants [71]. It also enables one to study and test models for
new physics, such as technicolor theories [72] and quantum field theories at fi-
nite temperature [73], [74] or [75]. For an introduction to Lattice QFT, see for
example [76], [77] or [78].

Simulating quantum field theories using GPUs is not a completely new idea
and early adopters even used OpenGL (graphics processing library) to program
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the GPUs to solve lattice QCD [79]. The early GPGPU programmers needed
to set up a program that draws two triangles that fill the output texture of
desired size by running a “shader program” that does the actual computation
for each output pixel. In this program, the input data could be then accessed by
fetching pixels’ input texture(s) using the texture units of the GPU. In lattice
QFT, where one typically needs to fetch the nearest neighbor lattice site values,
this actually results in good performance as the texture caches and layouts of
the GPUs have been optimized for local access patterns for filtering purposes.

4.1 Solving QFTs Numerically

The idea behind lattice QFT is based on the discretization of the path integral
solution to expectation values of time-ordered operators in quantum field theo-
ries. First, one divides spacetime into discrete boxes, called the lattice, and places
the fields onto the lattice sites and onto the links between the sites, as shown in
Fig. 4. Then, one can simulate nature by creating a set of multiple field config-
urations, called an ensemble, and calculate the values of physical observables by
computing ensemble averages over these states.

Uμ(x) Ψ(x)
�

Fig. 4. The matter fields Ψ(x) live on lattice sites, whereas the gauge fields Uμ(x) live
on the links connecting the sites. Also depicted are the staples connecting to a single
link variable that are needed in the computation of the gauge field forces.

The set of states is normally produced with the help of a Markov chain and in
the most widely studied QFT, the lattice QCD, the chain is produced by com-
bining a molecular dynamics algorithm together with a Metropolis acceptance
test. Therefore, the typical computational tasks in lattice QFTs are:

1. Refresh generalized momentum variables from a heat bath (Gaussian distri-
bution) once per trajectory.

2. Compute generalized forces for fields for each step
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3. Integrate classical equations of motion for the fields at each step 1

4. Perform a Metropolis acceptance test at the end of the trajectory in order
to achieve the correct limiting distribution.

In order to reach satisfying statistics, normally thousands of these trajectories need
to be generated and each trajectory is typically composed of 10 to 100 steps. The
force calculationnormally involves amatrix inversion,where thematrix indices run
over the entire lattice and it is therefore the heaviest part of the computation. The
matrix arises in simulations with dynamical fermions (normal propagatingmatter
particles) and the simplest form for the fermion matrix is2

Ax,y = [Q†Q]x,y where

Qx,y = δx,y − κ
±4∑

μ=±1

δy+μ̂,x(1 + γμ)Uμ(x). (4)

Here, κ is a constant related to the mass(es) of the quark(s), δx,y is the Kro-
necker delta function (unit matrix elements), the sum goes over the spacetime
dimensions μ, γμ are 4-by-4 constant matrices and Uμ(x) are the link variable
matrices that carry the force (gluons for example) from one lattice site to the
neighbouring one. In normal QCD they are 3-by-3 complex matrices.

The matrix A in the equation Ar = z, where one solves for the vector r with a
given z, is an almost diagonal sparsematrixwith a predefined sparsity pattern. This
fact makes lattice QCD ideal for parallelization, as the amount work done by each
site is constant.The actual algorithmused in thematrix inversion is normally some
variant of the conjugate gradient algorithm, and therefore one needs fast code to
handle the multiplication of a fermion vector by the fermion matrix.

This procedure is the generation of the lattice configurations which form the
ensemble. Once the set of configurations {Ui}, i ∈ [1, N ] has been generated
with the statistical weight e−S[Ui], where S[Ui] is the Euclidean action (action
in imaginary time formulation), the expectation value of an operator F [U ] can
be computed simply as

〈F
[
U
]
〉 ≈ 1

N

N∑
i=1

F [Ui], (5)

4.2 Existing GPU Solutions to Lattice QFTs

As lattice QFTs are normally easily parallelizable, they fit well into the GPU
programming paradigm, which can be characterized as parallel throughput com-
putation. The conjugate gradient methods perform many fermion matrix vec-
tor multiplications whose arithmetic intensity (ratio of floating point operations
done per byte of memory fetched) is quite low, making memory bandwidth the

1 The integration is not done with respect to normal time variable, but through the
Markov chain index-“time”.

2 There are multiple different algorithms for simulating fermions, here we present the
simplest one for illustrative purposes.
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normal bottleneck within a single processor. Parallelization between processors
is done by standard MPI domain decomposition techniques. The conventional
wisdom that this helps due to higher local volume to communication surface
area ratio is actually flawed, as typically the GPU can handle a larger volume in
the same amount of time, hence requiring the MPI-implementation to also take
care of a larger surface area in the same time as with a CPU. In our experience,
GPU adoption is still in some sense in its infancy, as the network implementation
seems to quickly become the bottleneck in the computation and the MPI im-
plementations of running systems seem to have been tailored to meet the needs
of the CPUs of the system. Another aspect of this is that normally the GPUs
are coupled with highly powered CPUs in order to cater for the situation where
the users use the GPUs in just a small part of the program and need a lot of
sequential performance in order to try to keep the serial part of the program
up with the parallel part. The GPU also needs a lot of concurrent threads (in
the order of thousands) to be filled completely with work and therefore good
performance is only achievable with relatively large local lattice sizes.

Typical implementations assign one GPU thread per site, which makes paral-
lelization easy and gives the compiler quite a lot of room to find instruction level
parallelism, but in our experience this can result in a relatively high register pres-
sure: the quantum fields living on the sites have many indices (normally color and
Dirac indices) and are therefore vectors ormatrices with up to 12 complex numbers
per field per site in the case of quark fields in normal QCD. Higher parallelization
canbeachievedby taking advantage of thevector-likeparallelism inside a single lat-
tice site, but this may be challenging to implement in those loopswhere the threads
within a site have to collaborate to produce a result, especially because GPUs im-
pose restrictions on the memory layout of the fields (consecutive threads have to
read consecutive memory locations in order to reach optimal performance [2]). In
a recent paper [80], the authors solve the gauge fixing problem by using overre-
laxation techniques and they report an increase in performance by using multiple
threads per site, although in this case the register pressure problem is even more
pronounced and the effects of register spilling to the L1 cache were not studied.

The lattice QCD community has a history of taking advantage of comput-
ing solutions outside the mainstream: the QCDSP [81] computer was a custom
machine that used digital signal processors to solve QCD with an order of one
teraflop of performance. QCDOC [82] used a custom IMB powerPC-based ASIC
and a multidimensional torus network, which later on evolved into the first ver-
sion of the Blue Gene supercomputers [83]. The APE collaboration has a long
history of custom solutions for lattice QCD and is building custom network solu-
tions for lattice QCD [84]. For example, QCDPAX [85] was a very early parallel
architecture used to study Lattice QCD without dynamical fermions.

Currently, there are various groups using GPUs to do lattice QFT simula-
tions. The first results using GPUs were produced as early as 2006 in a study
that determined the transition temperature of QCD [86]. Standardization efforts
for high precision Lattice QCD libraries are underway and the QUDA library [87]
scales to hundreds of GPUs by using a local Schwarz preconditioning technique,
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effectively eliminating all the GPU-based MPI communications for a significant
portion of the calculation. They employ various optimization techniques, such
as mixed-precision solvers, where parts of the inversion process of the fermion
matrix is done at lower precision of floating point arithmetic and using reduced
representations of the SU3 matrices. Scaling to multiple GPUs can also be im-
proved algorithmically: already a simple (almost standard) clover improvement
[88] term in the fermion action leads to better locality and of course improves
the action of the model as well, taking the lattice formulation closer to the con-
tinuum limit. Domain decomposition and taking advantage of restricted additive
Schwarz (RAS) preconditioning using GPUs was already studied in 2010 in [89],
where the authors get the best performance on a 324 lattice with vanishing over-
lap between the preconditioning domains and three complete RAS iterations
each containing just five iterations to solve the local system of 4 × 323 sites. It
should be noted though that the hardware they used is already old, so optimal
parameters with up-to-date components could slightly differ.

Very soon after starting to work with GPUs on lattice QFTs, one notices the
effects of Amdahl’s law which just points out the fact that there is an upper
bound for the whole program performance improvement related to optimizing
just a portion of the program. It is quite possible that the fermion matrix in-
version takes up 90% of the total computing time, but making this portion of
the code run 10 times faster reveals something odd: now we are spending half of
our time computing forces and doing auxiliary computations and if we optimize
this portion of the code as well, we improve our performance by a factor of al-
most two again – therefore optimizing only the matrix inversion gives us a mere
fivefold performance improvement instead of the promised order of magnitude
improvement. Authors of [90] implemented practically the entire HMC trajec-
tory on the GPU to fight Amdahl’s law and recent work [91] on the QDP++
library implements Just-in-Time compilation to create GPU kernels on the fly
to accommodate any non-performance critical operation over the entire lattice.

Work outside of standard Lattice QCD using GPUs includes the implemen-
tation of the Neuberger-Dirac overlap operator [92], which provides chiral sym-
metry at the expense of a non-local action. Another group uses the Arnoldi
algorithm on a multi-GPU cluster to solve the overlap operator [93] and shows
scaling up to 32 GPUs. Quenched SU2 [94] and later quenched SU2, SU3 and
generic SU(Nc) simulations using GPUs are described in [95] and even com-
pact U(1) Polyakov loops using GPUs are studied in [96]. Scalar field theory –
the so-called λφ4 model – using AMD GPUs is studied in [97]. The TWQCD
collaboration has also implemented almost the entire HMC trajectory computa-
tion with dynamical Optimal Domain Wall Fermions, which improve the chiral
symmetry of the action [98].

While most of the groups use exclusively NVIDIA’s CUDA-implementation
[2], which offers good reliability, flexibility and stability, there are also some
groups using the OpenCL standard [99]. A recent study [100] showed better
performance on AMD GPUs than on NVIDIA ones using OpenCL, although it
should be noted that the NVIDIA GPUs were consumer variants with reduced
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double precision throughput and that optimization was done for AMD GPUs.
The authors of [90] have implemented both CUDA and OpenCL versions of their
staggered fermions code and they report a slightly higher performance for CUDA
and for NVIDIA cards.

4.3 QFT Summary

All in all, lattice QFT using GPUs is turning from being a promising technol-
ogy to a very viable alternative to traditional CPU-based computing. When
reaching for the very best strong scaling performance – meaning best perfor-
mance for small lattices – single threaded performance does matter if we assume
that the rest of the system scales to remove other bottlenecks (communication,
memory bandwith.) In these cases, it seems that currently the best performance
is achievable through high-end supercomputers, such as the IBM Blue Gene/Q
[101], where the microprocessor architecture is actually starting to resemble more
a GPU than a traditional CPU: the PowerPC A2 chip has 16 in-order cores, each
supporting 4 relatively light weight threads and a crossbar on-chip network. A
17th core runs the OS functions and an 18th core is a spare to improve yields
or take place of a damaged core. This design gives the PowerPC A2 chip sim-
ilar performance to power ratio as an NVIDIA Tesla 2090 GPU, making Blue
Gene/Q computers very efficient. One of the main advantages of using GPUs
(or GPU-like architectures) over traditional serial processors is the increased
performance per watt and the possibility to perform simulations on commodity
hardware.

5 Wave Function Methods

The stochastic techniques based on Markov chains and the Metropolis algorithm
showed great success in the field theory examples above. There are also many-
body wave function methods that use the wave function as the central variable
and use stochastic techniques for the actual numerical work. These quantum
Monte Carlo (QMC) techniques have shown to be very powerful tools for study-
ing electronic structures beyond the mean-field level of for example the density
functional theory. A general overview of QMC can be found from [102]. The sim-
plest form of the QMC algorithms is the variational QMC, where a trial wave
function with free parameters is constructed and the parameters are optimized,
for example, to minimize the total energy [103]. This simple strategy works
rather well for various different systems, even for strongly interacting particles
in an external magnetic field [104].

There have been some works porting QMC methods to GPUs. In the early
work by Amos G. Anderson et al. [105], the overall speedup compared to the
CPU was rather modest, from three to six, even if the individual kernels were
up to 30 times faster. More recently, Kenneth P. Esler et al. [106] have ported
the QMCPack simulation code to the Nvidia CUDA GPU platform. Their full
application speedups are typically around 10 to 15 compared to a quad-core
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Xeon CPU. This speedup is very promising and demonstrates the great potential
GPU computing has for the QMC methods that are perhaps the computational
technologies that are the mainstream in future electronic structure calculations.

There are also many-body wave function methods that are very close to the
quantum chemical methods. One example of these is the full configuration in-
teraction method in chemistry that is termed exact diagonalization (ED) in
physics. The activities in porting the quantum chemistry approaches to GPU
are reviewed in [107], and we try to remain on the physics side of this unclear
borderline. We omit, for example, works on the coupled cluster method on the
GPU [108]. Furthermore, quantum mechanical transport problems are also not
discussed here [109].

Lattice models [110,111] are important for providing a general understanding
of many central physical concepts like magnetism. Furthermore, realistic ma-
terials can be cast to a lattice model [112]. Few-site models can be calculated
exactly using the ED method. The ED method turns out to be very efficient
on the GPU [113]. In the simplest form of ED, the first step is to construct the
many-body basis and the Hamiltonian matrix in it. Then follows the most time-
consuming part, namely the actual diagonalization of the Hamiltonian matrix.
In many cases, one is mainly interested in the lowest eigenstate and possibly a
few of the lowest excited states. For these, the Lanczos algorithm turns out to
be very suitable [113]. The basic idea of the Lanczos scheme is to map the huge
but sparse Hamiltonian matrix to a smaller and tridiagonal form in the so-called
Krylov space that is defined by the spanning vectors obtained from a starting
vector |x0〉 by acting with the Hamiltonian as Hm|x0〉. Now, as the GPU is very
powerful for the matrix-vector product, it is not surprising that high speedups
compared to CPUs can be found[113].

6 Outlook

The GPU has made a definite entry into the world of computational physics.
Preliminary studies using emerging technologies will always be done, but the true
litmus test of a new technology is whether studies emerge where the new tech-
nology is actually used to advance science. The increasing frequency of studies
that mention GPUs is a clear indicator of this.

From the point of view of high performance computing in computational
physics, the biggest challenge facing GPUs at the moment is scaling: in the
strong scaling case, as many levels of parallelism as possible inherent in the
problem should be exploited in order to reach the best performance with small
local subsystems. The basic variables of the model are almost always vectors of
some sort, making them an ideal candidate for SIMD type parallelism. This is
often achieved with CPUs with a simple compiler flag, which instructs the com-
piler to look for opportunities to combine independent instructions into vector
operations.

Furthermore, large and therefore interesting problems from a HPC point of
view are typically composed of a large number of similar variables, be it par-
ticles, field values, cells or just entries in an array of numbers, which hints at



Computational Physics on GPUs 19

another, higher level of parallelism of the problem that traditionally has been
exploited using MPI, but is a prime candidate for a data parallel algorithm. Also,
algorithmic changes may be necessary to reach the best possible performance:
it may very well be that the best algorithm for CPUs is no longer the best one
for GPUs. A classic example could be the question whether to use lookup tables
of certain variables or recompute them on-the-fly. Typically, on the GPU the
flops are cheap making the recomputation an attractive choice whereas the large
caches of the CPU may make the lookup table a better option.

On the other hand, MPI communication latencies should be minimized and
bandwidth increased to accommodate the faster local solve to help with both
weak and strong scaling. As far as we know, there are very few, if any, groups
taking advantage of GPUDirect v.2 for NVIDIA GPUs [114], which allows direct
GPU-to-GPU communications (the upcoming GPUDirect Support for RDMA
will allow direct communications across network nodes) reducing overhead and
CPU synchronization needs. Even GPUDirect v.1 helps, as then one can share
the pinned memory buffers between Infiniband and GPU cards, removing the
need to do extra local copies of data. The MPI implementations should also be
scaled to fit the needs of the GPUs connected to the node: currently the network
bandwidth between nodes seems to be typically about two orders of magnitude
lower than the memory bandwidth from the GPU to the GPU memory, which
poses a challenge to strong scaling, limiting GPU applicability to situations with
relatively large local problem sizes.

Another, perhaps an even greater challenge, facing GPUs and similar sys-
tems is the ecosystem: Currently a large portion of the developers and system
administrators like to think of GPUs and similar solutions as accelerators – an
accelerator is a component, which is attached to the main processor and used
to speed up certain portions of the code, but as these “accelerators” become
more and more agile with wider support for standard algorithms, the term be-
comes more and more irrelevant as a major part of the entire computation can
be done on the “accelerator” and the original “brains” of the machine, the CPU,
is mainly left there to take care of administrative functions, such as disk IO,
common OS services and control flow of the program.

As single threaded performance has reached a local limit, all types of proces-
sors are seeking more performance out of parallelism: more cores are added and
vector units are broadened. This trend, fueled by the fact that transistor feature
sizes keep on shrinking, hints at some type of convergence in the near future, but
exactly what it will look like is anyone’s best guess. At least in computational
physics, it has been shown already that the scientists are willing to take extra
effort in porting their code to take advantage of massively parallel architectures,
which should allow them to do the same work with less energy and do more
science with the resources allocated to them.

The initial programming effort does raise a concern for productivity: How
much time and effort is one willing to spend to gain a certain amount of added
performance? Obviously, the answer depends on the problem itself, but perhaps
even more on the assumed direction of the industry – a wrong choice may result
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in wasted effort if the chosen solution simply does not exist in five years time.
Fortunately, what seems to be clear at the moment, is the overall direction of
the industry towards higher parallelism, which means that a large portion of the
work needed to parallelize a code for a certain parallel architecture will most
probably be applicable to another parallel architecture as well, reducing the risk
of parallelization beyond the typical MPI level.

The answer to what kind of parallel architectures will prevail the current
turmoil in the industry may depend strongly on consumer behavior, since a
large part of the development costs of these machines are actually subsidized by
the development of the consumer variants of the products. Designing a processor
only for the HPC market is too expensive and a successful product will need a
sister or at least a cousin in the consumer market. This brings us back to DOOM
and other performance-hungry games: it may very well be that the technology
developed for the gamers of today, will be the programming platform for the
scientists of tomorrow.
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Schierholz, G., Zanotti, J.M.: Generalized parton distributions and structure func-
tions from full lattice QCD. Nuclear Physics B Proceedings Supplements 140,
399–404 (2005)

70. Alexandrou, C., Brinet, M., Carbonell, J., Constantinou, M., Guichon, P., et
al.: Nucleon form factors and moments of parton distributions in twisted mass
lattice QCD. In: Proceedings of The XXIst International Europhysics Conference
on High Energy Physics, EPS-HEP 2011, Grenoble, Rhones Alpes France, July
21-27, vol. 308 (2011)

71. McNeile, C., Davies, C.T.H., Follana, E., Hornbostel, K., Lepage, G.P.: High-
precision fBs and heavy quark effective theory from relativistic lattice QCD.
Physical Review D 85, 031503 (2012)

72. Rummukainen, K.: QCD-like technicolor on the lattice. In: Llanes-Estrada, F.J.,
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Abstract. Many of the most widely used scientifc application software
of today were developed largely during a time when the typical amount of
compute cores was calculated in tens or hundreds. Within a not too dis-
tant future the number of cores will be calculated in at least hundreds of
thousands or even millions. A European collaboration group CRESTA
has recently been working on a set of renowned scientific software to
investigate and develop these codes towards the realm of exascale com-
puting. The codes are ELMFIRE, GROMACS, IFS, HemeLB, NEK5000,
and OpenFOAM. This paper contains a summary of the strategies for
their development towards exascale and results achieved during the first
year of the collaboration project.
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1 Introduction

Many of the most widely used scientific application software have been sub-
ject to constant development during several decades. This easily results in codes
that have primary structures that are optimized for the typical computer archi-
tecture of the early phase of development. The most dramatic change in high-
performance computers (HPCs) during the last decade has been that the number
of compute cores have risen dramatically. This trend also seems to continue in
the near future. Another modern trend is the introduction of accelerators, like
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GP-GPUs. This trend further complicates the use of legacy software in HPCs.
Very few of the most important application software of today are ready to be
used on the massively parallel architecture of the exascale HPC facilities which
are planned within the next 5-10 years targeted at exascale performance.

Within the EC-funded project CRESTA (Collaborative Research into Ex-
ascale Sytemware, Tools and Applications) [1], a set of six applications codes
are being investigated and optimized with the objective of preparing them for
exascale. The codes are ELMFIRE, GROMACS, IFS, HemeLB, NEK5000 and
OpenFOAM.

ELMFIRE [2] is a gyro-kinetic particle-in-cell code that simulates movement
and interaction between high-speed particles on a three dimensional grid in torus-
shaped atomic fusion reactors. The particles are held together by an external
magnetic field. The objective is to simulate significant portions of large-scale re-
actors like the Joint European Torus JET [3] or the International Thermonuclear
Experimental Reactor ITER [4].

GROMACS [5] is a molecular dynamics code that is extensively used for simu-
lation of biomolecular systems. It is primarily designed for biochemical molecules
like proteins, lipids and nucleic acids with a large amount of complicated bonded
interactions, but since GROMACS is optimized for fast computing it is also fairly
extensively used for simulating e.g. non-organic polymers.

IFS is the production weather forecasting application used at the European
Centre for Medium Range Weather Forecasts (ECMWF). The objective is to
develop more reliable 10-day weather forecasts that can be run in an hour or
less using denser grids of measurement values.

HEMELB [9] is ultimately intended to form part of a clinically deployed ex-
ascale virtual physiological human. HemeLB simulates blood flows in empirical
blood vessel geometries. The objective is to develop a clinically useful exascale
tool.

NEK5000 [8] is an open-source code for the simulation of incompressible flow
in complex geometries. Simulation of turbulent flow is of one of the major ob-
jectives of NEK5000.

OPENFOAM [6] is an open source software for computational fluid dynamics.
The program is a “toolbox” which provides a selection of different solvers as well
as routines for various kinds of analysis, pre- and post-processing. Within the
present project the focus will be on a specialized code for turbine machinery. The
future objective is to be able to simulate a whole hydraulic machine on exascale
architectures [6,7].

In the following sections we present more detailed descriptions of the exascale
development strategies of the these codes.

2 Exascale Strategies and Development

2.1 ELMFIRE

ELMFIRE is a particle-in-cell code that simulates the movement and interac-
tion between extended charged gyrokinetic particles moving at high speed in
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a torus-shaped geometry. The particles are confined by a strong external mag-
netic field. ELMFIRE approximates the Coulomb interaction between particles
by solving a global electrostatic field on a grid, using the particle charges as
sources. ELMFIRE then advances particles in time by free streaming along the
magnetic field line and particle drift perpendicular to the magnetic field. Typ-
ically, time steps correspond to 30-50ns real time. Today the time step based
simulation in ELMFIRE can be roughly divided into seven parts: (I) Perform
momentum and energy conserving binary collisions between particles close to
each other, (II) Using a 4th order Runge-Kutta, calculate particle movements in
continuous space during the time step based on the electric field, (III) Collect
grid cell charge data from the particles for the electrostatic field. (IV) Combine
and split the grid charge data so each processor has a smaller part of it, (V)
Construct a large modified gyro-kinetic Poisson equation based on the data and
solve it in parallel, (VI) Calculate additional movement caused by polarization
drift of particles based on the acquired electric field, (VII) Write diagnostics
output.

The most CPU heavy part of the code presently is calculating particle move-
ments but as each processor is assigned a fixed number of particles this scales
linearly with the number of processors and is therefore not an issue when scaling
to larger systems. The most interesting part is the collection and distribution of
grid cell charge data. In the current version each processor can have its assigned
particles moving in any part of the torus, leading to all processor contributing
charge data to all grid cells in the system. Charge neutrality, a central require-
ment in plasma physics, is achieved by forcing the ion polarization drift and
electron parallel acceleration by the electric field to create such shifts in the
particle positions that each cell charge becomes zero. To accomplish local charge
neutrality, Elmfire uses a modified Poisson equation where the righthand side
source terms are calculated based on the positions of the particles after they have
been moved based on the current electric field. The ion polarization drift and
electron parallel acceleration can be expressed as a movement of a small charge
from a cell to another. However, as the drift and acceleration depend on the new
electric field, part of the charge movement has to be expressed as a function of
the new electric field and therefore included in the lefthand side Poisson matrix.
The effect of the ion polarization drift and the electron parallel acceleration is
limited to the nearby grid cells. Solving the modified Poisson equation gives the
new electric field, which is used to calculate the actual particle movement caused
by the polarization drift and parallel acceleration. The final result, at the end
of the time step, is neutrality in each grid cell. As a consequence each processor
stores the full electrostatic grid data and a huge sparse matrix (# grid cells x
# grid cells) for collecting charge data for the grid cells. The matrix has been
optimized by reducing the second dimension to a constant, which is the num-
ber of cells around a given cell to which charges due to gyrokinetic motion and
polarization drift can be moved from the given cell. This reduces memory usage
significantly but not enough for large-scale simulations. It also introduces an
extra index conversion when gathering the data. Once the grid cell charge data
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has been combined and split among the processors, each processor can construct
its own part of the Poission equation individually. The Poisson equation is then
solved in parallel using PETSc [10]. The solution (the electric potential) is then
distributed to all processors to be used in the next time step. Focus of the initial
work on ELMFIRE will be on basic scalability, mostly related to memory usage.
The version provided for the project does not implement any spatial domain
decomposition that leads to massive memory usage and data duplication. This
currently completely prevents simulations on large grids. The items mentioned
below are what currently have been identified as possible solutions to problems
problems preventing ELMFIRE from scaling to simulations larger than 100 000
processors. It is however expected that we find additional, and more important,
problems once the initial domain decomposition has been done.

(I) Implement a 3D domain decomposition : The version provided for the
project does not implement any spatial decomposition of the particles. Parti-
cles are distributed evenly among processors but the electrostatic grid data is
duplicated in all processors. This prevents scaling to larger electrostatic grids
than approximately 120x150x8 regardless of the number of cores available. For
large scale simulations of e.g. JET or ITER it would be beneficial to be able
to simulate electrostatic grids up to 3000x4000x16 i.e. almost 1500 times larger
than today. An estimate for an ITER simulation is that 640 000 cores would
be needed for 590 billion particles. With the current version this would require
approximately 28TB memory per core. We plan to implement an electrostatic
grid cell based domain decomposition of the code so that each processor can
have particles only inside its own grid cells. This should restrict the grid cell
data needed in each processor to its own grid cells and a few surrounding grid
cells (in order to propagate the particles in time). It should also remove the need
to communicate large amount of data for the charge data with the downside of
having to send particle data between processors in each time step.

(II) Improve load balancing : In the current version load balancing is not a
large problem but it is expected that the 3D domain decomposition will introduce
load-balancing issues, as the particles are not evenly distributed between all grid
cells in the simulation. These need to be investigated and addressed after the
initial domain decomposition has been performed. One approach would be to
dynamically reallocate the electrostatic grid based on the workload, that is, the
size of the grid and the number of particles.

(III) Improve memory usage for binary collisions: ELMFIRE calculates colli-
sions between randomly chosen particles close to each other in each time step. In
order to assess how close particles are to each other, a separate collision grid is
set up. Currently this uses 10 times the memory it really needs. By introducing
data structures that avoids duplications this could be improved.

(IV) Parallelize file writing : File writing in ELMFIRE is presently done by
all processes sending data to process 0, which then writes the data to disk. For
small simulations this is typically not an issue (< 5% of the each time steps goes
to writing diagnostics) but it will likely block large scale simulations and input
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files for visualizations. The file writing needs to be parallelized for ELMFIRE to
scale to ITER sized problems.

2.2 GROMACS

The work in GROMACS is focused on achieving significant improvements for
real applications. Seen from the users side, there are three overall important
objectives in order to advance the state-of-the-art for different applications: (I) to
reduce the computation time per iteration in order to achieve longer simulations,
(II) to improve the capacity to handle larger application systems so that e.g.
mesoscopic phenomena can be simulated, and (III) to improve the accuracy
and statistics for small application systems through massive sampling. All three
aspects are critically important, but they require slightly different approaches.
The wallclock time for a single time-step iteration is already today in the range
of a few milliseconds for some systems, and while there are some possibilities
to improve this further, it is not likely that it can be improved by more than
perhaps down to the order of 0.1 milliseconds. In contrast, handling much larger
systems, i.e. more atoms, is easier (although not trivial) from a parallelization
algorithm point-of-view, but it will involve challenges related to handling of data
when a single master node no longer can control all input and output, both when
starting execution and for checkpointing or output. Finally, for small systems the
main approach will be ensemble techniques to handle thousands of simulations
that each will use thousands of cores. Detailed improvements wiil be as follow:

(I) Benchmarking new GROMACS releases, and GPU coding : GROMACS
version 4.6, which has been developed during the first part of the project, is
currently in the beta stage, and will bring some important new advances in do-
main decomposition and scaling over previous versions. We have developed a
new set of computational kernels that have departed from the classical imple-
mentation with neighbor lists, which will make it much easier to parallelize both
with SIMD and multithreading, and achieve a higher fraction of the hardware
peak floating-point performance. These kernels are also being implemented on
GPUs, and Gromacs 4.6 will use heterogeneous acceleration with some kernels
running on the GPU while other execute simultaneously on the CPU, where the
domain decomposition is also done. It will be an important step to benchmark
all these new kernels on different hardware, in particular large clusters with GPU
co-processors (such as Cray XK6), and in this frame we will also implement sup-
port for the next-generation Nvidia Kepler architecture scheduled for release in
the spring of 2012. These cards in particular will be used on several new Cray
installations.

(II) Multi-grid solvers for efficient PME electrostatics : The vast majority
of biomolecular simulations rely on particle-mesh Ewald (PME) lattice summa-
tion to handle long-range electrostatic interactions. Since this in turn relies on
3D FFTs, the associated all-to-all communication pattern is a major bottle-
neck for scaling. We are developing improved FFT algorithms and communica-
tion patterns, but to improve support for heterogeneous architectures such as
CPU-GPU parallelism on each node, we need to develop algorithms that avoid
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communicating grids over all processors. This can currently be achieved either
through multipole-based [11], or multigrid-based [12] methods, and we intend to
investigate both. This part is targeting ”medium size ” parallelization for normal-
size atomic systems (10k-100k cores), and the O(N) algorithms will provide vir-
tually perfect weak scaling, even for systems including long-range electrostatics
(currently this is only true for simple cut-off interactions).

(III) Efficient large-scale I/O : With the completion of long-range electrostat-
ics algorithms that exhibit O(N) scaling, it should be possible to reach multi-
petascale for normal simulations of very large systems such as virus particles,
complexes of several molecules, or standard material science studies. Typical
simulations of this kind may involve a few hundred million particles. To support
this, we need to rewrite the input/output layer of Gromacs so that a large set of
the I/O tasks participate in reading the data from files to avoid running out of
memory on the master node, and to avoid global communication during start-up.
This will ideally use a minimalistic PGAS-like library that is fully portable (or
even included in the code), so that all I/O code does not have to do explicit com-
munication. We will also implement code for check-pointing and for trajectory
output that supports asynchronous output by sending the data to a subset of
the I/O nodes which then transpose the data, and write it to trajectories while
the simulation continues. This should be decomposed over time-frames rather
than space.

(IV) Task-based parallelism : One of the most significant long-term changes
will be a complete code re-write to support introduction of task-based parallelism
for improved efficiency inside many-core nodes, to enable better simultaneous
utilization of CPUs and GPUs, and to overlap computation and communication
between nodes. Of these, the last item will be particularly critical for increased
scaling, since system size growth means that gradually more time is spent on
communication than computation. At this point we will also investigate the usage
of lower-level communication libraries to improve scaling further. Presently, our
preliminary tests indicate that automated tools such as OpenMP do not provide
sufficiently fine-grained control over the execution, and we might therefore have
to use threads directly unless better alternatives are found.

(V) Ensemble computing and parallel adaptive molecular dynamics : Our main
disruptive long-term path to true exascale performance will be to combine di-
rect domain-decomposition scaling in individual simulations with ensemble ap-
proaches to support simultaneous execution of thousands of coupled simulations.
This will be accomplished by using Markov State Models and kinetic clustering
for parallel adaptive simulation [13]. In contrast to the distributed computing ap-
proach used e.g. in Folding@Home [14], exascale resources will enable extremely
tight coupling between simulations each using 1k-100k cores. This will make it
possible to employ kinetic clustering for slow dynamics (e.g. multi-millisecond
structural transitions in proteins) where even single state transitions will require
petascale-level simulations, and complete mapping of the processes is simply not
possible with todays resources. This will initially be implemented as a separate
layer of code, where our idea is to formulate dynamic data flow networks that
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execute a set of simulations, perform analysis, and based on the result of the
analysis a second generation of simulations is executed. The advantage of this
approach is that the resulting code will be very easy to adapt to other simula-
tion programs (in principle anything that relies on sampling). In particular, this
setup will enable us to achieve exascale performance for typical application sys-
tems. A target setup is a normal membrane protein system with around 250,000
atoms. With the new electrostatics solvers and task parallelism, we expect to
achieve efficient scaling over 1k-10k cores (including heterogeneous CPU-GPU
parallelism), and an ensemble could then typically include 1,000 such simula-
tions, which means efficient use of well over a million cores. Larger systems will
enable us to push this to even larger supercomputers, and approach a billion
cores on future exascale resources.

2.3 IFS

The Integrated Forecasting System (IFS) is the production numerical weather
forecast application at ECMWF. IFS comprise several component suites, namely,
a 10-day deterministic forecast, a four dimension variational analysis (4D-Var),
an ensemble prediction system (EPS) and an ensemble data assimilation system
(ENDA). The use of ensemble methods are well matched to todays HPC systems,
as each ensemble application (model or data assimilation) is independent and
can be sized in resolution and by the number of ensemble members to fill any
supercomputer. However, these ensemble applications are only part of the IFS
production suite and the high resolution deterministic model (referred to as ’IFS
model’ from now on) and 4D-Var analysis applications are equally important in
providing forecasts to ECMWF member states of up to 10 to 15 days ahead.
For the CRESTA project it has been decided to focus on the IFS model to
understand its present limitations and to explore approaches to get it to scale well
on future exascale systems. While the focus is on the IFS model, it is expected
that developments to the model should also improve the performance of the
other IFS suites (EPS, 4D-Var and ENDA) mentioned above. The resolution
of the operational IFS model today is T1279L91 (1279 spectral waves and 91
levels in the atmosphere). For the IFS model, it is paramount that it completes
a 10-day forecast in less than one hour so that forecast products can be delivered
on time to ECMWF member states. The IFS model is expected to be increased
in resolution over time as shown in Table 1.

Table 1. IFS model: current and future model resolutions

IFS model Envisaged Operational Grid point Time-step
resolution Implementation spacing (km) (seconds)

T1279L91 2011 16 600
T2047L137 2014-2015 10 450
T3999L200 2023-2024 5 240
T7999L300 2031-2032 2.5 120
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As can be seen in this table, the time-step reduces as the model resolution
increases. In general halving the grid spacing increases the computational cost
by 12, a doubling of cost for each of the horizontal coordinate directions plus
the time-step and only 50 percent more for the vertical. However, in reality the
cost can be greater than this, when some non-linear items are included such as
the Legendre transforms and Fourier transforms. It is clear from this that the
IFS model from a computational viewpoint can utilize future supercomputers at
Exascale and beyond. What is less clear is whether the IFS model can continue
to run efficiently on such systems and continue to meet the operational target
of one hour when running on 100,000 or more cores which it would have to
do. In a nutshell, IFS is a spectral, semi-implicit, semi-Lagrangian code, where
data exists in 3 spaces, namely, grid-point, Fourier and spectral space. In a sin-
gle time-step data is transposed between these spaces so that the respective
grid-point, Fourier and spectral computations are independent over two of the
three co-ordinate directions in each space. Fourier transforms are performed be-
tween grid-point and Fourier spaces, and Legendre transforms are performed
between Fourier and spectral spaces. A full description of the above IFS par-
allelization scheme is contained in [15]. The performance of the IFS model has
been well documented over the past 20 years, with many developments to im-
prove performance, with more recent examples described in presentations on
the ECMWF web-site (http://www.ecmwf.int). In recent years focus has turned
to the cost of the Legendre transform, where the computational cost is O(N3)
for the global model, where N denotes the cut-off wave number in the triangu-
lar truncation of the spherical harmonics expansion. This has been addressed
by a Fast Legendre Transform (FLT) development, where the computational
cost is reduced to CLN

2LOG(N) where CL is a constant and CL � N . The
FLT algorithm is described in [16,17,18]. While the cost of the Legendre trans-
forms has been addressed, the associated TRMTOM and TRMTOL transpo-
sition routines between Fourier and spectral space are relatively expensive at
T3999 (> 10% of wall time). Today, these transpositions are implemented using
efficient MPI allgatherv collective calls in separate communicator groups, which
can be considered the state of the art for MPI communications. Within the
CRESTA project we plan to address this performance issue by using Fortran90
coarrays to overlap these communications with the computation of the Legendre
transforms, this being done per wave number within an OpenMP parallel region.
If this approach is successful, it could pave the way for other areas in the IFS
where similar communication can be overlapped with computation. The semi-
implicit semi-Lagrangian (SL) scheme in IFS allows the use of a relatively long
time-step as compared with a Eulerian solution. This scheme involves the use
of a halo of data from neighbouring MPI tasks which is needed to compute the
departure-point and mid-point of the wind trajectory for each grid-point (’ar-
rival’ point) in a tasks partition. While the communications in the SL scheme
are relatively local the downside is that the location of the departure point is
not known until run-time and therefore the IFS must assume a worst case geo-
graphic distance for the halo extent computed from a maximum assumed wind
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speed of 400 m/s and the time-step. Today, each task must perform MPI com-
munications for this halo of data before the iterative scheme can execute to
determine the departure-point and mid-point of the wind trajectory. This ap-
proach is clearly non-scaling as the same halo of data must be communicated,
even if a task only has one grid-point (a rather extreme example). To address
this non-scaling issue, the SL scheme will be optimized to use Fortran90 coarrays
to only get grid-columns from neighbouring tasks as and when they are required
in the iterative scheme to compute the departure-point and mid-point of the
trajectory. In IFS the cost for computing Fourier transforms is CFNJLOG(NJ),
for each varying length latitude J = 1..N (N as above), where CF is a constant
and NJ is the number of grid points on latitude J . For optimal performance
of the fourier transforms, full latitudes are statically load-balanced to tasks,
where each task is responsible to computing FFTs for a subset of latitudes and
a subset of atmospheric levels. The heuristic currently used will be reviewed as
part of the CRESTA project and to explore an improved cost function for this
load-balancing problem. The improved scheme should be applicable to all model
resolutions. Based on the above background description of IFS, we propose the
following schedule of developments within the CRESTA project. It should be
noted that some of these developments will overlap in time.

(I) Coarray kernel : Develop kernel to investigate overlapping computation
and communication using Fortran 2008 coarrays in an OpenMP parallel region.

(II) Exascale ”Legendre transform” optimization : The IFS transform library
will be optimized to overlap the computation of the Legendre transforms with the
associated communications. These code developments will use the same strategy
as prototyped in the Coarray Kernel, where the Legendre transform computa-
tion and associated coarray communications will execute in the same OpenMP
parallel region. This development will be tested using IFS model resolutions up
to T2047.

(III) Exascale “Semi-Lagrangian” optimization : Developments to the IFS
semi-Lagrangian scheme to use Fortran 2008 coarrays to improve scalability by
removing the need to perform full halo wide communications.

(IV) Optimization of Fourier latitude load-balancing heuristic : Optimization
of the heuristic used to statically load-balance the distribution of variable length
latitudes in grid-space. An optimal distribution of latitudes is required to load-
balance the cost of performing Fourier transforms as IFS transforms data from
grid to Fourier space.

(V) Development of a future solver for IFS : Research into a new multigrid
solver for extreme scaling of IFS and a replacement of the spectral method. Such
a solver could be initially tested using a shallow water model code and not IFS.
Please note, this development is not part of ECMWF’s current research plans
and should be considered more speculative.

2.4 HemeLB

The Lattice-Boltzmann method for solution of partial differential equations has
nearly ideal weak scaling properties. The HemeLB code has, consequently, proved



36 J.A. Åström et al.

to have excellent scalability. This has been explicitly proved up to roughly 20,000
cores and it is reasonable to expect good scaling far beyond this number. For
HemeLB to function properly on multi-petascale and exascale and to be useful for
clinical applications a set of libraries and systemware must be able to support the
code. It is not sufficient that these libraries be delivered as research code capable
only of use on specific platforms, each of these must be usable, manageable,
deployable well-engineered, well-tested code.

(I) Visualisation and steering : Support for standard flow field visualisation for
exascale simulations is a prerequisite for HemeLB to work at the exascale. As a
first step, standard tools for flow visualisation, such as COVISE [17] will be linked
to HemeLB in an ad-hoc fashion. However, to move forward, we will need to work
with CRESTA collaborators to define a configuration system (API or DSL) so
that visualisation tools can work with HemeLBs data in-situ, to support co-
visualisation. In order to handle remote visualisation for steering at the exascale,
data-volumes will need to be reduced by in-situ extraction of medically relevant
properties, such as vessel wall stress, so that these smaller datasets can be shared.
As HemeLB will form part of an ecosystem of computational physiology models
within the Virtual Physiological Human, these systems will need to be made
sufficiently configurable so that HemeLB results can be visualised alongside those
of collaborating codes as part of a multiscale simulation.

(II) Pre-processing : HemeLB uses the Parmetis [16] library to achieve domain
decomposition for sparse geometries. Effort will be required within CRESTA to
ensure this library scales appropriately. CRESTA enhanced or developed domain
decomposition tools must support configurable interfaces for application specific
domain decomposition. Later efforts will support continuous dynamic domain
decomposition, in response to both simulation and system variability, including
support for fault-tolerance.

(III) Environments and operating systems : The vision of HemeLB as part
of a clinically deployed exascale virtual physiological human will require usable
environments for exascale deployment and job management. Job management
infrastructure must support remote on-demand access from clinical settings,
and appropriate algorithms for resource sharing must be developed for exas-
cale hardware for this context. Operating system support for applications must
be robust and easy-to-use, supporting multiple interacting applications using
heterogeneous languages and paradigms for multiscale simulation.

Environmental support for auto-tuning of application configuration will be
necessary, and this will require effort to support interaction with HemeLBs
compile-time auto configuration facilities through CMake.

(III) Introspection : HemeLB, as with many other applications, needs to be
aware of its own progress as time passes. This application introspection, if it is
not to be a blocker to exascale performance, will require attention from HemeLB
developers and CRESTA tool effort. This will require not only performance mea-
surement, but also support for report generation, visualisation of the correct-
ness of the lattice-Boltzmann simulation. Within the multiscale VPH context,
HemeLB introspection will need to interact with that of other applications. A
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clear API allowing application developers to discover on-going changes in the
host environment, responding to faults and slow-downs, will be required for per-
formance at Exascale.

2.5 NEK5000

Nek5000 [8] is an open-source code for the simulation of incompressible flow in
complex geometries. The discretization is based on the spectral-element method
(SEM) that combines the higher-order accuracy from spectral methods with the
geometric flexibility of finite element methods. Nek5000 is written in mixed For-
tran77/C and designed to employ fully large-scale parallelism. The code has a
long history of HPC development. Recently the large-scale simulations were suc-
cessful performed on the Cray XE6 system at PDC, KTH with 32,768 cores [19]
and on the IBM BG/P Eugene with 262,144 cores [20]. An overview of the capa-
bilities and recent developments within the Nek5000 community is given in the
presentation by Paul Fischer, Main developer [20]. Within the CRESTA project,
main focus will be on the development of the following software environment and
tools:

(I) Adaptive refinement : Current version of Nek5000 code uses conformal
grid with uniform order of the spatial interpolations throughout the domain.
The principal way for grid refinement is by global p-refinement, i.e. by increas-
ing the approximation order globally. There are two methods of introducing
adaptive mesh refinement (AMR): adaptive h-refinement, i.e. the splitting of
cells into smaller ones, and adaptive p-refinement, i.e. increasing polynomial or-
der in given element. Giving possibility to resolve particular region of the flow,
AMR makes a challenge as it can have negative .effect on scalability. However,
local refinement, either adaptive or by user intervention, is a desirable feature for
nek5000 which will be crucial for the future scalability of the code, in particular
for the simulation of large-scale problems involving turbulence. In the CRESTA
project we will work on framework of adaptive refinement in h-types. The basic
idea is that the refinements are only used in the regions with significant errors.
Such error estimators can be formulated based on the solution of the adjoint
equations (dual problem) that can be thought as a measure of the sensitivity of
certain observables to the local mesh quality. Such estimators have been devel-
oped at KTH. Though consideration of multiple local observables such as drag,
shedding frequency etc. it is proposed to decide when to divide the element or
switch from lower-order to higher-order (or vice versa).

(II) Alternative discretisation : So far, nek5000 is designed to have a spectral-
element discretization in all directions, either 2D or 3D. For certain cases, in
particular flows in which spatial homogeneity can be assumed in at least one
direction, the SEM discretization could be replaced by a more optimal Fourier-
Galerkin discretization. A substantial gain in performance can be expected for
such flow cases. The algorithmic changes implied by this new discretization, and
in particular the impact on scalability will be studied within CRESTA.

(III) Hybrid parallelization : In the present state, Nek5000 does not employ any
hybrid approach to parallelization. All communication is handled by MPI, which
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has proven to be very efficient, mainly due to the element structure of the mesh.
However, in the light of alternative discretization that might include an additional
level into the mesh topology, a hybrid approach should be reconsidered.

(IV) Boundary conditions for exascale computing : The definition of bound-
ary conditions requires special attention, especially in cases where large parts of
the domain are in the turbulent state. In particular for exascale computations,
which are aimed at realistic geometries in large domains, a faithful prescription
of boundary conditions is crucial. The challenge is two-fold: First, reflections
in the form of pressure waves need to be avoided at boundaries, and secondly,
proper convective properties need to be maintained as to reduce the upstream
influence of the condition, even in the presence of highly unsteady flow towards
the boundary. Similar issues need to be dealt with at inflow boundaries when
transient turbulent velocity profiles are required: Simply adding random fluc-
tuations to the DNS profiles lacks the temporal and spatial correlation of real
turbulence. The fluctuations must be pre-computed and stored in a database or
computed on the fly from an auxiliary computation. In the framework of exas-
cale simulations, the handling of such unsteady conditions needs to be assessed
and refined.

(V) Pre- and post-processing : In the CRESTA project it is decided to focus
on h-type refinements, so we have to consider simple mechanism of the mesh
generations build into the code. However, only quadrilateral (2D) and hexahe-
dral (3D) elements are used in the types of mesh used in the Nek5000 making the
problem easier. For the real-life and industrial applications, it is necessary to em-
ploy scalable pre-processing tools for complex geometries. Within the CRESTA
collaboration an interface to optimized solutions of meshes with domain decom-
position and load balancing should be created.

(VI) Load balancing : Nek5000 can obtain full scaling with uniform order for
petascale computations. When adaptive mesh refinement is introduced the load
balancing should be carefully considered due to the fact that computation on
different cores begin to differ as a result of varying order of accuracy.

2.6 OpenFOAM

OpenFOAM is an open source application for computational fluid dynamics
(CFD). The program is a ’toolbox’ which provides a selection of different solvers
as well as routines for various kinds of analysis, pre- and post-processing. Open-
FOAM is licenced under the GPL. As such, modifications have been made to
the code by different parties at different times and several versions are in com-
mon use. In this project, we consider the official release from the OpenFOAM
foundation (a not-for profit organisation, wholly owned by OpenCFD Ltd.), and
the release from the OpenFOAM Extend project. It is hoped that any changes
to the code contributed by the CRESTA project could be made available for
inclusion in both distributions, but if there are good reasons to make optimi-
sations or improvements to one particular version, we will do so. For example,
there is code specific to the Extend project for dealing with moving geometries.
If it turns out that this code introduces a performance bottleneck, then this
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would be a valid candidate for optimisation during the project. Since the code
can be used in many different ways, it is challenging to identify ways to enable
the application for exascale systems in general. It is likely that there are some
problems that are much more amenable to large-scale systems, but it is not ob-
vious a priori that there is much to be gained in making simulations of simple
systems (such as Lid-driven Cavity Flow) scale to many more processors than
at present. In conjunction with contacts at OpenCFD Ltd., we have identified a
use-case that is considered a realistic candidate for simulation at exascale. This
specific example, which consists of modelling the flow of air around a motorbike,
is representative of a wider class of problems that could benefit from simula-
tion on exascale systems. There is no published roadmap for the development of
OpenFOAM, so this activity will have to be fairly reactive to any developments
in the releases of the code. Having said that, it is expected that the following
approach will be taken to prepare OpenFOAM for exascale systems:

(I) Benchmarking of the latest version of the code : Version 2.1.0 of Open-
FOAM has been released since the CRESTA project started. There have been
some fairly major changes to the code since version 1, including the incorpo-
ration of parallel mesh generation. Benchmarking and profiling of OpenFOAM
have been undertaken on previous versions, but before we know where to con-
centrate our efforts in optimization for future systems, we need to understand
the impacts of recent changes on the codes performance. In addition to provid-
ing an update of previous results on the performance of OpenFOAM based on
current systems and the newest version of the code, we will adjust parameters
of our profiling runs in order to attempt to measure how the performance would
vary as the ratios of computation, communication and memory access vary. In
addition, we will specifically investigate the I/O performance of the code and
seek to identify how these I/O patterns are likely to change when scaling up to
exascale.

(II) Code analysis of the latest version of the code : In tandem to measuring
the performance of the code, an analysis of the codes structure will be under-
taken in order to, for example: Determine internal interfaces in the code where
alternative solvers, libraries, etc. could be swapped in if it was determined that
these could provide better performance; Determine the parallelisation patterns
currently used in the code and evaluate these with respect to exascale issues such
as fault-tolerance. A simple example of this might be that a synchronous domain-
decomposition might not be intolerant to a process failing, whereas a tracked
task-farm approach might be able to recover from a process failing. (Note that
this is example is illustrative. At present, there is no evidence that either of these
patterns is directly relevant to OpenFOAM.)

(III) Performance analysis of kernels, libraries : In the course of the activities
above, we will have been able to quantitatively measure the characteristics of
the sub-problems solved by libraries and routines used for linear algebra and
meshing. We will then engage with the developers of these libraries and seek
comparisons with the other applications to determine possible optimisations.
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(IV) Iterative performance improvement : Concentrating on those parts of
the code which have been determined to be potential future bottlenecks, we will
use standard optimisation techniques to seek to improve the scaling of the code
(including, for example, overlapping communication and computation, possibly
through the use of more asynchronous communications, investigating the effects
of compiler optimization, changing memory access patterns, introducing further
(hybrid) levels of parallelisation).

(V) Investigation of alternative parallelisation approaches : This is a riskier
approach to improving parallel performance scaling, but potentially has large
rewards, especially if it emerges that future architectures look like they will be
qualitatively different from those of today. With a large code like OpenFOAM,
it is very difficult to make non-incremental changes to the code, but having
gained a good understanding of the codes structure and performance over the
first two years of the project, it is likely that proof-of-concept code could be
written to demonstrate alternative parallelisation patterns that could eventually
be adopted by the codes developers. These will probably involve exposing more
potential parallelism in the problem so that the code can make use of the mil-
lions of cores expected to feature in the machines of the future. Such patterns
could include hybrid message-passing / shared memory approaches, adding task
parallelism, or re-computing certain data to reduce communications.

(VI) Hydraulic machinery : The application of OpenFOAM at the Institute of
Fluid Mechanics and Hydraulic Machinery, University of Stuttgart, is the simu-
lation of the flow in an entire hydraulic turbine using a Large Eddy Simulation
(LES). This means that a great part of the turbulence in the flow will be resolved
in the computation up to very fine turbulent scales. Since the Reynolds number
of this flow is very high this simulation needs very fine computational grids, very
fine time steps and long simulation times. Consequently a very high computa-
tional effort is required. According to a publication of Chapman [22] and Fröhlich
[23] the number of vertices in the computational domain can be estimated to
approximately 1000 million for all parts of a hydraulic machine. In order to
do LES for a whole hydraulic machine (including rotor/stator interaction) the
General Grid Interface (GGI) implemented in OpenFOAM is needed. For this
reason the version OpenFOAM-1.6-extend [7] is required. In our knowledge no
work has been done on exascale systems with the OpenFOAM-1.6-extend ver-
sion. GGI was a bottleneck in the OpenFOAM-extend version but due to a new
implementation performs well when running on 512 cores. Further performance
and scale up tests will be carried out to find out if GGI is a possible bottleneck
on exascale systems. In case GGI could be bottleneck on exascale systems, an
upgrade must be carried out. Furthermore, the standard simulation technique
in OpenFOAM for incompressible flows is an implicit time discretization with
a SIMPLE or PISO type pressure-velocity coupling. These algorithms could be
computationally time expensive because of the need to repeatedly solve global
systems of linear equations in an iterative loop. The solution of these global
linear equation systems could be a bottleneck for a LES on very fine grids.
Performance and scale up tests will be carried out in order to identify if the
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algorithms mentioned before are able to get good results, as well as a good
performance with OpenFOAM-extend. If it is not the case, the algorithms will
be changed towards an explicit formulation. A version of the Fractional Step
Method would be proposed to solve the equations. It is well known that the
Fractional Step Method (FSM) is used for Direct Numerical Simulation (DNS)
and LES to enhance the stability of the solution. It is expected, that this method
will reach a higher performance for very large computational grids. To realize
the tests mentioned above two test cases have been prepared at IHS. To check
if the physics is correct quite quickly, we have prepared the ERCOFTAC square
cylinder with about 15 million grid vertices. The ERCOFTAC square cylinder is
a unique test case that is experimentally measured [24]. Furthermore, the final
scope is to compute a whole hydraulic machine and therefore we have as final
test case a whole hydraulic machine.

3 Summary

In summary, the experience so far from the CRESTA project is that exascale
strategies are rather code specific. The rather expected exceptions from this
are parallel I/O and hybrid parallelization. These two seems to be more or less
necessary for all codes with exascale ambitions, but neither of them receive much
emphasis in any of the above application code strategies.

Fault tolerance is another issue that should concern all code to some extent.
This problem has been discussed rather extensively within the HPC community
for some time, but the problem is, more or less, theoretical until hardware faults
begin to occur much more frequently in practice.

Finally, an issue that should concern many scientific applications is the type of
scaling strategy for exascale. These can be crudely divided in three cathegories:
strong, weak and ensemble scaling. For the strong scaling case it is in general
probably impossible to reach exascale, for weak scaling it seems realistic to some
extent, and for the ensemble it is in general possible for any code. This kind of
scaling strategy thinking is likely to become one of the key components of the
practical side of exascale computing in the future: How to first maximize strong
scaling, then weak scaling, and thereafter to find the optimal way to govern
a large set of simultaneous large parallel computations in order to maximize
the scientific output. Finally, there must also be a stratgey on how to handle
the massive data output from such an exersice. Of these, the first two parts
have been rather well taken care of already as they are key components of code
optimization on smaller computers. The latter two become important on multi-
petaflop or exaflop scale.
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1 Introduction

This article gives an overview of the DECI (Distributed European Computing
Initiative) Minisymposium held within the PARA 2012 conference taking the
form of a short set of articles for each of the talks presented. The work presented
here was carried out under either the DEISA (receiving funding through the
EU FP7 project RI-22291) or PRACE-2IP (receiving funding from the EU FP7
Programme (FP7/2007-2013) under grant agreement no RI-283493) projects.

2 How Strong Are Materials? (Alava2)

2.1 Introduction

Large-scale simulations of fracture models were done to resolve the question of
how strong are materials. We investigated systematically [1] the behaviour of two
dimensional lattice models - the so-called random fuse networks - by varying the
system size and the disorder present in the “material”. This class of models [2]
simplifies continuum fracture by putting it into a lattice, and doing a scalar
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approximation of elasticity; it is known that qualitatively this is not essential
and the resulting speedup is important. For the same reason the simulations are
tried in two dimensions instead of three.

These results, combined with theoretical advances made to explain them,
establish the fundamental basis of the strength of brittle materials in the presence
of heterogeneities - in other words for anything which is hard and something
other than a pure single crystal. The main efforts in the DEISA part consisted
of porting the simulation software to the KTH Ekman-cluster and running it.
The numerical effort is to solve a series of mechanical equilibria - which amounts
to a damage mechanics study - the evolution of the scalar fracture model by
rank-I updates. These work only in 2D, so extensions to 3D systems are much
tougher. The original version was written at ORNL by Phani Nukala and the
current version is an adaptation of a serial version from Cornell to the DEISA
HPC environment.

The main issue is to produce massive amounts of data from “fracture experi-
ments” on systems that evolve to the fracture point with accumulating damage.
This then produces empirical probability distributions of strength (the peak or
maximum stress along the stress-strain curve). These are illustrated in Fig. 1.
The crucial question now becomes, what is the physical mechanism underlying
the observed distributions? We found out that the “disordered materials” under
study evolve with damage accumulation such that finally two crack populations
exist: the original one, and a set of larger ones from crack coalescence. Both of
these have an exponential shape.

The mathematics of the problem has been postulated to be “simply” the
statistics of extremes. This assumes that the systems (as in laboratory samples)
can be split into independent sub volumes, and that these “representative ele-
ments” have the same microscopic detail or physics irrespective of the system
size. Such limiting distributions arise from a rescaling procedure, which in physics
is well known as “renormalization”. Thus we expect the strength distributions
to scale with system size so as to converge to one of the limiting distributions
of extreme statistics. Engineers have traditionally used the Weibull one of these
to describe fracture. However, we discovered by the very high quality data ob-
tained, up to 105 samples for a given case (disorder, system size) that this is
not true. Duxbury, Beale, and Leath argued in the 1980s that the limiting one
should actually be the Gumbel one. Our simulations show this to be correct,
but even more importantly they allow us to capture the tail-behaviour of the
extreme statistics of the problem. In other words, as is the case for the Gaussian
or normal distribution for finite samples (finite “N”) the tails of the probabil-
ity distribution do not follow the asymptotic form, since the convergence does
not apply there yet. We were able to establish this thanks to the numerical
results, and moreover to obtain motivated by this discovery several important
estimates of the deviations, in particular in the important low-strength tail of
the distribution.
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Fig. 1. Testing the weakest link hypothesis. Comparing the survival probability for a
L2 network (solid lines) with that predicted by the weakest link hypothesis or renor-
malization, S4
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agreement even for moderate system sizes.
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Fig. 2. Testing the Duxbury-Beale-Leath distribution of failure stresses. A collapse of
the strength distribution for different system sizes at the same disorder as in Fig. 1,
such that the DBL form would collapse onto a straight line.
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3 Dynamics of Black Holes (Cardoso3)

3.1 Introduction

The two-body problem in General Relativity has been an outstanding problem
since Einstein’s original formulation of the theory, which was solved satisfacto-
rily only recently; in 2005 several groups were able to numerically solve Ein-
stein’s equations and generically evolve black hole (BH) binaries for the first
time [1]. This breakthrough paved the way for an exciting journey into funda-
mental physics, astrophysics, high energy physics and particle physics [2]. The
PRACE/DECI project of the Lisbon group aimed at substantially advancing the
state-of-the-art in several aspects.

3.2 Astrophysics

Stellar-mass or supermassive BHs are an important component of most galaxies.
They are thought to interact (at significant rates) in two-body processes, mak-
ing them the most attractive source of gravitational waves to be observed with
interferometers such as LIGO, VIRGO, TAMA, etc. There has been significant
effort and progress in understanding the inspiral and merger of equal-mass BHs;
unfortunately, the more realistic case of extreme mass ratio binaries is technically
challenging due to the large number of scales in the problem. We have partially
solved this problem by considering the head-on collisions of highly unequal mass
BH binaries [3]. In Fig. 3 we show waveforms (Newman-Penrose scalar Ψ4) for
the full nonlinear problem, together with a perturbative, point particle (PP)
calculation [4]. The overall good agreement for waveforms demonstrates that
numerical techniques are capable of bridging the gap between linear analysis
and the fully non-linear regime of general relativity. For more details we refer
the reader to Ref. [3].

3.3 Fundamental Physics

The ability to collide BHs at arbitrary speed opens up the possibility to test
the Cosmic Censorship Conjecture (CCC): are black holes always the outcome
of such collisions or can one form naked singularities? In particular BHs spin
slowly, with angular momentum J satisfying the constraint Jc/(GM2) ≤ 1.
where G is Newton’s constant, c is the light speed and M the BH’s mass. The
high energy, finite-impact collision of two BHs is a prime candidate to give rise
to an object other than a BH, potentially violating the CCC. Are BHs destroyed
in high-energy collisions? Our results show a fascinating outcome: potentially
hazardous (for the CCC) collisions radiate their excess angular momentum in
zoom-whirl orbits before merging. In other words, BHs that approach each other
with too large an angular momentum, zoom out while radiating this excess and
are then “allowed” to merge. This is indicated in Fig. 4. The CCC is not violated
[5,6].
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Fig. 3. (Color online) Waveforms for head-on collisions of two BHs with masses M1,M2

and mass ratio q ≡ M1/M2 = 1/100, with η = M1M2/M
2. We have decomposed the

waveform in spin-2 spherical harmonics. The modes are shown for l = 2 (upper panel)
and l = 3 (lower panel), for two different initial separations. Also shown is the waveform
in the PP limit (black solid lines). Taken from [3].

Fig. 4. Puncture trajectories of two BHs thrown at each other with v = 75%c. Here
we show the trajecotry of a single BH, for a scattering orbit (b[= 3.40M ] > bscat), a
prompt merger (b[= 3.34M ] < b∗) and a nonprompt merger (b∗ < b[= 3.39M ] < bscat).
Taken from Ref. [6]. The zoom-whirl orbits typically radiated excess angular momentum
before merger.

3.4 High Energy Physics

The high-energy processes described above are directly relevant for many HEP
scenarios, including TeV-scale gravity and the gauge/gravity scenarios. In the
former, BHs can be created from point particle collisions in accelerator



48 C. Johnson et al.

experiments. The ATLAS team at CERN is actively looking for BH signatures
from such events [2]; one crucial input for these searches is the production cross-
section, i.e, the critical impact parameter to produce a BH. This calculation re-
quires the full nonlinear numerical evolution of Einstein’s equations. Preliminary
results in four-dimensional asymptotically flat spacetime yield bscat ∼ 2.5(M/v)
[7,5,6]. The total gravitational radiation released in such collisions can go up
to 35% of the CM energy or higher, making these the most (radiative-)efficient
processes known to mankind. The extension of these results to higher dimensions
is on-going [8,9,10].

3.5 Particle Physics

Finally, an unexpected mechanism of using dynamical BHs to study particle
physics was recently uncovered. Rotating BHs display an interesting effect known
as “superradiance,” whereby an incident beam of light gets scattered with higher
amplitude. This happens at the expense of the hole’s kinetic energy: after the
reflection, the BH spin decreases. If the scattered wave is massive, the entire
setup produces a “black hole bomb”: the scattered and amplified beam gets re-
sent into the BH by a mass term. This leads to an exponential energy extraction
cascade from the BH, that would extract energy from the black hole very quickly.
Therefore the very existence of such particles is constrained by the observation
of spinning black holes. Supermassive BHs can be used to measure the mass
of extremely light particles to unprecedented levels and rule out the existence
of new exotic particles, perhaps constraining the nature of dark matter. With
this technique we have succeeded in constraining the mass of the photon to
unprecedented levels: the mass must be smaller than 10−20 eV, or one hundred
times better than the current bound [11,12]. To put this in context, this mass
is one hundred billion billion times smaller than the present constraint on the
neutrino mass (∼2eV).
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4 Framework to Run Ensemble Climate Simulations
(Asif4)

4.1 Introduction

A typical climate forecast experiment is a run of a climate model having variable
range of forecast length from a few months to a few years. Such an experiment
may have one or more than one start-dates and every start-date may comprise of
single or many members. The full length of forecasting period for the experiment
could be divided into number of chunks of fixed forecast length by exploiting the
model restart options. Furthermore, in the context of computing operations,
every chunk could have two big sections; a parallel section where the actual
model run would be performed and a serial section for performing other necessary
operations like post-processing of the model output, archiving the model output
and cleaning the disk space for the smooth proceeding of the experiment.

Fig. 5. Sample experiment setup

Fig. 5 shows a sample experiment where ten start-dates and five members are
under consideration and each start-date and member is being run for ten years.
Many EC-Earth partners run simulations (Sim) using 10 chunks of one year
forecast length, with accompanying post-processing (Post) and cleaning (Clean)
jobs. In this fashion, the experiment will be made of 50 independent simulations,
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each submitting 30 jobs (10 Sim, 10 Post and 10 Clean) with specific dependen-
cies between them. In short, there is high need of a system to automate such
types of typical experiments in order to optimize the utilization of computing
resources.

4.2 Autosubmit

IC3 has developed Autosubmit, which is a tool to manage and monitor climate
forecasting experiments by using supercomputers remotely. It is designed with
the following goals:

1. Supercomputer-independent framework to perform experiments
2. Efficient utilization of available computing resources on supercomputers
3. User-friendly interface to start, stop and monitor experiments
4. Auto restarting the experiment or some part of experiment
5. Ability to reproduce the completed experiments

The current version of Autosubmit has an object-oriented design and uses Python
as its programming language and SQLite as a database. Autosubmit acts as a
wrapper over the queuing system of a supercomputer remotely via ssh. So far,
queuing systems such as PBS, SGE and SLURM has been tested with it. In an
experiment, as a first step Autosubmit creates the entire sequence of jobs and
thereafter submits and monitors the jobs one by one after resolving dependencies
among them until the end of sequence.

The development of Autosubmit is quite relevant compared with other similar
tools such as SMS and ecFLOW (developed at ECMWF). The main idea is to
increase the portability and improve the interactions with other systems/tools
such as PRACE/ENES tools (e.g. SAGA) and METAFOR (e.g. CIM).

4.3 Wrapping Exercise

Currently supercomputing centres are increasing their computing capacity such
as number of cores, etc. Meanwhile, the rules to make use of those resources
are also becoming more strict. For example running the model on a supercom-
puter where the minimum scalability is restricted (e.g. PRACE Tier-0 machines:
8,192 cores at JUGENE, 4,096 at SuperMUC, HERMIT and MareNostrum with
2,048 minimum number of cores, or US DOE INCITE project: 60,000 cores at
Oak Ridge Leadership Computing Facility (OLCF)). Hence, as it is difficult to
scale the current version of EC-Earth beyond a few hundred cores there is a
need to adopt some mechanism to deal with minimum scalability restrictions on
supercomputers.

Therefore, in order to provide a solution to the climate community for the
restricted scalability issue, a job wrapping exercise has been made using Lindgren
(PDC supercomputer) where several jobs are wrapped at the same time by using
python threading techniques. Say for example, 10 jobs of 346 cores each could
be run as a big single job of 3460 cores.
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4.4 Future Work

Future Autosubmit will be a flexible platform, released under GNU/GPL license,
prepared for running multi-model and multi-jobs in Tier-0 and Tier-1 machines:

– Explore options to implement wrapper to ensemble simulation jobs (this
piece of work will be done by IC3 under IS-ENES2)

– Integration of HPCs using SAGA (Simple API for Grid Applications)
– BLISS-SAGA (a light-weight implementation for Python) comply with OGF

(Open Grid Forum) standards (how to interact with the middleware)
– A number of adaptors are already implemented, to support different grid

and cloud computing backends SAGA provides units to compose high-level
functionality across distinct distributed systems (e.g. submit jobs from same
experiment to different platforms)

– Documenting experiments on simplified METAFOR standards by using re-
lational databases (MySQL)

– Designing a web front-end for experiment creation and monitoring (Django)
– Storing user-defined job dependency tree in XML Scheme file
– Installation package and open source license.

5 CP2K in PRACE (Carter1, Bethune1 and Statford1)

5.1 Introduction

This short article summarises work undertaken during various different activities
within PRACE, and the work is described in more detail in [1]. The article
includes a very brief introduction to CP2K[2], and a brief discussion of CP2K
as an archetypal mixed-mode code. It then describes some of the work done to
introduce mixed-mode parallelisation into the code, and presents some results.
It concludes with a mention of ongoing work.

CP2K performs atomistic and molecular simulations of solid state, liquid,
molecular and biological systems. It is a Density Functional Theory code with
support for both classical and empirical potentials. The code is freely available,
and is GPL licensed.

5.2 A Mixed-Mode Strategy

The code was originally parallelised with MPI only. OpenMP has been incre-
mentally added to the code to introduce mixed-mode parallelism. The idea is to
use OpenMP to parallelise those areas of the code that consume the most CPU
time. Setting up parallel regions is relatively cheap, allowing the creation of
micro-parallel regions. There are various different strategies for communication
between processes within a mixed-mode code. CP2K adopts what is arguably the
cleanest approach, and the safest to implement, whereby MPI communication
takes place only outside parallel regions.
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The decision to introduce OpenMP to CP2K was motivated by a desire to
improve both performance and scaling. Performance of the code was expected
to improve for the following reasons: First, using a mixed-mode approach should
reduce the impact of those algorithms that scale poorly with the number of MPI
tasks. For example, when using T threads, the switchover point from where it is
necessary to use a less efficient 2D-decomposed FFT (as opposed to a more effi-
cient 1D version) is increased by a factor of T . Second, better load balancing is to
be expected. Existing MPI load balancing algorithms do a coarse load-balance.
Finer-grained balance can then be achieved over OpenMP threads. Finally, there
should be a significant reduction in the number of messages. This was particu-
larly true on pre-Gemini networks, and the less sophisticated networks found on
standard clusters. For all-to-all communications, the message count should be
reduced by a factor of T 2.

As an example of some of the optimisation work on CP2K undertaken in
PRACE, it was found that the calculation of the core Hamiltonian matrix could
take a significant amount of time for certain calculations, particularly those
with large basis sets. There was no existing OpenMP in this part of the code,
so adding OpenMP to this part of the code was tried, motivated by the obser-
vations described above. The main change to the code was the introduction of
a parallel region around a loop over all particles in a neighbour list: DO WHILE

(neighbor list iterate(nl iterator)==0).
A challenge in such a parallelisation is determining the breakdown between

shared and private variables. The choice as to which class the variables fall into
was determined through inspection of the code. The code uses an iterator object
to iterate over a fairly complex data structure, so it is difficult to tell a priori to
what extent the iterations of the loop are independent. From examining output
from instrumented test runs, and again through inspection of the code, it was
determined that it was possible to break down the iterations of the loop into
independent tasks, each corresponding to one or more iterations of the original
loop.

The approach was to introduce a new data structure to hold the data describ-
ing a task and to iterate over the original data structure in serial, building an
array of tasks. A parallel region was introduced around a new loop which loops
over the independent tasks. In fact, the tasks are not completely independent,
as they all update a shared array containing forces between particles.

The performance of the resulting code (for a representative input) is shown
in Fig. 6. In general, performance only improves when using a small number of
threads, but in this case at least, this is an improvement over the original MPI-
only version. Considerable improvements were also made to other parts of the
code. OpenMP was added for 11 cross-correlation functionals and improvements
were made to a further 6. All twenty-six now use OpenMP. For the functionals to
which OpenMP was added the efficiency was over 95% on a single NUMA region
and up to 92% on the entire node. Also, three new grid-reduction strategies were
implemented for a key ‘collocate’ kernel. The best result was a ∼ 50% speedup
over the existing version when running on 24 threads. A further inefficiency was
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Fig. 6. Performance comparisons of original and modified code (left) 16 MPI processes,
varying number of threads; (right) 512 total cores,varying number of MPI processes
and threads. System: HECToR. Benchamrk: molopt. Details in [1].

identified in memory re-use, giving a ∼ 400% speedup for the routine as a whole.
Details are available in [1].
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6 Synthetic Seismograms for a Synthetic Earth – Joint
Modeling of Mantle Flow, Mineral Physics and 3D
Seismic Wave Propagation (Schuberth5)

6.1 Introduction

Section 6 is a shortened and modified version of [1]. Long-standing questions in
the study of Earth’s deep interior are about the origin of seismic heterogeneity
and the nature of flow in the mantle. Understanding the dynamic behaviour is
important as the flow drives plate tectonics and controls the way the Earth looses
its heat. Thus, it is a crucial factor in tectonic modelling or in simulations of the
geodynamo and the thermal evolution of the Earth. A better understanding of
these aspects is also of great societal importance. For example, the continuous
drift of tectonic plates relative to each other results in a build up of stress at the
plate boundaries. This stress can eventually exceed the yield stress of rock thus
leading to (often disastrous) earthquakes.
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In order to improve conceptual models of mantle flow, the major challenges
today are to efficiently mine the wealth of information contained in seismic wave-
forms (which are our main source of information on Earth’s deep interior) and
to constrain the relative contributions of thermal anomalies and compositional
variations to the observed seismic heterogeneity. High expectations to gain new
insight currently lie within numerical simulations of wave propagation through
complex three-dimensional structures. Modern computational tools for seismic
wave propagation incorporate a large range of physical phenomena and are able
to produce synthetic datasets that show a complexity comparable to real ob-
servations. Also, computing whole waveform synthetic seismograms at relevant
frequencies became feasible on a routine basis in recent years thanks to rapidly
growing computational resources. However, it has long been not clear how to
introduce geodynamic considerations into seismological forward simulations in
an efficient and consistent manner, and how to benefit from expensive large-scale
simulations for our understanding of deep Earth structure and dynamics. This
was the motivation to develop a novel method, in which we generate synthetic
3D mantle structures based on dynamic flow calculations that serve as input
models in the simulation of seismic wave propagation.

Here, we present the results of this new multi-disciplinary approach that com-
bines forward modelling techniques from geodynamics, mineral physics and seis-
mology. The thermal state of Earth’s mantle at present-day geologic time is
predicted by 3D high-resolution mantle circulation models using a finite-element
method. The temperature field is then mapped to seismic velocities. For this
task, we take advantage of recent progress in describing the state of dynamic
Earth models in terms of elastic properties through thermodynamically self-
consistent models of mantle mineralogy. The predicted seismic structures are
then implemented in a spectral element code for the simulation of 3D global
wave propagation [2]. Using state-of-the-art techniques to solve the wave equa-
tion in 3D heterogeneous media, this approach allows us to capture the full
physics of wave propagation.

Both the geodynamic as well as the seismic simulations require large-scale
high-performance calculations. The computational resources provided through
the DECI-5 call offered by DEISA allowed for the first time to simulate seismic
wave propagation in synthetic Earths; that is, we are now able to compute syn-
thetic seismograms completely independent of seismic observations. This means
that we can test geodynamic hypotheses directly against seismic observations,
which may serve as a complementary tool to tomographic inversions. More specif-
ically, it is for the first time possible to study frequency-dependent waveform
effects, such as wavefront healing and focusing/defocusing in mantle structures
with realistic length-scales; that is, in a physically consistent manner.

6.2 Results

One specific question that we addressed with our joint forward modelling ap-
proach is the origin of two large regions of strongly reduced seismic velocities in
the lowermost mantle (the so-called African and Pacific superplumes). Several
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Fig. 7. Snapshots of the three-dimensional wavefield in one of our geodynamic models.
3D global wave propagation was simulated for an earthquake in the Fiji Islands region
using a spectral element technique. The wavefield is depicted by green and magenta
colours together with the shear wave velocity variations in the model, for which vertical
cross-sections and iso-surfaces are shown on a blue to brownish colour scale ranging
from -2% to 2%. Surface topography is also shown for parts of the globe for geographic
reference [Schuberth et al., 2012].
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seismological observations are typically taken as an indication that the super-
plumes are being caused by large-scale compositional variations and that they
are piles of material with higher density than normal mantle rock. However, a
large number of recent geodynamic, mineralogical and also seismological studies
argue for a strong thermal gradient across the core-mantle boundary (CMB)
that might provide an alternative explanation through the resulting large lateral
temperature variations. We tested the hypothesis whether the presence of such
a strong thermal gradient in isochemical whole mantle flow is compatible with
geophysical observations.

We have computed the 3D seismic wavefield and synthetic seismograms for a
total of 17 earthquakes distributed evenly over the globe. To obtain the necessary
numerical accuracy for the period range of interest (i.e., down to a shortest
period of 10s), we used a spectral element mesh with around 1.3 billion grid
points and 3.7 billion degrees of freedom distributed on 486 compute cores of the
supercomputing facility HLRB2 of the Leibniz Supercomputing Centre (LRZ).
The wavefield of each earthquake was “recorded” by a very large number of
virtual seismic stations in order to achieve a relatively homogeneous illumination
of our model even with a low number of seismic sources. From the synthetic
seismograms, we obtained ∼350,000 traveltimes each for compressional (P) and
shear (S) waves by an automated cross-correlation measurement technique.

The results from our full wavefield simulations demonstrate that P- and S-
wave traveltime variations in our geodynamic model are compatible with the
observed seismic data: The standard deviation of P-wave traveltime variations
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stays almost constant with depth in the mantle, while that of the S-wave trav-
eltimes increases strongly towards the CMB (cf. Fig. 8). Most important, the
standard deviations of our synthetic P- and S-wave traveltimes do not only show
different trends with depth, but are also matching those of the observations well
in terms of their magnitude. This is a remarkable result, as it shows that iso-
chemical whole mantle flow with strong core heating and a pyrolite composition
can be reconciled with seismic observations. While this finding does not neces-
sarily mean that there is no chemical heterogeneity present in the lower mantle,
it shows that complex large-scale variations in chemical composition are not
required by the dataset studied here.
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7 A Case Study for the Deployment of CFD Simulation
Components to the Grid(Weinzierl6)

IO is predicted to become a major challenge on exascale computers [1]. The IO
facilities of future computer generations will not scale with the increasing com-
pute power, the increasing number of cores [1,2,3,4], and the increasing com-
plexity and data richness of exascale simulations. Already today, loading data to
the supercomputer and downstreaming data from the simulation code requires
significant time. Already today it is thus possible to study and tackle the IO
challenge and to study strategies of how to avoid IO-bound applications [3].
With DEISA, the deployment of CFD simulations, for example due to Grid in-
terfaces, is straightforward and the information where insight is computed can,
theoretically, be hidden, Our work studies how to get the data to and from a
Grid-like environment.

For the solution of partial differential equations with mesh-based methods, one
approach is, on the one hand, to generate the meshes and, hence, study data in-
situ. On the other hand, it is natural to examine approaches of downstreaming
only data really of interest to the scientists. Analogous to themore science per flop
[5], the aim here is more insight per megabyte. The latter comprises traditionally
in-situ visualisation and postprocessing, but it also induces use of all IO facilities
efficiently and reduction of the memory footprint of the streamed data.

In the present DEISA project, we study, on the methodological side, the im-
pact of octree-based mesh to the IO challenge. Our generalised octree approach
embeds the computational domain into a unit hypersquare and divides equidis-
tantly this hypersquare into k pieces along each coordinate axis. Let d be the
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dimension. Then the result are kd new subcubes and we can continue recursively
while we decide independently for each subcube whether to continue or not. The
spacetree generalising the octree idea beyond bipartition yields a cascade of
adaptive Cartesian grids that are very simple both to encode and to generate in-
situ. While spacetree-based approaches look back to a long tradition in computer
graphics, they attract a lot of attention in particular for mesh generation and
management on supercomputers (e.g., [6,7,8,9,10,11,12,13,14,15,18]).

In-situ visualisation and postprocessing is beyond the scope of the present
DEISA project, and it also is a misfit to the traditional batch processing. How-
ever, it turns out that the spacetree method is nevertheless advantageous for
the IO output. We propose not to downstream all the simulation data, but to
replace the fire-and-forget data flow with a demand-driven approch: The user—
in our example a simplified fluid-structure interaction code—specifies the region
of interest; typically around the structure in this case. There might be multiple
regions of interest formalised by queries. A query comprises the spatial region of
interest, which subset of data (only pressure values in CFD, e.g.) are relevant,
and in which resolution the data shall be downstreamed [16]—it describes a reg-
ular Cartesian grid. Furthermore, we augment each query with an identifier to
which software component on which computer aims to postprocess these data
[17].

The queries are distributed among the spacetree. Now, the multiresolution
tessellation pays off: queries can be decomposed along any domain decompo-
sition, they can be mapped to a spacetree refinement level corresponding to
the query resolution, and the mapping of spacetree-associated data to a query
is trivial due to the simplicity of the grids used. Queries befilled by different
compute nodes due to a domain decomposition can be merged directly on the
supercomputer again, before they are sent back to the postprocessing device.
This way, we deliver exclusively data that is of relevance, we deliver data in the
required resolution and accuracy, and we provide low overhead answers—there
is no simpler data structure than a Cartesian grid.

Such an approach can be tailored to the IO topology of a supercomputer.
Queries decompose along the domain decomposition, i.e. each compute node
might befill only subparts of a query answer. While we do merge these subparts
on the supercomputer, we ensure that the data is merged such that each merging
node has an IO node exclusively (if possible) i.e. answers to multiple queries do
not compete for IO resources. Furthermore, not all data merges have necessarily
to happen on the supercomputer—it might pay off to merge some subqueries,
send incomplete answers to the postprocessing nodes, and to merge the results
there. Such a dataflow scenario is advantageous if the individual fragments sent
back can be sent due to multiple IO devices. First experiments reveal that with
a tailoring to the IO topology and architecture as well as a demand-driven data
flow that streams exclusively the data required, one can even make a great step
towards on-the-fly visualisation of supercomputer simulations.

The octree paradigm’s multiscale mesh representation furthermore enables
the data management to exploit smoothness and multiscale properties of any
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data streamed. Following ideas of full approximation storage ([19], e.g.), any
data mapped onto a spacetree can be induced to any level of the tree: if a so-
lution on a fine adaptive Cartesian grid is given, simple induction, i.e. copying
data from fine grids to coarser within the tree, yields multiple solution resolu-
tions. It then is straightforward to switch from a nodal data representation to a
hierarchical one. Data is not stored as-is, but we suggest to store on each level
only the difference to the coarser levels: the hierarchical surplus [20,21]. While
there are multiple advantages of such a storage schemes, the interesting property
for IO streaming is that the gain in accuracy per level usually is limited and can
be analysed. Typically, only few bits of the hierarchical surplus carry relevant
additional information compared to coarser resolutions. It is thus straightfor-
ward, to hold only these bits, i.e. not to work with full double precision but with
restricted accuracy [22].
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Abstract. We present an implementation of parallel GPU-accelerated
GPAW, a density-functional theory (DFT) code based on grid based
projector-augmented wave method. GPAW is suitable for large scale elec-
tronic structure calculations and capable of scaling to thousands of cores.
We have accelerated the most computationally intensive components of
the program with CUDA. We will provide performance and scaling anal-
ysis of our multi-GPU-accelerated code staring from small systems up
to systems with thousands of atoms running on GPU clusters. We have
achieved up to 15 times speed-ups on large systems.

Keywords: electronic structure calculations, density functional theory,
graphics processing units.

1 Introduction

Various electronic structure calculations are a large consumer of supercomput-
ing resources around the world. Density functional theory (DFT) is a popular
method for ab-initio electronic structure calculations in material physics and
quantum chemistry. There exists several program packages and codes intended
for these kinds of simulations. We have implemented an accelerated version of the
GPAW code using multiple graphics processing units (GPUs). GPAW [1, 2] is a
DFT program package based on the projector augmented wave (PAW) method.
It is suitable for large scale parallel simulations and it is used by several research
groups world wide. Time-depended density-functional theory is implemented in
the linear response and in the time propagation schemes. In this paper we de-
scribe the work done in implementing the most computationally intensive rou-
tines in GPAW with GPUs. We also present and analyze the performance of our
implementation.

A modern GPU is an efficient stream processor suitable for parallel compu-
tations. In the last few years the usage of GPUs in scientific calculations and
in high performance computing has increased considerably. In a recent Top500
list [3] (11/2012) 62 out of the top 500 supercomputers in the world used ac-
celerators or co-processors with 50 of these employing NVIDIA GPUs. Several
computer codes in physics and chemistry have already been modified or written
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from scratch to take advantage of GPUs. More information on the use of GPUs
in computational physics can be found for example in a review paper by Harju
et al. [4].

In DFT simulations numerical approximations are needed. They relate to the
treatment of the core electrons and to the discretization of the equations. The
most common discretization methods are localized orbitals, plane waves, real
space grids and finite elements. Normally an iterative minimization procedure
is used to find the solution to the problem starting from an initial guess [5].
Depending on the discretization method, the known numerical bottlenecks are
vector operations, matrix products, stencil operations and fast Fourier trans-
forms. These computationally intensive parts are prime targets for GPU accel-
eration. However in order to attain high performance is it usually also necessary
to implement GPU versions of a lot of the non-intensive routines.

Previously GPUs have been used in DFT calculations based on Gaussian type
orbitals [6–10], wavelet basis sets [11], plane waves [12–16] and to some extent
real space grids [17]. But to our knowledge this is the first DFT implementation
running on large GPU clusters using real-space grids and the PAW method.

2 Overview of GPAW

We will give only a short overview on GPAW and the PAW [18] method. Atomic
units are used in all equations. We use the DFT formulation introduced by
Kohn and Sham [19], where the problem of interacting electrons is mapped to
one with non-interacting electrons moving in an effective potential so that the
total electron density is the same as in the original many-body problem [20].
The single-particle Kohn-Sham (KS) wave functions ψn(r) are solutions to the
equation

Hψn(r) = εnψn(r), (1)

where the Hamiltonian is H = − 1
2∇2 + vH(r) + vext(r) + vxc(r). The last

three terms in the Hamiltonian define the effective potential, consisting of the
Hartree potential vH defined by the Poisson equation ∇2vH(r) = −4πρ(r),
external ionic potential vext and the exchange-correlation potential vxc. The
exchange-correlation potential contains all the complicated electron interactions
that the KS formulation hides and in practical calculations it is approximated.
The electronic charge density ρ(r) is determined by the wave functions ρ(r) =∑

i fi|ψi(r)|2, where the fi:s are the orbital occupation numbers.

PAW method is based on a linear transformation T̂ between smooth valence
pseudo wave functions ψ̃n and all electron Kohn-Sham wave functions ψn. Core
states of the atoms φai (r) are frozen. The transformation operator T̂ can be
constructed from the atom centered all electron wave functions φai (r), the cor-
responding smooth partial waves φ̃ai (r) and the projector functions p̃ai (r). The
transformation is exact with infinite number of partial waves and projector func-
tions. In practical calculations one or two functions per angular momentum
channel are usually enough.
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In PAW formalism KS wave functions can be expressed as

ψn(r) = ψ̃n(r) +
∑
a

(
ψa
n(r −Ra)− ψ̃a

n(r −Ra)
)

(2)

where ψa
n and ψ̃a

n are the all electron and the smooth continuation of the wave
function ψn inside the augmentation region of the atom a at position Ra. The
functions ψa

n and ψ̃a
n may be expressed in terms of projector functions and atom

centered wave functions
ψa
n =

∑
j

P a
njφ

a
j (r) (3)

ψ̃a
n =

∑
j

P a
nj φ̃

a
j (r) (4)

where the expansion coefficient in terms of projector functions are P a
nj = 〈p̃j |ψ̃n〉.

Similarly we can construct the all-electron (AE) density in terms of smooth
part and atom-centered corrections.

n(r) = ñ(r) +
∑
a

(na(r)− ña(r)) (5)

The pseudo electron density is defined as

ñ(r) =
∑
n

fn|ψ̃n(r)|2 +
∑
a

ñac (r) (6)

where fn are the occupation numbers and ñac is a smooth pseudo core density.
With the atomic density matrix

Da
i1,i2 =

∑
n

〈ψ̃n|p̃ai1〉fn〈p̃
a
i2 |ψ̃n〉 (7)

the all electron density inside the augmentation sphere is expressed as

na(r) =
∑
i1,i2

Da
i1,i2φ

a
i1(r)φ

a
i2 (r) + n

a
c (r) (8)

and its smooth counterpart as

ña(r) =
∑
i1,i2

Da
i1,i2 φ̃

a
i1(r)φ̃

a
i2 (r) + ñ

a
c (r) (9)

An iterative procedure called Self-Consistent Field (SCF) calculation is used
to find the solution to the eigenproblem (1) starting from an initial guess for
the charge density. In GPAW the most time consuming parts of a single SCF-
iteration are: solving the Poisson equation, iterative refinement of eigenvectors,
subspace diagonalization and orthonormalization of wave functions.
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The Hartree potential is obtained from the electron density by solving the
Poisson equation using a multigrid algorithm [21]. Iterative updating of the
eigenvectors is done with the residual minimization method – direct inversion in
iterative subspace (RMM-DIIS) [22, 23]. Basically, at each step the wave func-
tions are updated with the residuals.

Rn = (Ĥ − εnŜ)ψ̃n (10)

The convergence of this iteration is accelerated with the use of preconditioned
residuals by solving approximately a Poisson equation 1

2∇2R̃n = Rn with a
multi-grid method [24]. A subspace diagonalization and the orthonormalization
of eigenvectors is performed at each step.

GPAW uses uniform real space grids to discretize the KS equations. Wave
functions (ψnG), potentials (vH,G) and densities (ρG) are represented by their
values at grid (G) points. Derivatives and Laplacians (LGG′) are calculated using
finite difference stencils. A coarse grid is used for wave functions and a fine grid
for potentials and densities. A radial grid is used for the projector functions
defined inside the augmentation sphere. The discretized Hamiltonian in PAW
formalism is defined as

HGG′ = −1

2
LGG′ + veff δGG′ +

∑
i1,i2

pai1GH
a
i1i2p

a
i2G′ , (11)

where paiG are the discretized projector functions and Ha
i1i2

the PAW non-local
atomic Hamiltonian contributions.

Subspace diagonalization requires applying the Hamiltonian operator to the
wave functions and diagonalizing the resulting smaller Hamiltonian matrix.

Hnn′ =
∑
G

ψnG

∑
G′
HGG′ψn′G′ =

∑
G

ψnG(Hψ)n′G (12)

The wave functions are then multiplied by the matrix of eigenvectors

ψ′
nG =

∑
n′
ΛH
nn′ψn′G. (13)

In orthonormalization an overlap matrix is constructed by applying overlap op-
erator to the wave functions

Snn′ =
∑
G

ψnG

∑
G′
SGG′ψn′G′ . (14)

This is then Cholesky decomposed and multiplied with the wave functions to
obtain orthonormal wave functions

ψ′
nG =

∑
n′
L−T
nn′ψn′G. (15)

Both the subspace diagonalization and orthonormalization also involve integrals
of projector functions multiplied by the wave functions and addition of projector
function multiplied by a matrix to the wave functions.
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3 GPU Implementation

A NVIDIA Fermi [25] GPU architecture consists of several streaming multipro-
cessors, each with its own set of CUDA cores. Each core has a fully pipelined
integer arithmetic logic unit (ALU) and floating point unit (FPU) supporting
both single and double precision floating point arithmetic. All multiprocessors
have small amount of local memory and have an access to the global memory.
Local memory is split between L1 cache and shared memory, which can be used
as a user-managed cache. A global L2 cache is shared by all multiprocessors.
High global memory latency is masked by executing thousands of threads con-
currently. Local memory and registers are partitioned among currently executing
threads.

GPAW is implemented using Python programming language with extensions
written in C for the performance critical parts. Our GPU accelerated version
uses the PyCUDA [26] toolkit to enable the use of GPU in Python code and
several custom CUDA kernels [27] to speed up the GPAW C-extensions. We have
used GPUs to speed up most of the performance critical parts of SCF iteration.
All of our calculations use double precision arithmetic.

The Poisson equation is solved on a fine grid using a multigrid solver. The
basic operations are: finite difference stencils for the Laplace operator and re-
striction and interpolation operations between coarser and finer grids. We have
implemented CUDA kernels for all these operations and the entire Poisson solver
is done with GPUs.

The 3D finite difference kernel processes the grid slice-by-slice [28]. We define
global memory read redundancy as the ratio between output points written to
and input points read from global memory. Global memory read redundancy
is reduced by performing the calculations from shared memory. Each YZ-slice
of the grid is divided into 2D thread blocks. Each thread reads one grid point
from global memory to shared memory. Also data required for the stencil halos
is added to shared memory. Each thread then calculates the finite difference
operator for one grid point. For the YZ-slice data is read from the shared memory.
Data required for the X-axis calculations is stored in registers for each thread.
The working slice is then moved along the X-axis of grid to completely process
the grid. Our implementation automatically generates custom CUDA kernels for
each order-k stencils from a single C source code base. This is done to minimize
the shared memory and register consumption and to completely unroll all the
inner loops required for the finite difference operation. For small grids we also
divide the grid into concurrent slices along the X-axis of grid to increase the
number of threads performing calculations at the same time even though it
hurts the overall read redundancy.

Figure 1 shows a performance comparison between CPU and GPU version of
3rd order finite difference operation for different grid sizes. The GPU used in
testing was NVIDIA Tesla M2070 which has double precision performance of 515
GFLOPS and maximum memory bandwidth of 150 GB/s. The CPU used was
Intel Xeon X5650 with six cores each with double precision performance of 10.64
(12.24 in turbo mode) GFLOPS and memory bandwidth of 32 GB/s. A single
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Fig. 1. The performance comparison of a 3rd order finite difference operator. GPU:
NVIDIA Tesla M2070 CPU: Intel Xeon X5650 using a single core.

CPU core was used in the tests. For large grid sizes the GPU version of the code
is over 40 times faster. The peak output performance for the kernel is around
1975 Mpoints/s. Ignoring boundary effects and using 16x8 thread blocks, the 3rd
order finite difference operator (with 19 input elements for every output value)
has global memory read redundancy of 2.1250. For each output value one global
memory write and 2.1250 reads are performed, resulting in around 49 GB/s
peak bandwidth usage for the whole kernel. For each output value 37 floating
point operations are performed, which means that kernel has peak floating point
performance at around 73 GFLOPS. Clearly for large grids the finite difference
kernel is memory bandwidth bound.

For the restriction and interpolation operations we use similar strategy as
for finite difference operations. Calculations are performed using combination of
shared memory and registers. Figure 2 shows a performance comparison between
CPU and GPU versions of the restriction and the interpolation operations for
different grid sizes. All operations support real and complex grids and finite
and periodic boundary conditions. The restriction, interpolation and the finite
difference kernels all have the same problem: the output bandwidth for small grid
sizes is much worse than for large grids. This can cause performance issues with
multigrid methods. Also, in practical GPAW calculations one generally wants
to use coarser grid sizes to speed up the calculations and to decrease memory
consumption.
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Fig. 2. The performance comparison of interpolation and restriction operators. GPU:
NVIDIA Tesla M2070 CPU: Intel Xeon X5650 using a single core.



Parallel Electronic Structure Calculations 69

To avoid any slow and unnecessary transfers between the GPU and the host
computer, during the SCF-iteration all the wave functions are stored in the
GPU memory and the operations involving them are performed using the GPU.
The iterative updating of the eigenvectors (RMM-DIIS algorithm) is performed
entirely on GPUs. Most of the basic linear algebra operations are done with
NVIDIA’s CUBLAS library. Since large part of the operations is performed on
all of the wave functions, we have implemented blocking versions of most of our
kernels which allow us to update a block of eigenvectors simultaneously on a
GPU. These include custom versions of several of the level 1 BLAS routines. For
example, we have a implemented a custom blocking dot product using a GPU
optimized parallel reduction sum kernel. The preconditioner uses same basic
operations as the Poisson solver, but we use blocking versions of the restriction,
the interpolation and the finite difference kernels. Figure 3 shows the effect of
different block sizes on the operations used by the preconditioner. Especially on
small grid sizes the use of blocking increases the performance considerably.
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Fig. 3. The effect of different block sizes on the 3rd order finite difference, the inter-
polation and the restriction kernels on two small grid sizes

The most time consuming parts of subspace diagonalization and orthonormal-
ization are matrix-matrix multiplications which are performed with CUBLAS on
GPU. Also, the Hamiltonian operator and the overlap operator are applied to
the wave functions on GPU. For the integrals of projector functions multiplied
by the wave functions and addition of projector function multiplied by a matrix
to the wave functions we have developed several custom CUDA kernels which
perform blocking parallel integrations and additions between the projector func-
tions defined on a dense radial grids and wave functions defined on coarse grids.
We use GPU also for some smaller operations, like the calculation of the electron
density from the wave functions.
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The high-level parallelization of the code is done with MPI (Message Passing
Interface). Our GPU version supports multiple GPUs using domain decompo-
sition of the real space grid or by parallelizing over k-points. For k-points the
parallelization is almost trivial since the wave functions in different k-points
don’t interact numerically with each other. However, usually in periodic systems
with several hundred atoms or more only one k-point is needed.

Domain decomposition for the finite difference stencils and restriction and in-
tegration operations involves communication with the nearest neighbor domains.
In the GPU version this requires data movement from the device memory to the
main memory, transferring the data to the destination node using MPI and mov-
ing the data from main memory to the device memory in the destination node.
We have implemented several different approaches to speed up this process which
involve overlapping receives, sends, memory transfers and computations in the
middle part of the grids and blocking of several wave functions and boundary
regions into few large transfers. These are used depending on the grid and the
transfer sizes.

4 Performance Evaluation

We evaluated the performance and scalability of our code by comparing the
ground state DFT calculation times between the GPU and the CPU versions
of the code. For benchmarking purposed only a fixed number of SCF iterations
(usually 10) were calculated for each system and an average time for a single
SCF iteration was used to compare the performance. For small systems testing
was performed with Vuori cluster at CSC, which has 7 GPU nodes connected
to an Infiniband network. Each node has two Intel Xeon X5650 processors and
two GPU cards, either NVIDIA Tesla M2050 or M2070. All calculations were
performed using double precision floating point accuracy and the same number
of CPU cores as GPU cards were used in testing.

For the serial performance we used two simple test systems: the fullerene
molecule C60 and 95 atom bulk silicon Si95. The results are shown in Tables 1
and 2. The overall speed-ups for these systems were 7.7 for the silicon one and
8.3 for the fullerene. However the speed-ups for the individual GPU accelerated
parts were much higher ranging from 7.7 to 20. The reason for this is that about
one third of the time in the GPU accelerated version is taken by routines which
don’t have GPU implementations yet. A large chunk of that time is taken by
the calculation of the exchange-correlation potential.

We tested the parallel scalability the our multi-GPU code with a carbon
nanotube system. The scalability was tested in a weak sense meaning that we
attempted to keep the problem size per MPI task constant when the number of
tasks was increased. The length of the carbon nanotube was increased concur-
rently with the MPI tasks. The size of the system varied form one MPI task,
80 atoms and 320 valence electrons to 12 tasks, 320 atoms and 1280 valence
electrons. The performance of the CPU and GPU versions of the code and the
achieved speed-ups are demonstrated in Figure 4. The same number of CPU
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Table 1. Bulk silicon with 95 atoms with periodic boundary conditions, 360 bands
and 1 k-point. Times are in seconds per one SCF iteration. Grid size: 56x56x80 CPU:
Intel Xeon X5650 using a single core GPU: NVIDIA Tesla M2070.

Si95 CPU (s) GPU (s) Speed-up

Poisson solver 1.8 0.13 14
Orthonormalization 23 3.0 7.7
Precondition 9.4 0.77 12
RMM-DIIS other 32 3.2 10
Subspace diag. 23 2.1 11
Other 2.7 2.7 1.0

Total (SCF-iter) 93 13 7.7

Table 2. Fullerene molecule C60 with 240 electronic states. Times are in seconds per
one SCF iteration. Grid size: 84x84x84 CPU: Intel Xeon X5650 using a single core
GPU: NVIDIA Tesla M2070.

C60 CPU (s) GPU (s) Speed-up

Poisson Solver 13 0.64 20
Orthonormalization 11 1.2 9.2
Precondition 16 0.99 16
RMM-DIIS other 8.1 0.6 13
Subspace Diag. 22 2.1 10
Other 3.5 3.2 1.1

Total (SCF-iter) 76 9.1 8.3

cores and GPUs were used in all the tests. The weak scaling efficiency of the
multi-GPU code is very good. The largest speed-up was observed with 12 GPUs.

A larger test for weak scaling was performed with CURIE supercomputer
based in France, which has a large hybrid GPU partition with 144 nodes con-
nected to an Infiniband network. Each node has two Intel Xeon E5640 processors
and two NVIDIA Tesla M2090 GPU cards. Bulk silicon with periodic bound-
ary conditions was selected as a test system. Again the number of atoms in
the test system was increased concurrently with the MPI tasks. The size of the
system varied form one MPI task, 95 atoms and 380 valence electrons (grid
size: 80x56x56) to 192 tasks, 320 atoms and 6908 valence electrons (grid size:
164x164x164). The largest system requires about 1TB of memory for calcula-
tions. The performance, speed-ups and scaling behavior of the CPU and GPU
versions of the code is demonstrated in Figure 5. Again, the scalability and the
performance of the multi-GPU code seems to be very good and consistent even
on massive systems using 192 GPUs. The achieved speed-ups varied from 10 to
15.8.
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5 Conclusions

We have provided an electronic structure calculation code capable of running
on large GPU clusters. We have accelerated with GPUs most of the numeri-
cally intensive parts in DFT GPAW calculations: solving the Poisson equation,
subspace diagonalization, the RMM-DIIS algorithm and orthonormalization of
the wave functions. High performance was achieved by carefully optimizing the
CUDA kernels and minimizing the data transfers between the GPU and the host
computer. For the serial version of the code we observed speed-ups between 7.7
and 8.3. The performance could be improved by implementing more routines
using GPUs.

Multiple GPUs and nodes can be utilized with MPI using domain decom-
position or by parallelizing over k-points. Our parallel implementation overlaps
computations and data transfers between different GPUs. With the parallel ver-
sion of the code we were able to get significant speed-ups (up to 15 times) in
ground state DFT calculations using multiple GPUs when compared to equal
number of CPU cores. Also, an excellent weak scaling efficiency for the multi-
GPU code was achieved in the tested systems running up to 192 GPU cards.
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Abstract. In recent years the evolution of software architectures led
to the rising prominence of the Service Oriented Architecture (SOA)
concept. The services can be deployed in distributed environments and
executed on different hardware and software platforms. In the paper a
configurable and flexible environment, allowing composition, deployment
and execution of composite services, which can be applied in the wide
range of SOA-based systems is presented. It supports service semantic
description, composition and the distribution of service requests guaran-
teeing services quality, especially efficient allocating communication and
computational resources to services. We present an unified approach,
which assumes the semantic description of Web service functionalities
with an XML-based language - Smart Service Description Language
which provides similar features to that of OWL-S or WSDL, however, it
was designed to support services execution and monitoring. These unique
features allow to design a service execution engine, compatible with the
underlying execution environment and providing support for service QoS
guarantees.

Keywords: Service Oriented Architecture, service composition, service
request distribution, service security.

1 Introduction

In recent years the evolution of software architectures led to the rising promi-
nence of the Service Oriented Architecture (SOA) concept. This architecture
paradigm facilitates building flexible service systems. The services can be de-
ployed in distributed environments, executed on different hardware and software
platforms, reused and composed into composite services.

Service composition and execution were addressed in numerous works [6].
Many approaches [7] require a well-defined business process to compose a com-
posite service. Semantic analysis of user requirements, service discovery (meeting
the functional requirements) and the selection of specific services against non-
functional requirements (i.e. execution time, cost, security) are common issues in
service composition. However, there many disadvantages in the solutions devel-
oped so far, which prevent their successful introduction to the market. In many
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cases only one aspect of service composition is considered. For example the work
[10] focuses on services selection based only on one functional requirement at
a time. Other works show that non-functional requirements are considered to
be of a key importance, however approaches still ignore the aspect of building
a proper structure of a composite service which is a key to optimization of i.e.
execution time.

Various methods for services selection or composite service QoS-based opti-
mization were presented. However, those solutions are not widely used by other
researchers. Some of them propose complete end-to-end composition tools in-
troducing a concept of two-staged composition: logical composition stage to
prune the set of candidate services and then composing an abstract work-flow.
METEOR-S [1] presents a likewise concept of binding web services to an ab-
stract process and selecting services fulfilling the QoS requirements. Notions of
building complete composition frameworks are also clear in SWORD [13], which
was one of the initial attempts to use planning to compose web services. How-
ever, it should be noted that the proposed approaches are closed and do not
support incorporations of other methods and algorithms. On the other hand, an
extensible framework-based approach is what is currently needed in SOA field in
order to create composition approaches that are fitted to different domains and
problems characteristic for them. An approach to service composition described
below was developed in order to be compatible with this assumption.

The paper is organized as follows. Section 2 briefly describes the architecture of
developed and implemented environment. Description of Service Composer and
Work-flow Engine which are responsible for service composition and execution
control are presented in section 3. In the section 4 components responsible for
service execution at the lowermost level are presented. Section 5 describes the
Validation Unit, it covers the presentation of the general idea as well as some
its implementation details. Finally, section 6 outlines the work and discusses the
further works.

2 The General Architecture of Proposed Environment

The architecture of proposed environment is presented in the figure 1. It is
composed of a number of independent modules providing separate functionalities
and interacting with each other using specified interfaces. Its components are
responsible for service composition and execution control provided by Service
Composer and Work-flow Engine, service execution and monitoring performed
by: Broker, Facade, Controller, Virtualizer, and Validation unit responsible for
secure execution of services. The main components of design and implemented
environment are as follows:

– Broker - handles user requests and distribute them to proper instances of
services. The decision is taken using information about current loading of
available communication and computation resources. Functional and non-
functional requirements are taken into consideration. It also performs inter-
nal requests to coordinate the operation of the system components as well
as obtain some necessary information.
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– Facade - supports communication with components behind it, and collects
necessary information for the Broker. It also provides special services for the
Broker to test current state of processing environment (e.g. characteristic of
communication links).

– Controller - manages all components behind the Facade. It is responsible for
control processing according to capabilities of the environment and current
state of it. It can also route the requests to the services independently, taking
into account computational resource utilization and performs decision to
start/stop another instance of service.

– Virtualizer - offers the access to hypervisor commands. Uses libvirt to exe-
cute commands which gives the environment independence from particular
hypervisor.

– Service Composer - is responsible for composite service composition.
– Work-flow Engine - governs the process of services execution and the dynamic

interpretation of requirements leading to service execution.
– Validation unit - provides the value of security level which is an important

non-functional requirement used by Service Composer. More specifically re-
turns a security level which is equal to the current anomaly level of the
service.

Fig. 1. The architecture of developed and implemented environment

Above specified modules interact using two interfaces. Internal communication is
XML-RPC based, for components behind the Facade, and uses SOAP messages
for communication between Broker and Facade. This allows flexibly manage dis-
tributed computational resources as well. Interaction with external components
is based on Broker services with SOAP messages.

3 Service Composer and Work-Flow Engine

This section presents a general composition scenario and indicates that each
of its stages could be performed using different methods; one could use differ-
ent semantic selection methods when searching for services; finally, optimization
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techniques could be used to produce the composite service fulfilling the non-
functional requirements [14]. All these led to designing a composition framework
with an flexible architecture that would allow composition service designers to
incorporate various approaches, test them and deploy in a form of service en-
abled composition tools. This approach is fully consistent with the assumptions
of the SOA paradigm and stems from our previous experiences with service
composition frameworks [15]. It consists of Service Composer, equipped with
a front-end Web interface allowing a business client to define his domain by
connecting to external service and knowledge repositories and Work-flow En-
gine. Both are service-based and can be called from an external application
through SOAP protocol. The composite services are described in SSDL (Smart
Service Description Language) which is proposed as a solution allowing simple
description of composite service execution schemes, supporting functional and
non-functional description of services. Its functionality includes the Web Service
Description Language (WSDL), but offers important extensions. A definition of
SSDL node types contains all basic data types which allow for the functional and
non-functional description of a service. Each SSDL node, is used to describe a
basic functionality requirement for a service has several important sections used
during service selection, composition and the final execution plan optimization:

– physical description - used by every type of input and output data for a
specific Web Service,

– functional description - used to semantically describe the capabilities of a
service, expressed in terms of domain ontology concepts,

– non-functional description - used to describe non-functional parameters of a
service such as: time, cost, availability and others; non-functional parameters
that can be requested for composition purpose are not limited in any way -
external validation can be performed using, e.g. user defined ontology and
rules.

To compose a composite service means to find a set of atomic services and
bind them together so that they, as a new service, fulfil all functional and non-
functional requirements. Typically automated composition process requires a
semantic query and consists of three stages: building of a composite service struc-
ture, building of a composite service scenario, and finding an optimal execution
plan of a composite service. Each of the composition stages could be performed
using different methods. In order to provide a flexible approach to composition
tasks, the Service Composer is a composite service itself and is built up from
the services responsible for selection, data flow control and QoS optimization of
the atomic services which take part in a composite service execution plan. The
services of the Service Composer (semantic filters used for service selection, or
QoS assessment services) may use different strategies and algorithms. The result
of the composition process is a composite service plan which is passed to the
Work-flow Engine.

Execution engines which support the process-driven composite service exe-
cution were described in [12], while the engine support for execution of BPEL-
defined processes was proposed in [4] [5]. These solutions, however, assumed a
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fixed architecture of the service framework, which was based on certain devices
and did not allow the reconfiguration of execution engine.

After the composition of the composite service is completed, the service is
executed by the SSDL execution engine (Work-flow Engine). It assumes engine-
as-a-service approach, and offers an execution engine as a configurable composite
service. It has a built-in SSDL language interpreter and supports dynamic inter-
pretation of service description files, service configuration, and execution control.
The Work-flow Engine is implemented as a lightweight virtual machine which
may be duplicated and migrated upon decision taken on the SOA infrastructure
level. The core feature distinguishing Work-flow Engine from other execution
engines is its focus on composition mechanism and, together with the expressive
nature of SSDL language it interprets, ability to configure its own behaviour.

TheWork-flowEngine can be configured to interpret and execute different kinds
of node classes defined in SSDL. SSDL is executed by theWork-flow Engine in two
phases. First, in the initialisationphase performs validation of the SSDL service ex-
ecution request and can run external services transforming the whole input SSDL.
Then, the engine executes each of the nodes of the SSDL by sending requests to
the Broker (processing phase). The Work-flow Engine architecture allows also for
further extension of its capabilities. For example both in the initialisation and the
processing phase chosen actions, can be performed by appropriate external Web
services indicated by the Work-flow Engine configuration.

The main role of the Work-flow Engine is to govern the process of services ex-
ecution. Actions focused on the SSDL and performed in the preprocessing phase
could be internal methods or, in configuration-driven approach, composite web
services. Based on this fundamental engine model, other phases could be added
to further personalize the behaviour and expand engine functionalities. This
should ultimately lead to further extensibility of the engine, incorporating vari-
ous composite service definitions as modules and various behaviours depending
on chosen events.

The key components of the Workflow Engine as a composite service, along
their functionalities are presented in the figure 2. Work-flow Engine is imple-
mented in Java and supports multi-threading to process multiple service execu-
tion plans at the same time. It is capable of executing composite services defined
in SSDL but it can also automatically generate web interfaces to composite ser-
vices stored inside the engine, broadcasting as those services. In this mode the
Execution Engine can emulate any composite service defined in SSDL. As a re-
sult of multi-threading, single execution engine could act as multiple services or
in extreme case, multiple engines could act as atomic services - hiding composite
services behind a layer of abstraction. For optimization purposes not only the
Work-flow Engine could be maintained in various localizations but also it can
delegate parts of its composite service to other instances of execution engine.

The scenario for using presented framework to compose and execute services
assumes the following three phases:
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Fig. 2. The Execution Engine scheme and basic functionalities

– Requirement definition - using Service Composer module interface operator
defines requirements for a composite service, which have a form of directed
graph, where nodes and links represent service requirements and the data
flow, respectively,

– Service composition - the requirements graph is processed by the Service
Composer, which executes composition algorithm and produces a composite
service graph which may be edited or checked by the operator. A composite
service graph is stored in the SSDL format and may be passed directly to
the Workflow Engine when execution is needed,

– Service Execution Work-flow Engine send the service execution request to
Broker in order to execute the service.

The basic workflow starts with the business process query, complemented by its
associated non-functional requirements (cost, security, time constraints, etc.). It
is possible to define the business process in the GUI of Service Composer or
to translate it from Aris BPM format via dedicated translation service which is
also provided as a part of presented environment. Future translation services (for
example from BPMN format etc.) are under development. The result of process
translation or its definition using Service Composer GUI has the same result it
is a composite service requirement graph which is stored in SSDL format.

In order to compose a composite service responsible for business process
execution, the requirements graph is read by the Service Composer and the
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composition process starts. The requirements graph is processed by the Service
Composer, which executes composition algorithm and produces a composite ser-
vice graph which may be edited or checked by the operator. The GUI of the
Service Composer is implemented in JavaScript and may be viewed from any
Web browser. It supports access to the service repository, domain anthologies
and provides a graphical view of any composite service or business process repre-
sented in SSDL. Figure 3 presents an example of composite service (responsible
for processing video monitoring data streams). The Service Composer GUI al-
lows editing and detailed inspection of the graph of any composite service. Any
changes being made are directly written in SSDL file, which supports the oper-
ator in controlling and altering the composition results. The composite service
graph contains all the atomic services and represents the dataflows between
them. Again, a composite service graph is stored in the SSDL format and may
be passed directly to the Work-flow Engine when execution is needed.

Fig. 3. The graph of an exemplary composite service (dataflow view)

In order to execute a composite service, its definition in SSDL is passed to the
Work-flow Engine which communicates with the Broker and registers the ser-
vice. From this point on, the service may be executed by the Work-flow Engine,
which interprets the SSDL definitions of composite services and maintains the
non-functional parameters. The framework also allows the use of external exe-
cution engines (in this scenario, the Work-flow Engine serves as an SSDL-driven
interface for them). In the course of execution, the Work-flow Engine calls the
atomic services via the Broker, which distributes calls to the chosen instances of
services.
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4 Request Distribution Manager Components

Broker, Facade, Virtualizer and Controller together create so called Request
Distribution Manager (RDM) that is responsible for atomic service execution
at the lowermost level. The architecture of RDM resolves the problem with
traditional software lack of flexibility. Software composition and distribution in
the traditional form, where applications are not open enough to follow rapidly
changing needs of business, had to be replaced with something more flexible.
The idea to compose the processes from services publicly or privately available,
mix and match them as needed, easily connect to business partners, seems like
the best way to solve it.

The RDM receives from Work-flow Engine request for service execution and
takes decision where requested service will be executed in the distributed envi-
ronment taken into consideration current loading of available communication as
well as computation resources. Request for service execution is send by Work-
flow engine or any other client which, used defined for RDM (Broker) interface in
form of SOAP message. It means that RDM delivers to clients access to services
available in used distributed environment. Clients see available services at Bro-
ker localization and don’t know where service is located and that services may
be multiplied. From the client’s point of view, services are described at Service
Repository using WSDL standard, and are accessible using standard SOAP calls
and its physical location is hidden from the client.

The module of RDM that as the first received service request is Broker,
which acts as service delivery component. It distributes requests for services
to known service processing resources. The Broker collects data about instances
of atomic services based on measured or calculated values of non-functional pa-
rameters. To make allocation decision the Broker estimates completion time of
service execution and data (request/response) transfer time with use of adaptive
models of execution systems and communication links, built as a fuzzy-neural
controllers. However Broker distinguishes individual processing resources, simul-
taneously coordinates activities with Controller, and passes requests on. Each
and every request is redirected to proper service instance based on the values of
non-functional parameters of the requested service. Proper instance of service is
either found from the working and available ones or the new one is started to
serve the request. Such an approach gives the possibility to serve clients requests
and manage resource virtualization and utilization automatically with minimal
manual interaction.

The Facade supports communication between Broker and components inside
the execution system. The Facade collects and delivers some essential informa-
tion necessary to control request distribution. It accepts an interprets defined
SOAP messages of internal services used to support request distribution and
service virtualization. For standard service requests the Facade processes header
section of SOAP messages. It completes especially defined section with essential
data of service execution, currently real completion time of service execution.
Virtualizer for virtualization management used an open source toolkit libvirt. It
offers the virtualization API supporting most of existing hypervisors.
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Controller tasks is to prevent the system from taking virtual sprawl route,
which is pointed as one of the biggest challenges in virtualization. The data com-
ing from monitoring could be used to determine the service instances which are
not used and can be stopped. It also determine the need to increase or decrease
the amount of memory assigned to particular virtual machine. Furthermore Con-
troller shall understand service importance automatically starting the services
which require constant accessibility. Handling the request by the Controller can
lead to one of four situations. There is a running service instance which can
perform it and it will be returned as the target to which the SOAP request
shall be forwarded. All running instances of requested service do not satisfied
non-functional requirements from the request.Then the new service instance is
started. There is no running service, but there is an image which satisfies the
conditions. In such a case the image will be instantiated and it will be used as
the one to perform the request. Last possibility is the lack of proper service and
image in which case the error will be thrown and finally returned as a SOAP
Fault message to the client.

Below an example how the RDM can be used when services are provided by
an application that is built using client-server architecture is presented. The ap-
plication that provides services is multi-user application, moreover services can
be provided by the number of application instances available at different loca-
tions at the same time. The application is equipped with own monitoring system
that presents to the service administrator information about current loading for
each running application instance. Additionally application monitoring system
is able to predict how more users can used the application instance also. The
screenshot of application monitoring system is presented in figure 4. The upper
view presents the loading of selected by service administrator server and lower
prediction how many more service requests can be provided by instance of appli-
cation running on the specified server. When application is not able to provide
service for some user because of application overloading, the request is store in
the queue or the message that system is not able to provide the service for user
is generated. Then to solve this problem service administrator starts manually
the new instance of application and redirect all request from the queue.

Using RDM solves the problem the necessity of service administrator actions
when the services are overloaded. Design and implemented Broker can works in
two modes, the first when all actions related to the service requests are mainte-
nance directly by the Broker and the second one when the Broker works in the
BaaS mode (Broker as a Service). When Broker works in the BaaS mode, the
IP address of service is return as response for service request. Then, the client
is able to use the service directly.

Figure 5 presents the scenario for service request processing when available
service instances are close to overloading. The client send the request to Broker
that woks in the BaaS mode. Using the monitoring data related to current load-
ing of communications lines and available in the distributed environment servers
takes decision about the localization of Computer Centre where the new instance
of service should be started. Then the request is send to Facade of chosen by the
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Fig. 4. Visualization of monitoring data

Fig. 5. Scenario of new service instance creation

Broker Computer Centre. It is then the responsibility of the Facade to get the
details about the localization of the new created instance of service (IP address)
and forwarding the message with this information to Broker. Then the answer
is sent back by Broker to the client and the client can use new created instance
of requested service.
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5 Service Execution Monitoring and Validation

Each IT system must be verifiable secure, especially wherever sensitive data is
handled. As a result, there are natural tendency to validate systems security
level. The main idea of SOA based system validation presented in this paper is
that while the atomic service security level has been evaluated also the composite
service can be validated using some formal operators taken from Subjective Logic
and execution plan defined in SSDL [8].

The Broker collects and provides to Validation unit module data about in-
stances of atomic services. These data are values of non-functional parameters
of registered services instances. Some of them, e.g. completion time of service
execution and data volume (request/response), are used by Validation unit to
validate security level of executed services while the others are used to estimate
values of non-functional parameters and to pass them to Service Composer. Ser-
vice Composer uses actualized values of service non-functional parameters to
prepare the execution plan for next users’ request corresponding to the current
status of execution environment and users’ SLA [3]. Another task of Validation
unit is validation of security level of executed services. Values of non-functional
parameters obtained from Broker are used to obtain useful information about
system deviations from normal state. Validation unit uses anomaly detection
which must pre-process them to reduce the probability of misinterpretation and
false-positive alarms. The general idea of security level validation is that Valida-
tion unit creates time series related to features describing the executed service
behaviour [9]. Time series is a sequence of data points, measured typically at
successive times, spaced at (often uniform) time intervals and analysed to detect
anomalies. Anomaly in time series data are points that significantly deviate from
the normal pattern of the data sequence and are related to security breaches.
The evaluated level of observed anomaly in executed services is also passed to
Service Composer. Service Composer module uses this information to prepare
execution plan of composite services in regard to security level requirements.

5.1 Implementation Issues of the Validation Unit

The Validation unit has been designed and implemented in accordance with the
service oriented paradigm. This means that the Validation unit is fully operable
and independent service which takes as an input a sequence of numerical values
comprising time series and which returns a value supposed to be the security
level of the monitored object. There are also two modes of operation of the
Validation unit. The first one is dedicated to validation of the single instance of
a service. The second one allows validating all available services simultaneously.
However this second mode of operation is nothing more than the concurrently
executed validation for each service available in Request Distribution Manager.

As Broker provides the list of currently available services the user of the
Validation unit may deliberately select one service that will be validated (in
second mode of operation no selection step is needed all instances of all available
services will be validated by default). When a service has been selected the
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Validation unit starts to send SOAP requests to the Broker. The Validation unit
requests the Broker for the relevant execution information corresponding to the
selected service. As it has been described in earlier sections, the Broker returns
values of several non-functional parameters of registered services instances, e.g.
completion time of service execution and data volume (request/response). These
requests are generated periodically with the predefined time interval. As a result,
the Validation unit creates corresponding time series describing the changes in
parameter values of the observed object.

The implemented method of time series analysis checks for anomalies in be-
havioural features of executed services, e.g., abnormally high input data volume
or long execution time can denote some type of DoS (Denial of Service) attacks
against a service. The time series analysis is performed by the Validation unit in
three steps. In the feature selection step, a relevant behavioural features is se-
lected e.g., the Validation unit can decide to compute the number of transmitted
bytes by a service during successive time windows. In the parameter estimation
step, historical (training) data on the selected feature values are compared with
the current feature value to learn how indicative the feature is of possible anoma-
lies. A model of a service behaviour is constructed by iterating these two steps.
The last step is detection of anomalies, as indicated by large discrepancy between
the statistics of the selected feature values and baseline statistics derived from
training data. This is done, among others, by noticing the periodicity in suc-
cessive feature values and selecting a characteristic period to capture significant
correlations between them. The anomaly detection algorithm takes a multidi-
mensional view upon the time series of feature values (Figure 6); this is known
to better capture trends and seasonal changes on various time-scales [2]. Let the
time series of our feature values be

X = (x1, ..., xl, ...) (1)

where xi is the number of received bytes in a subsequent time window. Two
types of time sub-series derived from X are also analysed by the Validation
unit, namely XP and XT , with

XP,l =
1

P

P−1∑
k=0

Xl−k, XT,l =
1

T

T−1∑
k=0

Xl−kP (2)

where P and T are averaging intervals (P corresponds to the characteristic period
of X). That is, XP and XT represent the series of current averages of the feature
values over, respectively, the last characteristic period and a number of recent
characteristic periods given a fixed time shift with respect to the period start.
For the time series XP and XT , exponential moving averages are computed as

XP,l = XP,l−1 + w ∗ (xl −XP,l−1), XT,l = XT,l−1 + w ∗ (xl −XT,l−1) (3)

whereas standard deviations over appropriate averaging intervals are computed
as
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√√√√ 1
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(xl−kP −XT,l)2 (4)
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Fig. 6. Time series analysis for anomaly detection

where w is an empirically adjusted smoothing coefficient. Finally, local deviations
are expressed as

δP,l =| xl −XP,l |, δT,l =| xl −XT,l | (5)

Using the above quantities, one can estimate an anomaly level (if any) accom-
panying the observation of xi as

ai =
√
(δP,l/σP,i)2 + (δT,l/σT,i)2/3

√
2 (6)

unless it exceeds 1, in which case ai = 1. When the current feature value is close
to average, the anomaly level is close to 0, whereas the local differences exceeds
three times the corresponding standard deviations then the Validation unit will
return maximum anomaly level. The anomalies detected in service execution are
used to assign a security level to a service. In the implemented approach, the
security level is simply equal to the current anomaly level of a service.

The information about anomaly level is returned by the Validation unit to the
Service Composer (in a form of corresponding SOAP message). Service Com-
poser using up to date information about service behaviour and so about its
security level can perform two following tasks. The first task is a verification of a
correspondence between non-functional user requirements concerning composite
service security level and the current security level. The second task is performed
when there are found discrepancies between expected and real security levels.
Then, the Service Composer performs a new composition which uses the cur-
rent security levels returned by the Validation unit. To achieve its goals and to
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Fig. 7. Visualization of the service execution history

provide the value of up to date security level, the Validation unit starts to send
SOAP requests to the Broker. In response to the Validation unit request, Broker
returns values of parameters describing execution of service instances within a
given period of time: IP address of the service caller, executed service ID (name),
execution starting time, execution ending time, input data size (in bytes), output
data size (in bytes). This type of requests are generated periodically with the
predefined time interval. Using collected information, the Validation unit creates
time series describing the changes in parameter values of the executed services.
After that the Validation unit computes a set of statistics which are used to
detect abrupt changes and to evaluate security level of the monitored services.
The information about anomaly level is returned by the Validation unit to the
Service Composer (in a form of corresponding SOAP message).

The selection of the service for which the security level is calculated as well
as the values required by anomaly detection algorithm can be set using user
friendly web interface. The same interface provides information about the de-
tected anomalies and visualizes the services execution history (Figure 7).

6 Conclusions and Future Work

Presented approach offers a set of unique tools and techniques which provide in-
tegrated approach to service composition, execution and QoS monitoring. Origi-
nally developed service description language allows to include QoS requirements
and execution-related parameters in service description, which is directly used
by the Work-flow Engine. All the parameters are measured during service exe-
cution and may be used when needed by the Service Composer, which feature
forms feedback between composition and service execution. Our framework is
extensible in terms of adding new algorithms and techniques for service compo-
sition, prediction of resource consumption, etc. The results of first experiments
with developed framework are very promising.
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Abstract. We describe recent development work on the core-collapse
supernova code CHIMERA. CHIMERA has consumed more than 100
million cpu-hours on Oak Ridge Leadership Computing Facility (OLCF)
platforms in the past 3 years, ranking it among the most important ap-
plications at the OLCF (1). Most of the work described has been focused
on exploiting the multicore nature of the current platform (Jaguar) via,
e.g., multithreading using OpenMP. In addition, we have begun a major
effort to marshal the computational power of GPUs with CHIMERA.
The impending upgrade of Jaguar to Titan – a 20+ PF machine with an
NVIDIA GPU on many nodes – makes this work essential.

Keywords: OpenMP, GPU, OpenACC, supernovae, stellar astrophysics.

1 Introduction

1.1 Overview of the Core-Collapse Supernova Problem

Core-collapse supernovae (CCSN) are among the most energetic events in the
Universe, releasing 1053 erg (1047 Joules) of energy on timescales of a few tens
of seconds. They produce and disseminate many of the elements heavier than
helium, making life as we know it possible. They mark the birth of neutron stars
and black holes and in recent years, it has become apparent that core-collapse
supernovae from massive progenitors are associated with long gamma-ray bursts.
(2; 3; 4)

As the name suggests, core-collapse supernovae are initiated by the collapse
of the iron cores of massive stars at the ends of their lives. The collapse proceeds
to ultrahigh densities, in excess of the densities of nucleons in the nucleus of
an atom (super-nuclear densities). The inner core becomes incompressible under
these extremes, bounces, and, acting like a piston, launches a shock wave into the
outer stellar core. This shock wave will ultimately propagate through the stellar
layers beyond the core and completely disrupt the star in an explosion. However,
in all realistic simulations to date, the shock stalls in the outer core, losing energy
as it plows through the still infalling material. Exactly how the shock is revived
is unknown. This is the central question in core-collapse supernova theory.

P. Manninen and P. Öster (Eds.): PARA 2012, LNCS 7782, pp. 92–106, 2013.
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Evidence has accumulated indicating that multidimensional effects play an
important and perhaps essential role in the mechanism. On the observational
side, spectropolarimetry, the large average pulsar velocities, and the morphology
of highly resolved images of SN 1987A all suggest that anisotropy develops very
early on in the explosion [e.g., see (5) and (6) for reviews and references]. On
the theoretical side, analyses of immediate post-bounce core profiles given by
computer simulations show that a variety of fluid instabilities are present and
may play a role in the explosion mechanism.

Supernova simulations must be carried out in two, and preferably three, spa-
tial dimensions for these reasons and others. In addition, 3 x 1053 ergs of energy
is released by the core in neutrinos of all flavors, and their interaction with the
stellar core and mantle will either power the explosion itself or play a major
role in the explosion dynamics. An inaccurate treatment of neutrino transport
can qualitatively change the results of a simulation. Since neutrinos can origi-
nate deep within the core, where neutrino mean free paths are small compared
with other relevant length scales, and propagate out to regions where the re-
verse is true, the transport scheme must be accurate in both regimes plus the
all-important intermediate regime where the critical neutrino energy deposition
occurs.The nuclear abundances must be evolved in regions where nuclear statis-
tical equilibrium (NSE) cannot be maintained. This will enable the potentially
observable products of nucleosynthesis to be followed and the energy released by
nuclear burning to be fed back into the computation of the explosion dynamics.
Finally, general relativistic effects must be incorporated, as they influence the
size of the neutrino heated region, the rate of matter advection through this
region, and the neutrino luminosities and RMS energies (7). To meet all these
requirements, we and our collaborators have developed the CHIMERA code over
the past several years (8).

1.2 The CHIMERA Code

CHIMERA can well be described as a “chimera” of three, separate, rather ma-
ture codes. The codes are tightly coupled in a single executable through a set of
interface routines. The primary code modules are designed to evolve the stellar
gas hydrodynamics (VH1), the “ray-by-ray-plus” neutrino transport (MGFLD-
TRANS), and the thermonuclear kinetics (XNET). These three “heads” are
augmented by a sophisticated equation of state for nuclear matter (e.g. LS-EOS
(9)) and a self-gravity solver capable of an approximation to general-relativistic
gravity. All of the constituent parts of CHIMERA are written in FORTRAN:
MGFLD-TRANS and the LS-EOS are primarily FORTRAN-77, while VH1 and
XNET, and all of the associated driver and data-management routines, are writ-
ten in FORTRAN 90.

The hydrodynamics is directionally split, and the ray-by-ray transport and the
thermonuclear kinetics solve occur after the radial sweep occurs, when all the
necessary data for those modules is local to a processor (see Figure 1). The indi-
vidual modules are algorithmically coupled in an operator split approach. This
approach is well-motivated, as the characteristic time scales for each module
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are widely disparate. Specifically, during the radial sweep of the hydrodynam-
ics, the neutrino transport and the thermonuclear burning are computed along
each radial ray, using only data that is local to that ray and, therefore, local to
the current process. This combination of directionally-split hydrodynamics and
operator-split local physics provides the backdrop for the communication and
computation patterns found in CHIMERA. Hydrodynamic sweeps are made on
“pencils” along one direction of a logically Cartesian mesh. Then, a data trans-
pose (via MPI ALLTOALLs across sub communicators on the mesh) is per-
formed to switch the sense of the sweeps to one of the orthogonal directions,
followed by the next sweep. This procedure can be interleaved in various ways
within the operator-split scheme, but a canonical hydro timestep would have
sweeps like X-Y-Z-Z-Y-X, i.e. a sweep in the “X-direction” (or, e.g. radius), fol-
lowed by a Y sweep, followed by a Z sweep, followed by a reverse of that sequence.
This decomposition is necessary for the ray-by-ray neutrino transport, as it al-
lows a single “ray” to be resident on a processor at some point in a timestep.
This makes the neutrino transport solve a wholly local computation, requiring
no communication. Additionally, as the nuclear kinetic equations do not couple
neighboring spatial cells, no off-node communication is required for the XNET
module. Typical spatial resolutions for the hydrodynamics are 512 radial zones
and 64 and 128 zones in the θ and φ directions.

Start

Hydro Y (  ) sweep

Hydro Z (  ) sweep

Hydro X (  ) sweep

   transport along ray

nuclear burning on each 
zone of ray

Each 
processor 
has 1 ray 
of data 

local at this 
stage

Timestepping 
loop

Data transpose

Data transpose

Data transpose

Fig. 1. Schematic CHIMERA flowchart

The hydrodynamics module in CHIMERA is a modified version of the PPM
code VH-1, which has been widely used in astrophysical fluid dynamics simula-
tions and as an important benchmark code for a variety of platforms. VH-1 is
a Lagrangian remap implementation of the Piecewise Parabolic Method (PPM)
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(10). Being third order in space (for equal zoning) and second order in time, the
code is well suited for resolving shocks, composition discontinuities, etc. with
modest grid requirements. To avoid the odd-even decoupling and carbuncle phe-
nomenon for shocks aligned parallel to a coordinate axis we have employed the
local oscillation filter method of Sutherland et al. (2003) which subjects only a
minimal amount of the computational domain to additional diffusion. We have
also found it necessary to incorporate the geometry corrections of (11) in the
hydrodynamics module to avoid spurious oscillations along the coordinate axes.
Redshift and time dilation corrections are included in both the hydrodynamics
and neutrino transport (to be described later). A moving radial grid option,
where the radial grid follows the average radial motion of the fluid, makes it
possible for the core infall phase to be followed with good resolution.

Ideally, neutrino transport would be implemented with full multidimensional
Boltzmann transport. As a compromise between accuracy and computational
intensity, we employ a “ray-by-ray-plus” approximation (cf. (12)) for neutrino
transport, whereby the lateral effects of neutrinos such as lateral pressure gradi-
ents (in optically thick conditions), neutrino advection, and velocity corrections
are taken into account, but transport is performed only in the radial direction.

The neutrino opacities employed for the simulations are the “standard” ones
described in (13), with the isoenergetic scattering of nucleons replaced by the
more complete formalism of (14), which includes nucleon blocking, recoil, and
relativistic effects, and with the addition of nucleon–nucleon bremsstrahlung (15)
with the kernel reduced by a factor of five in accordance with the results of (16).
Typical energy-space resolutions for the neutrino transport are 20 geometrically
spaced groups spanning the range from 5 MeV to 300 MeV.

The equation of state (EOS) of (9) is currently employed for matter at high
densities. For regions not in NSE, an EOS with a nuclear component consist-
ing of 14 alpha-particle nuclei (4He to 60Zn), protons, neutrons, and an ironlike
nucleus is used. An electron-positron EOS with arbitrary degeneracy and de-
gree of relativity spans the entire density-temperature regime of interest. The
nuclear composition in the non-NSE regions is evolved by the thermonuclear re-
action network of (17). This is a fully implicit general purpose reaction network;
however, currently we have implemented only a so-called α-network, i.e. only
reactions linking the 14 alpha nuclei from 4He to 60Zn are used. Because the
α-network neglects reaction flows involving neutron-rich nuclei, it provides only
estimates of the energy generation rates for nuclear burning stages encountered
in the supernova (±50% for oxygen burning and ±10× for silicon burning) (18).

2 The Need for Hybridization

Many modern codes in use today rely wholly on domain decomposition via MPI
for parallelization. New hybrid multicore architectures will demand that this level
of parallelism be augmented with SMP-like and vector- like parallelism. Rather,
those operations that are performed serially in the MPI-only code will need to be
parallelized via a threading mechanism or, perhaps, local MPI communicators
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on the node, and those operations within the implied loop nests will profit from
vector-like parallelization via the GPU’s. This discovery or, perhaps in some
case, the rediscovery of hierarchical levels of parallelism in current codes will
form the heart of a successful programming model on modern platforms, like the
newly-installed Titan at Oak Ridge National Laboratory.

2.1 Titan: The First Petascale Hybrid Platform

Titan, a hybrid Cray XK6 system, is the third generation of major capability
computing systems at the Department of Energy (DOE) Office of Sciences Oak
Ridge Leadership Computing Facility (OLCF) located at the Oak Ridge National
Laboratory (ORNL). It is an upgrade of the existing Jaguar system first installed
at the OLCF in 2008. The initial upgrade from Cray XT5 to Cray XK6 compute
nodes was accepted in February 2012 and consists of 18,688 compute nodes
for a total of 299,008 AMD Opteron 6274 “Interlagos” processor cores and 960
NVIDIA X2090 ”Fermi” GPUs. The peak performance of the Opteron cores is
2.63 PFLOPS and the peak performance of the GPUs is 638 TFLOPS. In late
2012, the 960 NVIDIA X2090 processors will be removed and replaced with at
least 14,592 of NVIDIAs next generation ”Kepler” processors with a total system
peak performance in excess of 20 PFLOPS.

Compute Nodes. Each of the hybrid compute nodes in Titan consists of
one AMD Series 6200 16-core Opteron processor and one NVIDIA Tesla GPU.
The GPU and CPUs are connected by a PCI Express Gen 2.0 bus with an 8
GB/second data transfer rate.

The x86 portion of the Titan nodes contain Opterons built of two Interlagos
dies per socket. Each of these incorporates four processor groups called Bulldozer
modules. Each Bulldozer module contains two independent integer unit cores
which share a 256-bit floating point unit, a 2 MB L2 cache, and instruction
fetch. A single core can make use of the entire floating point unit with 256-bit
AVX instructions.

The four Bulldozer modules share a memory controller and 8MB L3 data
cache. The processor die incorporating the four Bulldozer modules is config-
ured with two DDR3 synchronous dynamic random access memory channels
and multiple HT3 links. It is important to note here that each Titan node there-
fore contains 2 NUMA domains, defined by the Interlagos dies on each socket.
Memory operations across dies traverse the multiple HT3 links between the dies
in a socket (19).

The Tesla Kepler GK 110 GPU is composed of groups of streaming multi-
processors (SMX). Each SMX contains 192 single precision streaming processors
called CUDA cores. Each CUDA core has pipelined floating point and integer
arithmetic logic units. Kepler builds on the previous generation of NVIDA Tesla
Fermi GPUs with the same IEEE 754-2008-compliant single and double preci-
sion arithmetic, including the fused multiply add operation. A Kepler GK110
GPU has between 13 and 15 SMX units and six 64-bit memory controllers.
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In addition to the six fold increase in the number of CUDA cores per SMX
compared to the Fermi’s 32 CUDA cores per SMs, Kepler GPUs have the abil-
ity allow connections from multiple CUDA streams, multiple MPI processes, or
multiple threads within a process. This is accomplished though NVIDIA’s Hy-
perQ which provides 32 work queues between the host and the GPU, compared
to Fermi’s single work queue.

Each of Kepler SMXs has one cache of 64 KB on chip memory that can be
configured as 48 KB of shared memory with 16 KB of L1 cache, or as 16 KB
of shared memory with 48 KB of L1 cache or as a 32KB/32KB split between
shared memory and L1 Cache. In addition, each SMX has a 48KB read-only
data cache. The Kepler GPU also has 1536 KB of dedicated L2 cache memory.

Interconnect. One of the key differences between the Cray XK6 and prior
generation XT systems is the Gemini interconnect (20) . Instead of a SeaStar
ASIC for each node, each Gemini custom ASIC connects two nodes to the 3-
D torus interconnect. All of the cables and backplane interconnections between
node boards are the same for SeaStar and Gemini based system. The only dif-
ference is the mezzanine card on the node boards. The mezzanine card is a
separate printed circuit board that attaches to the base XK6 node board and
contains either the SeaStar or Gemini ASIC along with any support circuitry and
the interconnections between the SeaStar or Gemini chips. This feature allowed
ORNL to upgrade from an XT5/SeaStar system to an XK6/Gemini system while
reusing the cabinets, cables, and backplanes.

2.2 Computational Cost of Nuclear Kinetics

Extending the nuclear network approximation from a simplified 14-species α-
network to one including 150 species substantially improves upon prior treat-
ments within CHIMERA by extending the capability of the network to track a
broad variety of particle captures. Complete nucleosynthesis calculation – e.g. of
the r-process – can then be obtained using many thousands of species via post-
processing, where a thermodynamic profile is generated using tracer particles
throughout the star.

Simplified networks fail to accurately describe both the composition and en-
ergy distribution of supernovae ejecta as directly observed. This deficiency has
been recognized for some time, leading to the development of post-processing
schemes to obtain detailed abundances. In post-processing, a thermodynamic
profile generated by tracer particles from an earlier full simulation (including a
reduced nuclear network and the associated neutrino transport) is used to evolve
a larger nuclear network. A major limitation of this approach is the accuracy
of the rate of nuclear energy released by the smaller in-situ network within the
hydrodynamics. Since the nucleosynthesis depends on the thermodynamic con-
ditions, and consequently the nuclear energy generation, a feedback exists that
cannot be captured with post-processing, significantly affecting the abundances
of species such as 44Ti 57Fe, 58Ni and 60Zn (21). Another principal limitation of
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the α-network model is the inability to follow the effects of electron or neutrino
capture in neutronization, wherein an electron and proton combine to form a
neutron and release neutrinos. This causes the electron fraction (Ye = Z

A ), and,
concomitantly, the electron pressure, to be miscalculated. Lastly, post-processing
is not capable of capturing the observed mixing of the chemical elements due to
the lack of coupling to the hydrodynamics.

A network size of approximately 150 is the next logical step in nucleosynthesis
calculations (see Figure 2), as it encompasses a significant fraction of elemental
abundances and energy-producing reactions important to the core-collapse prob-
lem, allowing proper neutronization and a much more accurate rate of nuclear
energy generation. Post-processing can then be used to analyze the nucleosyn-
thesis of many-thousand species nuclear networks with post-processing.

Fig. 2. α-network isotope abundances are represented in the figure, along with the
expanded 150-species nuclear network resulting from a constant thermodynamic profile.
One can see that this larger network encompasses a large portion of the more heavily
populated species. Of particular note is the exclusion of the three most abundant species
in the α-network, protons, 54Fe, and 58Ni.

The fully implicit nature of XNet (the nuclear burning module of CHIMERA)
necessitates the choice of a suitable integration scheme. Previous work (22) has
shown the simple first-order backward Euler method to be most efficient in
advancing nuclear abundances within the constraints of the CCSN problem.
With this scheme, nuclear abundances, y, are evolved by some change, Δy, of
the system over a timestep, Δt, according to

yn+1 = yn +Δy. (1)

This is done using the Newton-Raphson method, based on the Taylor series ex-
pansion of yn+1 = yn+f(yn+1) about a known f(yn). This reduces to iteratively
solving the N 2 dense matrix equation Ãx = b in the form
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(
Ĩ

Δt
− J̃

)
Δy = f(yn), (2)

where J̃ is the Jacobian of f(yn). Iteration continues until the solution converges
according to mass conservation or some more stringent abundance conservation
test, the choice of which depends upon the desired accuracy. Each iteration
requires computing the full set of abundance derivatives, calculating all reac-
tion rates, evaluating the Jacobian, evaluating the right-hand side, and then
performing one matrix decomposition and backsubstitution. Complicating the
computation itself is indirect memory addressing and loop carried dependencies
associated with building the Jacobian. Double-precision REALS are required for
the calculation, as the approach to equilibrium at various stages of the burning
can lead to the near-cancellation of large fluxes.

With the computational time to evolve the network using a dense matrix solution
with packages such as LAPACK being O(N3) (23), moving from an α-network
to a more realistic 150-species network can make the nucleosynthesis computa-
tion more expensive than the neutrino transport. Initial analysis reveals that
increasing the number of species from 14 to 150 more than doubles the cost
of a CHIMERA simulation without further development. In order to prevent
the computational cost from limiting the scope of our studies, we must incorpo-
rate recent advancements in programming interfaces and computational archi-
tectures, specifically shared-memory parallelism (OpenMP) and general purpose
graphical accelerators (GPGPUs). All of the comparisons made below are to a
strictly serial, but fairly highly vectorized version of XNET used in CHIMERA
to this point. Compiler-generated SSE instructions have been shown (via PAPI)
to increase the the speed of XNET from 21% of theoretical peak to more than
67% of peak. This is the baseline from which we measure subsequent perfor-
mance below. We note that the availability of new AVX instructions might lead
to even better vectorization on the CPU, but, at present, require some recoding
for the Bulldozer architecture (i.e. on Titan).

2.3 Thread Scheduling

The advent of multicore processors presents an opportunity for another layer of
parallelism in CHIMERA. By taking advantage of the shared-memory property
of multiple processing cores on a single chip, we can extend the level of parallel
computation within CHIMERA. To do this, we assign parallelizable loops over
radial zones being executed by a single MPI task to multiple threads with the
OpenMP API. Load balance is achieved by specifying a proper scheduling policy
for the manner in which work is divided among the threads. The options available
for this policy in OpenMP are static, dynamic, or guided. Additional options
allow for the compiler or runtime system to delegate work among the threads.
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2.4 Core Affinity

It is also important to consider how the parallelization scheme maps to the
computer architecture (i.e. core affinity). With the CRAY XK6, we have found
that the optimal scheme for nuclear burning is to place four threads per MPI
task, with these threads spread across two Bulldozer modules on two NUMA
domains. One crucial aspect associated with choosing the number of OpenMP
threads per MPI task is the relative “threadedness” of CHIMERA outside of
nuclear burning. Here we investigate an optimal parallelization scheme based on
the performance of one CHIMERA module–the nuclear burning network–which
is subject to change in response to future updates to OpenMP implementation
in CHIMERA.

2.5 OpenMP Summary

We consider the maximum nuclear burning time over a typical portion of a 1D
simulation using a 150-species nuclear reaction network. The simulation time is
chosen such that the nuclear burning is typical, i.e., after core bounce when the
temperature is high. This allows us to make a simple, but effective, compari-
son between different scheduling schemes, the number of threads per task, and
their mapping to the hardware architecture. We studied four- and eight-thread

Fig. 3. Time spent in nuclear burning computation is plotted as a percentage of total
CHIMERA time for a 150-species realistic network. The x-axis is cycle number (i.e.
hydrodynamic time step number) from the benchmark simulation. The percentage of
time dedicated to nuclear burning increases from zero as the simulation is restarted
from an intermediate state. The final, asymptotic values for each computation would
be typical of a long-running simulation.
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Fig. 4. Speedup of a CHIMERA simulation computation is plotted for an α-network
and 150-species realistic network for different OpenMP configurations. The product of
the number of MPI tasks and the number of OpenMP threads is held constant in each
case.

performance across different NUMA domains and Bulldozer module affinities.
The results are summarized in Figures 3 and 4.

This comparison clearly shows that the optimal core affinity is to schedule four
threads per MPI task on two Bulldozer modules from separate NUMA domains.
This configuration reduces time spent in nuclear burning from ∼ 60 percent of
the total CHIMERA runtime to ∼ 8 percent of the total CHIMERA runtime.
This equates to a factor of speedup from single thread performance of ∼ 6 in
runtime for an entire CHIMERA simulation.

3 GPU Parallelization

3.1 XNet

In addition to OpenMP, GPUs offer another avenue to exploit parallelism in
CHIMERA. In an effort to remove the false serialization produced by launching
GPU kernels from separate CPU threads (present in CUDA versions earlier than
5.0), we investigate GPU performance from a single thread per MPI task.

We surveyed the FORTRAN compilers of CRAY and PGI using the default
level-two optimization settings. More aggressive optimization did not improve
the computation time for any of the tested compilers. Three different acceler-
ated linear algebra packages were tested and compared for the decomposition and
backsubstitution: CULA, LibSci Accelerator (LibSciACC), and MAGMA. When
possible, a host-interface was compared against device-interface implementation.
The host-interface requires no modification to existing code. In this scheme, de-
vice memory is managed by the library routine. With the device-interface ap-
proach, code must be adapted to manage the device memory manually, either
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directly with CUDA or by a high-level compiler directives API. In this study,
we tested OpenACC and CUDA to build the matrix and right-hand-side for the
device-interface decomposition and backsubstitution. Nuclear reaction networks
of 14, 150, 365, 1072, and 2184 species were tested for each setup. All configu-
rations were compared to the fastest vectorized implementation of XNet using
CRAY LibSci LAPACK routines and the Cray Compiling Environment.

In all test cases, the nucleosynthesis was performed in a post-processing fash-
ion with a standalone version of XNet using a representative CCSN thermody-
namic profile (24) with typical initial abundances found in CCSN conditions.

Fig. 5. Host-interface (H.I.) to device-interface (D.I.) comparison for CULA. The total
computation time per N-R iteration is plotted and subdivided into time spent building
the Jacobian (Build) and solving the matrix equation Ãx = b (Solve).

The first GPU-optimized linear algebra package surveyed was EM Photonics’
CULA with the PGI programming environment. The host-interface was tested
by calling the function CULA DGESV and involved no modification to the code
itself. The device-interface was also implemented using the PGI compiler with
the CULA DEVICE DGESV routine. This implementation required managing
the device memory with a combination of compiler directives and CUDA Fortran.
The CULA package did not recognize device memory addresses passed with the
OpenACC directive host data use device, so we were unable to test its capability
with the Cray compiler. Instead, the Jacobian and right-hand side were declared
as CUDA device type variables and assigned directly to the GPU, allowing for
more efficient memory management via fewer host-device data transfers. Figure 5
summarizes these results.

The second set of linear algebra packages tested was the Cray XK6 optimized
cuBLAS and LAPACK routines–collectively referred to as LibSci Accelerator
(LibSciACC). These results are shown in Figure 6. The routines in this library
package do not contain an explicit host-interface, but for comparison, we can
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Fig. 6. Host-interface (H.I.) to device-interface (D.I.) comparison for LibSciACC. The
total computation time per N-R iteration is plotted and subdivided into time spent
building the Jacobian (Build) and solving the matrix equation Ãx = b (Solve).

emulate the behavior with a device-interface implementation in which we copy
the Jacobian and right-hand side to the device immediately prior to the de-
composition with OpenACC. The decomposition is forced to be computed on
the accelerator with DGETRF ACC and DGETRS ACC. We extend the direc-
tives to compute abundance derivatives, evaluate the Jacobian, and build the
right-hand side for the device-interface comparison. PGI’s current adaptation of
OpenACC does not include a directive clause to pass device memory addresses
to library routines, so only the Cray compiler was tested for LibSciACC.

By comparing Figures 5 and 6, we see that the method of emulating a
host-interface with LibSci Accelerator matches the behavior of the CULA host-
interface. In both cases, the matrix solve dominates the time for the computa-
tion, especially for larger networks. For smaller networks, we see that building
the Jacobian on the device has a non-negligible impact on the computation. As
the network size grows, the performance of the GPU in building the Jacobian
approaches that of the serial code in the host-interface. For CULA dense and
LibSci Accelerator, the host-interface approach performs slightly better than the
device-interface approach with the exception of very large networks (i.e. greater
than 2000 species), at least with current Fermi GPU kernel queuing.

MAGMA–Matrix Algebra on GPU and Multicore Architectures–is a collection
of linear algebra libraries developed by the Innovative Computing Laboratory
at the University of Tennessee. MAGMA was developed with NVIDIA’s native
CUDA C programming language, which presents some complications when in-
terfacing with the Fortran-coded XNet. We were unable to perform a successful
test case using the device-interface MAGMA routines, but did have some suc-
cess with the host-interface for both the Cray and PGI compilers. These results
are shown in Figure 7. We note that there is little difference in the compilers
themselves when directives are not used.
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Fig. 7. Compiler comparison between implementations of the MAGMA host-interface
routines for the matrix solve.

3.2 GPU Summary

We achieve the best performance when we use the LibSciACC routines with a
host-interface memory management scheme, though there appears to be only a
small amount of variability between all configurations. In this implementation,
device memory is managed with OpenACC immediately prior to the matrix solve
by copying the Jacobian and right-hand side to the GPU. Even in the best-case
scenario, the small problem size prevents us from seeing a gain in performance.
With the upcoming capability associated with CUDA 5.0 and the Kepler GK110
GPU, this constraint will be somewhat ameliorated by Hyper-Q technology. This
will allow us to launch multiple nuclear module kernels simultaneously on the
GPU, each corresponding to a different spatial zone in the CHIMERA domain
decomposition.
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Abstract. Simulation of large scale seismic wave propagation is an im-
portant tool in seismology for efficient strong motion analysis and risk
mitigation. Being particularly CPU-consuming, this three-dimensional
problem has been early ported on graphics cards to improve the per-
formance by several order of magnitude. Scientific visualization of data
produced by these simulations is essential for a good comprehension of
the physical phenomena involved. In the same time, post-petascale ar-
chitectures demonstrates that the I/O turn to become a major perfor-
mance bottleneck. This situation is worsened with GPU-based systems
because of the gap between I/O bandwidth and computational capabil-
ities. In this paper, we introduce a prototype of computational steering
and in-situ visualization suitable for seismic wave propagation on hybrid
architecture. We detail the overall architecture of the system we set up
and comment on the parallel performance measured.

Keywords: computational steering, in-situ visualization, GPU, seismic
wave propagation.

1 Introduction

One of the most widely used techniques for the numerical simulation of seismic
wave propagation is the finite-difference method because of its simplicity and
numerical efficiency. Most of the parallel implementations routinely used in the
scientific community are based on cluster architectures and rely on the MPI li-
brary with a good parallel efficiency on tens of thousands cores. Other approaches
are focused on the exploitation of Graphics Processing Unit (GPU) with signi-
ficant acceleration in comparison with classical CPU implementation [1]. These
improvements lead to an inflation of the amount of data produced and prevent
from the use of naive approach to dump the data on storage systems. In these
cases, I/O turn to become the major bottleneck which limits the performance of
the simulation. A classical strategy is to restrict the amount of data that would
be saved. A sub-sampling is generally preformed in time or in space with the
limitation for the scientist of missing possible localized phenomena.
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As [2], we believe that in-situ visualization and computational steering provide
a valuable solution for the scientist in order to interact with the simulation and
explore the three-dimensional domain of computation. Unfortunately current
existing solutions like [3,4] are not suitable for GPU applications as they assume
that data are directly accessible on the host. One of the key of the efficiency of
GPU codes is that all data have to remain in the graphic card memory in order
to maintain their performance as the memory transfers between host (CPU) and
device (GPU) are in general very expensive.

We therefore introduce a simple strategy suitable for hybrid applications that
allows us to interact with the Ondes3D software package developed for earth-
quake modeling [5].

2 Seismic Wave Modeling on Hybrid Architectures

2.1 Governing Equations

The seismic wave equation in the case of an elastic linear material is given in
three dimensions by
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v and σ represent the velocity and stress field respectively and f denotes a known
external source force. ρ is the material density, λ and μ are the elastic coefficients
known as Lamé parameters.

2.2 Description of the Numerical Scheme

The dominant numerical scheme to solve the above equations is certainly the
explicit finite-difference method. It has been introduced in [6] for a second-order
spatial approximation and has been extended in [7] to consider a fourth-order ac-
curate stencil in space and a second-order stencil in time. One of the key features
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Fig. 1. Elementary 3D cell of the staggered grid and distribution of the stress (σ) and
the velocity (v) components

of this scheme is the introduction of a staggered-grid [8] for the discretization of
the seismic wave equation.

For classical collocated methods over a regular Cartesian grid, all the un-
knowns are evaluated at the same location, whereas the staggered grid leads to
a shift of the derivatives by half a grid cell. The use of a staggered grid improves
the overall quality of the scheme (in terms of numerical dissipation and stabil-
ity), especially in the case of strong material heterogeneity. Figure 1 shows the
elementary 3D cell and the distribution of the stress and velocity components.
Exponents i, j, k indicate the spatial direction with (σijk = σ(iΔs, jΔs, kΔs),
Δs corresponds to the space step and Δt to the time step. The off-diagonal stress
tensor components are shifted in space by half an interval in two directions and
the velocity components are shifted both in time and in space by a time step
and by half a space time.

2.3 Implementation on Hybrid Architectures

In recent years, GPU computing has been extensively used to accelerate appli-
cations in various computational domains and the scientific literatures on this
topic is abundant. Regarding the finite-differences method, several applications
have been ported to GPUs as early as 2004 [9,10], particularly for seismic wave
modelling [11,1].

These seismic applications were mainly based on the acoustic case that is
less complex in terms of number of unknowns. The Ondes3D code implements
the full three-dimensional elastic wave equation with CPML absorbing condi-
tions [12]. The high reading redundancy (13/1) coming from the fourth-order
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stencil used in space makes GPU a very efficient architecture for such memory-
bound applications. An average speedup of a factor 20 [13] has been measured
in our case. The implementation relies on algorithms introduced in [1], with the
additional use of texture fetching in CUDA to compensate for the lack of shared
memory on the graphics card, and with the use of message passing (MPI) when
several GPUs are used in parallel.

3 Steering Environment

3.1 Server Implementation

The server is composed of the hybrid simulation code with an additional MPI
process called master node. This master node is synchronized with the time loop
of simulation nodes, but does not compute the simulation. It launches a TCP
server in a thread to communicate with the client, broadcast the requests and
events received from the client to the computing nodes. Finally, it receives the
data from the computing nodes, assembles them, and notifies the TCP server
of their availability. Figure 2 described the server communications. The master

Master Node

Compute NodeCompute Node

MPI_Isend / MPI_Irecv

MPI_Wait

Extract visualization data
MPI_Irecv : async recv

 of visualization data

Assemble data received
on previous time step

[MPI_Wait]
MPI_Isend : send visu

 data to master

MPI_Wait

Read requests
from TCP server

Time loop

TCP server in a thread

MPI_COMM_WORLD

run on GPU

run on CPU

Synchronisation : Master node broadcast requests from client

extract MPI buffers

update with MPI buffers

extract MPI buffers

update with MPI buffers

Kernel 1 external points

Kernel 1 internal points

Kernel 2 external points

Kernel 2 internal points

MPI_Isend / MPI_Irecv

MPI_Wait

Time loop

Synchronised loop

Fig. 2. Sequence diagram of the simulation server
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node is synchronized with the time loop to ensure coherency between requests
and responses. The use of the MPI library greatly facilitates synchronization and
fast communication with the computation nodes. The use of a specialized thread
for the TCP server allows to run asynchronously with the simulation. This way
it can answer to the client’s request without delay. To limit the amount of data
transferred, we extract the data of interest at each time step on a cutting plane.
This plane can be oriented and moved by the user with 6 degrees of freedom.
Data are extracted on the computing nodes with CUDA kernels and sent to the
master node at each time step. Data transmission from the computing nodes to
the master node is done via MPI asynchronous communications.

3.2 Client Implementation

The visualization client connects on the server using TCP and transmits the
events and user requests like flow control instructions (pause, play, record,
rewind, restart) or the coordinates of the visualization plan. It enquires for new
available data based on polling mechanisms at each render loop iteration (see
Figure 3). Therefore the client receives the assembled raw data (eg. speed, dis-
placement or acceleration), the timestep and visualization plan coordinates. The
client copies the raw data in its graphic memory, computes it with a CUDA ker-
nel to fill a Vertex Buffer Object (VBO) and then renders it using OpenGL
library. In order to guarantee the coherency of the workflow, the visualization
plane displayed corresponds to the data received and not to the place sent to
the server. This causes a slight time shift between the moment the user starts
to move the plane and the moment it actually moves.

Fig. 3. The client continuously poll the server for new data to display
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3.3 Experiments

Each computing node of our experimental setup is composed of a video card
NVIDIA GeForce 8800 GTX installed in a quad-processor dual-core 64-bit AMD
Opteron 2.8 GHz with 8 gigabytes of RAM memory. The 8800 GTX card has 16
multiprocessors, i.e., 128 cores, and 768 megabytes of memory. The bandwidth
for the memory transfers is 86.4 gigabytes per second, with a memory bus width
of 384 bits. This configuration is not up-to-date but it corresponds to a six nodes
computing cluster that drives a virtual reality workbench (i.e Holobench from
Barco). The nodes are interconnected with a Myrinet network. This architecture
provides a good opportunity to evaluate our client/server steering environment
along with a large display facility. Standard experiments have also been carried
out on most recent configurations, particularly on workstation, in order to eval-
uate the performance of our methodology in a 1x1 configuration. We wrote two
versions of the client depending on the targeted architecture (see Figure 4). The
first one is based on QT and is suitable for standard Workstation. The other one
is designed for the virtual reality workbench. We use VR Juggler [14] to manage
multiple screens and interaction devices (6DOF wand, keyboard).

We use a 3D geological model of size 24000 m× 24000 m× 21000m discretized
using a grid of 240 × 240 × 210 points, i.e., with grid cells of size 100 m in the
three spatial directions. The Ondes3D code is running on four graphics cards.
The model is heterogeneous and composed of two horizontal elastic layers in
contact. We take a time step of 8 ms and we simulate a total of 1000 time steps,
i.e., a total duration of 8 s. CPML absorbing layers of a thickness of ten grid
points are implemented on all the edges of the grid except the free surface.

First remark is that the communications are perfectly overlapped for large
enough models (a few hundred of megabytes). This is coming from the ratio be-
tween the data exchanged (two-dimensional) compared with the computational
domain (three-dimensional). This overlap also comes from the assembly of data
received at the previous iteration for the master node. Thus, during the sim-
ulation, we visualize the data calculated at the previous time step. When the
simulation is paused by the user at time step T, the computation actually stops
at time step T+1.

We have measured the additional cost coming from in-situ visualization and
the overhead is less than 3%. This is mainly due to the extraction kernels that in-
terpolate the data with the cutting plane. Another limitation for the performance
is coming from the MPI broadcasts from the master node. This extra-cost of 3%
represents the upper-bound of the overhead when the size of the computational
domain is varying. Considering our experimental architecture, any extrapolation
on large scale configuration is difficult as the number of servers, the number of
clients and the size of the computational domain will have a significant impact
on the performance.
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Fig. 4. Screenshot of our client implementation. Visualization of a run on twelve mil-
lions of grid points on four graphics cards. In green, the MPI border and in red the
absorbing boundary conditions (CPML).

4 Conclusion

A steering environment suitable for GPU applications has been proposed. We
have demontrated the efficiency of our methodology based on the standard elas-
todynamic equations on a cluster with four computing GPU. The overhead com-
ing from the steering is an average of 3% mainly coming from the extraction
of the relevant data. We believe that this kind of approach is a possible way
to consider future exascale simulations with huge amount of data available for
post-processing.

Significant efforts should be provided in the near future to enhance the scala-
bility of our methodology, for instance by introducing more asynchronism in the
workflow. Hierarchical patterns could also be considered for the gathering of the
data. The relevant filters required to analyze the data should also be adapted
on graphics card (i.e isosurface extraction).
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Abstract. In this paper we present PCJ - a new library for parallel
computations in Java. The PCJ library implements partitioned global
address space approach. It hides communication details and therefore it
is easy to use and allows for fast development of parallel programs. With
the PCJ user can focus on implementation of the algorithm rather than
on thread or network programming. The design details with examples of
usage for basic operations are described. We also present evaluation of the
performance of the PCJ communication on the state of art hardware such
as cluster with gigabit interconnect. The results show good performance
and scalability when compared to native MPI implementations.

1 Introduction

Changes in hardware are associated with interest in new programming languages
which have not been traditionally considered for use in high performance com-
puting. A good example is Java with its increasing performance and paralleliza-
tion tools such as Java Concurrency which has been introduced in Java SE 5
and improved in Java SE 6 [1]. The parallelization tools available for Java do
not limit to threads and include solutions based on various implementations of
the MPI library [2], distributed Java Virtual Machine [3] and solutions based on
Remote Method Invocation (RMI) [4]. Such solutions are based on the exter-
nal communication libraries written in other languages. This causes number of
problems in terms of usability, scalability and performance.

In our work, we present a new approach motivated by the partitioned global
address space (PGAS) approach [5] represented by Co-Array Fortran [6], Unified
Parallel C [7] or Titanium (a scientific computing dialect of Java) [8]. PGAS
languages are becoming popular because they offer programming abstractions
similar to shared memory.

Titanium defines new language constructs and has to use dedicated compiler.
Other solutions developed for Java are mostly wrappers to the communications
libraries such as MPI and depend on the libraries written in C. Such solutions
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have significant disadvantages for the users, in particular they are not easy to
use.

Our approach has been designed and implemented as the Java library called
PCJ (Parallel Computations in Java) [11,9]. Compared to Titanium, PCJ is not
using extensions to the language which would require to use dedicated com-
piler to preprocess code. It much betters suits needs of the Java programmers.
The PCJ offers methods for partitioning work, synchronizing tasks, getting and
putting values in means of asynchronous one-sided communication. The library
provides methods for broadcasting, creating groups of tasks, and monitoring
changes of the variables. The PCJ library is created to help develop parallel ap-
plications which require significant amounts of memory, bandwidth or processing
power.

In this paper we evaluate the performance of the PCJ using a relevant subset
of Java Grande Forum Benchmark Suite tests [10] executed on the cluster with
gigabit interconnection. The results are compared with analogous tests using the
MPI library written in C.

2 Library Description

The PCJ [11] has been developed from scratch using the newest version of Java
SE 7. Usage of a newest version of Java increases the performance, prolongs
the library life and, in the future, helps to move to more recent versions of Java.
Java SE 7 implements Sockets Direct Protocol (SDP) which can increase network
performance over Infiniband connections.

In the design of the PCJ we stress compliance to the Java standards. The
PCJ has the form of Java library which can be used without any modification
of the language. The programmer does not have to use extensions and libraries
which are not part of the standard Java distribution.

The PCJ library is built based on some fundamental assumptions presented
below.

2.1 PCJ Fundamentals

In the PCJ library each task runs its own calculations and has its own local
memory. By default, the variables are stored and accessed locally. Some variables
can be shared between tasks, so in the PCJ they are called shared variables.

One task is intended to be the Manager which starts calculations on other
tasks. It takes responsibility for setting unique identification to tasks, creating
and assigning tasks into groups and synchronizing tasks within a group. The
Manager is running on the main JVM – one which starts the PCJ. The remaining
tasks are used for calculations. Since the manager is not CPU intensive, it can
be run on the same physical node as one of the tasks used in the calculations.

All variables, which are shareable, are stored in a special Storage class. Each
task has one and only one Storage instance. Each shared variable should have
a special annotation @Shared with share-name of that variable. The class can
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become the Storage by extending pl.umk.mat.pcj.storage.StorageAbstract

class. An example of the Storage class definition is viewable in the Listing 1.

13 public class BcastStorage extends StorageAbstract {

14

15 @Shared("array") // variable identifier

16 private double [] array;

17 }

Listing 1. Example Storage class

There is also a start point class. This class should implement the pl.umk-

.mat.pcj.StartPoint interface. It indicates, that the class should contain the
public void main() method. This method is executed after initializing the
PCJ, as a starting point like public static void main(String[] args)

method in the normal execution. Listing 2 shows an example definition of Start-
Point class.

14 public class Bcast implements StartPoint {

15

16 @Override

17 public void main () {

18 System.out.println("My task id is: "

19 + PCJ.myNode());

20 }

21 }

Listing 2. Example StartPoint class

2.2 Protocol

The network communication is performed using New IO classes (java.nio.*).
Sockets are represented as channels, communication is nonblocking and uses
32 MB buffers (ByteBuffer). The size of the buffer has been experimentally
optimized to that value (see Figure 1). Network requests (e.g. read, connection)
are processed by the Selector thread running in the loop. There is a dedicated
queue used to store data to be transmitted. If data is available the Selector is
notified to write data.

All tasks are connected to each other and to the Manager. Every get or put
request can be accomplished in a direct connection without using any other task.

Transmitting message to all tasks (eg. sync, broadcast) uses the binary tree
structure of the tasks. The Manager sends a message to the first task (with
nodeId = global node id = 0). Then this node sends information to its two
children (nodeId∗2+1 and nodeId∗2+2). Those nodes are sending message to
its own children, and so on. That allows to achieve communication complexity
of O(n log n).

In the PCJ protocol each message consists of four integers (int) and serial-
ized data (byte[]). The integers are: type of message, its identifier, handshake
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number and number of objects to be transmitted. The data to be transmitted
depends on the type of the message. For example for synchronization command
it is a single integer - an identifier of the group to be synchronized.

During initialization, the newly created task connects to the Manager to in-
form about the successful start and to receive its unique global node id. Other,
already connected tasks get information about the new one. The task that in the
calculations receives information about a new task welcomes it by connecting
to its listening address and obtaining its global node id. Information about new
client is sent using tree structure presented before.

Every task that has finished initialization waits for all other tasks to connect
to the Manager. When all tasks are connected, the Manager sends the signal to
start the calculations. This is performed by broadcasting a dedicated message
over the tree structure of tasks. The task that receives the message, runs the
public void main() method from the start point class.

The tasks can be grouped to simplify the code and optimize data exchange.
Working with all tasks and with a group of tasks is identical from the user point
of view.

Joining the group works similarly to the initialization. The task sends the
message to join a specified group, using its distinguished name, to the Manager.
The Manager checks if the group already exists and then the task receives its
group node id. All tasks in that group are notified, using the tree structure of
tasks, about the new task in the group. Then the group members welcome the
new task by sending their global node id and associated group node id. If a task
sends request to join a non-existing group the Manager simply creates it. Of
course, tasks can be members of many groups.

Synchronization, also known as barrier, works in a similar way to the proce-
dure used to start calculations. Each task in the group is supposed to call the
sync method. Upon calling this method the task sends an appropriate message to
the Manager and pauses the current thread until the Manager receives messages
from all tasks. Then the Manager broadcast a message to continue calculations
using previously described tree structure of tasks.

There are methods for synchronizing all tasks, group of tasks or to synchronize
tasks not associated to the groups. The synchronization of tasks, even without
creating a group, is a way to get synchronous put and get methods.

Data exchange between tasks works in asynchronous way. For sending a value
to other task the put method is used. While receiving a value from another task,
the get method is used. The other task does not interrupt its calculations when
one task performs put or get operation.

A source task, task that puts value, creates a message with a variable name
and a new variable value and sends it to a destination task. The destination
task puts the new value to its Storage space. In put method the receiver can
monitor attempts of modification of a variable using the monitor and the waitFor
methods.

The get method is analogous to the put. First of all, a receiving task, creates
a message with a variable name to get, sends it to a sending task and waits until
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value is received. The sending task creates a reply message with desired variable
name and value from its Storage space and sends it to the receiving task. After
that, the receiving task returns received value and continue calculations.

Broadcast is performed in asynchronous way by putting a value to all tasks
in a group. The message broadcast uses the tree structure of tasks.

3 Examples

3.1 Deploying PCJ

Starting up the calculations using the PCJ is displayed in Listing 3. A config-
uration of nodes and manager bind addresses are read from XML file. Then
deployment of calculation on nodes is performed.

12 public static void main(String [] args) throws Throwable {

13 Configuration conf = Configuration

14 .parse(new File(args [1]));

15

16 NodeInfo [] nodes = conf.getNodes ()

17 .toArray(new NodeInfo [0]);

18 ManagerInfo [] managers = conf.getManagers ()

19 .toArray(new ManagerInfo [0]);

20

21 PCJ.deploy(Bcast.class , // StartPoint

22 BcastStorage.class , // storage

23 managers , // managers

24 nodes); // nodes info

25 }

Listing 3. Example of deploying PCJ

3.2 Join to Groups

Listing 4 shows how to create groups. In the example, tasks are divided into two
groups - group0 contains tasks with even global node id, group1 contains tasks
with odd global node id.

21 /*

22 * All nodes in calculations joins to:

23 * - group0 -- when node id for task is even

24 * - group1 -- when node id for task is odd

25 */

26 Group g = PCJ.join("group" + (PCJ.myNode() % 2));

27 PCJ.sync ();

Listing 4. Example of joining to groups
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3.3 Getting Value

When one task needs value from another task, the PCJ offers a mechanism to
synchronize two or more tasks without implicit group creation. After synchro-
nization, the first task can asynchronously get value of variable calling get()

method. A sample source code for that problem is shown on Listing 5.

29 if (PCJ.myNode() == 3) {

30 /* place calculated value to Storage */

31 PCJ.getStorage ().put("impact", impact);

32

33 /* synchronize tasks: current and with id = 2 */

34 PCJ.syncWith (2);

35 } else if (PCJ.myNode() == 2) {

36 /* the same synchronizing as above */

37 PCJ.syncWith(new int []{2, 3});

38

39 /* asynchronous get value of variable */

40 impact = PCJ.get("impact", 3);

41 }

Listing 5. Example of synchronizing two tasks and getting value

3.4 Synchronize and Broadcast

The example for synchronizing all tasks, broadcasting a new value of array arr
from task 0 to all tasks and monitoring of a variable by all nodes is available in
Listing 6.

20 PCJ.monitor("arr"); // tell to monitor

21 // variable "arr"

22

23 PCJ.sync (); // synchronize all tasks

24

25 if (PCJ.myNode() == 0) { // if node id equals 0

26 PCJ.broadcast ("arr", // broadcast new value

27 new double []{2.71828, 3.14159}) ;

28 }

29

30 PCJ.waitFor("arr"); // wait for modification

31 // of variable "arr"

Listing 6. Example of synchronizing, broadcasting value from node 0 and monitoring
a variable

4 Scaling and Performance

In order to evaluate the PCJ we have run selected Java Grande Forum Bench-
mark Suite tests [10]. They address communication efficiency: PingPong, Bcast,
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Barrier and RayTracer benchmark. The selected codes use constructions that
could be found in real life applications.

Tests were run in the time limit (10 seconds) and the limit of main loop
repetitions (1000000 repetitions), whatever comes first.

We have compared the results for the PCJ (running on 64-bit Java Virtual
Machine, Oracle version 1.7.0 03) with the results collected using the benchmarks
written in C or C++ (Raytracing). The codes used for comparison were based
on the same algorithm as used in Java implementation and prepared by the
authors. The arrays and tables definitions and allocations were optimized to
obtain efficient code. We have used different compilers and MPI libraries as
presented in the Table 1. Compilations were performed with -O2 parameter. All
tests have been run on a cluster built of 64-bit Intel Xeon X5660 Processors with
six cores at 2800 MHz. The nodes are equipped with 2 such processors, 24 GB
RAM and Gigabit Ethernet.

Table 1. Versions of compilers and MPI libraries used in the benchmarks

MPICH gcc (GCC) 4.1.2 20080704 (Red Hat 4.1.2-52) MPICH2 1.4.1p1

OpenMPI gcc (GCC) 4.1.2 20080704 (Red Hat 4.1.2-52) OpenMPI 1.4.2

PGI pgcc 11.3-0 64-bit target on x86-64 Linux built-in

Fig. 1. Speed of PingPong with various size of array of double. The data for PCJ is
presented for different size of the buffer.

The first test performed was PingPong. It is based on sending an array of
doubles between two tasks, counting all the data sent. The results are presented
in the Figure 1 for the different sizes of the buffer used in the PCJ. For the
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buffers larger that 1MB, the performance is similar and can compete with the
solutions written in C that have been optimized for many years. Smaller buffer
sizes can decrease performance.

Fig. 2. Speed of performing barrier operation depending on the number of tasks

The Barrier test counts the number of barrier operations between all tasks
used. Figure 2 shows results for the test. The PCJ speed compared to the Open-
MPI results is low and it should be improved. Although scaling of the PCJ is
good which is promising and shows room for improvements.

In the Figure 3 we present the result of the Bcast test. It relays on broadcasting
to all tasks messages that consist of array of doubles of the specified size and
counting data sent by the first one. We present tests for the different array
sizes: 21 and 172072 double elements because there is high correlation between
the array size and maximum speed. The results for larger array sizes are very
competitive in comparison to the MPI results. For small data – the PCJ speed
oscillates around the 4600 B/s and this part of the PCJ should be improved.
This effect has the same origin as low barrier efficiency. For the large arrays
results are improving.

RayTracer is the final test presented here. It measures the performance of
3D ray tracing of the scene rendered at a resolution of NxN pixels. The Reduce
operation has not been implemented yet. The Reduce can be known from the
MPI and is one of the required operation for this benchmark. The PCJ version of
the RayTracer test contains a simple, naive method to do the Reduce operation.
Because of the complex structure types used in original Java source code, the
MPI version of RayTracer was rewritten in C++.



PCJ - New Approach for Parallel Computations in Java 123

(a) 21 elements

(b) 172072 elements

Fig. 3. Speed of broadcasting array of doubles

The results of the RayTracer benchmark are presented on the Figure 4 for
the different sizes of data. Figure 4a presents achieved speed (number of pixels
processed in unit time) for the scene of size 150x150 pixels and the Figure 4b
data for scene of 500x500 pixels. The speed is competitive for the MPI and the
PCJ versions of the benchmark. What is interesting, the run time for only one
task is shortest for the Java code. For the larger scene the gained speed for the
Java solution is the highest one.
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(a) Scene size 150x150

(b) Scene size 500x500

Fig. 4. The performance of the 3D ray tracing of the scene for different sizes: 150x150
(upper) and 500x500 pixels (lower).

5 Conclusions and Future Work

The PCJ library offers a new approach for the development of parallel, dis-
tributed application in Java language. It uses the newest advantages of Java and
therefore can be a good base for new parallel applications. In contrast to other
available solutions, it does not require any additional libraries, applications or
modified version of JVM. It is noteworthy that the PCJ library has great promise
to be successful in scientific applications.
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However, the presented tests show that there are still some areas for improve-
ments. The efficiency of sending small data and speed of the task synchroniza-
tion can be increased. Additionally, there are no advanced techniques for the
breakdown recovery and node failure handling. Such mechanisms should be also
implemented in order to make the PCJ a widely used library for distributed and
parallel application for Java language. There is also need of features known from
other libraries like scatter, gather and reduce data over tasks.
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Abstract. We present our findings and results of a project to port an ex-
isting large lattice QCD codebase to run on GPUs and clusters of GPUs.
Our design principles from the start were to strive for both productiv-
ity and performance, while tackling the problems presented by a large
constantly moving codebase. The resulting simulator reproduces the orig-
inal results while running up to 11 times faster than our highly optimized
CPU-code and meeting productivity requirements. Multi-GPU support
was implemented using MPI and scaling across nodes shows good weak
scaling. We also contemplate the consequences of the dawning of the par-
allel computing era from a lattice QCD point of view and analyze where
state-of-the art contemporary parallel computing architecture could be
improved.

Keywords: graphics processing units, computational physics, lattice
QCD.

1 Introduction

Lattice QCD (see for example [1], [2] or [3]) – short for quantum chromody-
namics1 – has long been one of the few heavy computational tasks that theo-
retical physicists have undertaken, and its importance as a tool for modelling
the most fundamental laws of physics has grown over the years with advances
in algorithms and increase of available computational power. At the moment it
is the only known and reliable method to study quantum field theories at strong
coupling.

It is evident that relentless advances in microchip technology, coupled with
modest increase in their operating frequency, are pushing us – and in fact has
already pushed us – quite far into the world of parallel computing. Simply put,
the industry can output transistors in higher and higher densities, while not
being able to run them significantly faster. This means that even consumer
devices are seeing processors with more and more processor cores, as well as cores

1 When talking about lattice QCD physicists can often refer also to other models of
quantum field theory.
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specialized in doing certain types of operations, such as video playback, graphics
processing, network functions and many others. Parallelism in high performance
computing is, of course, nothing new in itself, but as the fine-grained parallelism
seeks its “optimal form” on the consumer side, high performance computing is
getting ready for the change.

Formulating the quantum field theory on a space-time lattice provides an op-
portunity to study the model non-perturbatively and use computer simulations
to get results for a wide range of phenomena – it enables, for example, one to
compute the hadronic spectrum of QCD [4] from first principles and provides
solutions for many vital gaps left by the perturbation theory, such as structure
functions of composite particles [5], form-factors [6] and decay-constants [7]. It
also enables one to study and test models for new physics, such as technicolor
theories [8] and quantum field theories at finite temperature [9].

Currently the most widely adopted massively parallel programming model is
NVIDIA’s CUDA-architecture, because it provides through its CUDA-C pro-
gramming language the most robust and productive solution. We also chose
CUDA-C as our target, and there are various other groups doing lattice QCD
with CUDA as well [10,11,12]. Recently also OpenCL [13] Lattice QCD codes
have emerged [14,15], where the latter group actually have studied both CUDA
and OpenCL.

1.1 Problem Statement

The idea behind lattice QCD is that one divides space-time into discrete boxes,
called the lattice, and places the fields onto the lattice sites and onto the links
between the sites, as shown in Fig. 1. Then one can simulate nature by creating
a set of multiple field configurations, called an ensemble and calculate values of
physical observables by computing ensemble averages over these states.

The set of states is normally produced with the help of a Markov chain, by
combining a molecular dynamics algorithm together with a Metropolis accep-
tance test, and therefore the typical computational tasks in lattice QCD are:

1. Refresh generalized momentum variables from a heat bath, once per trajec-
tory2

2. Compute generalized forces for fields for each step

3. Integrate classical equations of motion for the fields3

4. Perform a Metropolis acceptance test (at end of each trajectory) in order to
achieve the correct limiting distribution.

The force calculation normally involves a matrix inversion, where the matrix
indices run over the entire lattice. It is therefore the heaviest part of the com-
putation – the matrix arises in simulations with dynamical fermions (normal

2 A trajectory ranges normally from about ten to a few hundred classical steps.
3 The integration is not done with respect to normal time variable, but through the

Markov chain index-“time”.
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Uμ(x) Ψ(x)
�

Fig. 1. The matter fields Ψ(x) live on lattice sites, whereas gauge fields Uμ(x) live on
links connecting the sites. Also depicted staples connecting to a single link variable,
that are needed in computation of the gauge field forces.

propagating matter particles) and the simplest form for the Fermion matrix is4

Ax,y = [Q†Q]x,y where

Qx,y = δx,y − κ
±4∑

μ=±1

δy+μ̂,x(1 + γμ)Uμ(x). (1)

Here κ is a constant related to the mass(es) of the quark(s), δx,y is the Kro-
necker delta function (unit matrix elements), the sum goes over the space-time
dimensions μ, γμ are 4-by-4 constant matrices and Uμ(x) are the link variable-
matrices that carry the force (gluons for example), from one lattice site to the
neighbouring one and in normal QCD they are 3-by-3 complex matrices.

Therefore the matrix A in the equation Ar = z, where we are solving for
the vector r with given z, is an almost diagonal sparse matrix with predefined
sparsity pattern. This fact makes lattice QCD ideal for parallelization, as the
amount work done by each site is constant. The actual algorithm used in the
matrix inversion is normally some variant of the conjugate gradient algorithm,
and therefore we need fast code to handle the multiplication of a fermion vector,
by the fermion matrix.

2 Our Solution Using CUDA

The fundamental problem in massively parallel programming is how to express
the parallelism inherent in the algorithm. After brief analysis of our existing

4 There are multiple different algorithms for simulating fermions, here we present the
simplest one for illustrative purposes.
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code (which is based on the original MILC collaboration’s code [16]) it became
apparent that there is a very clear pattern of parallelism in this kind of code:
logic code, which is essentially sequential in nature, was interleaved with code
that could be run in parallel throughout the entire lattice – in fact, these sections
of the code had already been defined through compile time macros, which would
simply iterate in a for-loop over the entire lattice, or part of it. At times larger
parallel code sections were broken up due to the need to do MPI communication
or because results had to be accumulated throughout the lattice to decide how
to continue. Therefore the typical code was something like the following:

Logic code;

For all sites(i){ Do something for site i (i+1,...)}

Logic code;

sum = 0;

For all sites(i){

sum += Some function of site i; }

If (|sum| < tolerance) } {break out of outer-loop;}

Logic code;

At first we thought about breaking up large parallel code sections into simpler
vectorized operations over the lattice and parallelizing these vector operations
to run on GPUs, but it soon became clear, that in this approach we would
be sacrificing performance due to breaking up kernel fusion, which means that
we can save memory bandwidth (the primary bottleneck in lattice QCD) by
combining as many operations as possible for the local field values.5

Further analysis revealed that almost the entire codebase was dependent on
only three fundamentally different parallel algorithms: Map, Reduce and Bin.
Here Map just performs some operation at each lattice site, Reduce does the
same, except at the end it accumulates a value over the lattice sites and Bin
or Histogram does the same as Reduce, except that the values are accumulated
to different bins (normally depending on lattice site coordinate). As a result we
decided to go with the “trivial level of parallelization” – meaning one thread per
site – and to try to re-use the existing code for the parallel sections. Afterwards
we augmented this strategy by allowing multiple threads to run on one site and
we use this feature to extract additional parallelism in those cases where the
intra-site parallelism is trivial in nature, relieving register pressure and slightly
improving scaling to smaller local volumes.

2.1 Parallel Call Framework

In order to reach maximal productivity, while giving us a migration path to
the GPUs and being able to retain most of the codebase, we decided to use
only features present in modern C and C++ compilers. This meant wrapping
the parallel sections of the code with preprocessor directives that would trans-
late the code inside into function objects for CUDA and normal functions for

5 Allows us to fetch once, use multiple times and store once again.
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ANSI C compilers. This way we can actually run the same code at near optimal
performance with both CPUs and GPUs.6

To user code7 this causes three changes. First the parallel calls need to be
taken out of normal function scope, as unfortunately the C++ standard does not
allow local types as template variables (this is fixed in C++11), and dressed with
proper preprocessor directives, which translates the code inside into functions or
function-objects:

forallsites(i) { <code> };

becomes

PARALLEL_CALL_BEGIN(<name>, <input>, i)

{ <code> }

PARALLEL_CALL_END();

for the Map algorithm,

PARALLEL_REDUCE_BEGIN(<name>, <in>, i, <out>)

{ <code>; <out> = ... }

PARALLEL_REDUCE_SUM(...)

{ <sum code> }

PARALLEL_REDUCE_END(...);

for the Reduce algorithm and

PARALLEL_HISTOGRAM_BEGIN (<name>, <input>, i, <out>, <out_index>)

{ <code>; <out> = ... ; <out_index> = ... }

PARALLEL_HISTOGRAM_SUM(...)

{ <sum code> }

PARALLEL_HISTOGRAM_END(...);

for the Bin, or Histogram, algorithm. This way we can support arbitrary reduc-
tion operations both with normal reductions as well as with histograms. The
change above is normally easy for an arbitrary parallel call with a few copy-
paste operations. On top of this the inputs needed in the algorithm are packed
inside a structure which is passed on as a parameter to the user code. The so-
lution then for CUDA takes in the code inside the preprocessor macros, makes
function objects out of them and passes these function objects as parameters to
templatized versions for the solutions of the three parallel algorithm types. In
this way we achieve:

– Good performance (code correctly inlined)
– Parallel algorithms coded once, used everywhere
– Complete abstraction of underlying parallel hardware

6 We considered also OpenCL, but it provides little support for algorithm abstraction,
normally achieved with function objects.

7 By user code we mean the architecture independent part of the code that contains
the actual lattice QCD algorithms.
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The most important algorithm is Map, the implementation of which we wrote
ourselves to get best performance; For a long time we used the thrust library
[17] for CUDA for Reduction, but later implemented our own reduction routine
in order to gain more flexibility to the code and to better cater for the use
case where we want multiple threads per lattice site. The implementation of the
Histogram or Bin algorithm was also developed by us, as no good pre-existing
solutions were found.

The largest change to the user code was caused by the fact that we had to
change layout of the fields in the memory from the typical array of structures
to structure of arrays for CUDA code in order to enable coalescing in memory
fetches and stores. Therefore on the CPUs the access pattern to read one field
of three components ri in three sites is:

Thread0:
Site 0: Site 1: Site 2: Site 3: . . .
r1 r2 r3 r1 r2 r3 r1 r2 r3 . . .

and the access pattern on GPUs for the same operation is:
Thread0:
r1 . . . r2 . . . r3 . . .

Thread1:
r1 . . . r2 . . . r3 . . .

Thread3:
r1 . . . r2 . . . r3

,

where the distance between ri and ri+1 (called the stride) is number of sites
allocated for the field. In effect this means storing each component of a field in a
separate array, which places always the same components of a field of subsequent
lattice sites next to each other. We also noticed that best performance can be
reached when the values are stored as double2’s, which means a tuple of two
double precision (64-bit) floating point numbers (and float4’s in case we have
built single precision version of our code).

Changing the layout of the fields in memory causes two major changes to the
code, as well as several minor ones. In parallel code sections we can no longer
apply the normal array dereferencing to access the fields, but have to resort
to accessor-functions that jump through the memory with the correct stride. A
typical pattern has been something like:

forallsites(i){

a = DoSomething(x[i], z[i]);

x[i] = z[i] + a*y[i];

}

Now it becomes

PARALLEL_CALL_BEGIN(name, input, i){

x = getField(input.x, i);

y = getField(input.y, i);
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z = getField(input.z, i);

a = DoSomething(x, z);

x = z + a*y;

setField(input.x, i, x);

} PARALLEL_CALL_END();

Also due to memory layout change we had to adapt our MPI code to cope with
it. It turns out that the best solution was to do an intermediate pass on the GPU,
which writes the buffer to be sent through MPI into a single linear block, sends
the block to the CPU, which performs a normal MPI send/receive, receives the
block on the CPU side, transfers it back to the GPU as is and scatters the linear
block into proper places in the memory block allocated for the field. We suspect
that this is due to increased call overheads, caused by an increased amount of
memory copy calls. Here it should be noted that scaling across multiple MPI
nodes should be improved by taking advantage of direct GPU-to-GPU commu-
nications provided by the GPUDirect v.2 [18] implementation, where present,
but we have not had the time to try it out ourselves yet. We do, however, take
advantage of GPUDirect v.1 when present, which allows us to share the pinned
memory buffers between the MPI-Implementation (typically Infiniband) and the
GPU, eliminating the need for unnecessary copies due to DMA-transfers – in our
experience this results in a minor overall improvement, in the order of five per-
cent increase in performance.

Another optimization that we implemented was to take advantage of CUDA
streams [19], which can be thought of as task-parallel threads within the GPU.
Operations on different streams can be run in parallel to each other and an
event-system can be used to synchronize the streams to each other. The oper-
ations within a single stream are of course completed sequentially. The authors
in [20] take advantage of this system to concurrently perform memory transfers
between the CPU and the GPU, while running the bulk of the matrix-vector
multiplication for those sites that have no out-of-node neighbors and they re-
port good scaling on relatively large lattices. Due to the fact that our solution
already does a good job of overlapping MPI-communications with computational
tasks even without multiple streams, we see an increase in performance only with
small lattice-sizes, and even in these situations the improvement is of the order
of five percent, but this feature may become more relevant with GPUDirect v.2
[18] enabled and with next generation GPUs, that have improved support for
multiple MPI clients [21].

2.2 Performance Results

Our performance benchmarks were run on Vuori, a HP CP4000 BL ProLiant
supercluster at CSC [22]. The tested hardware consisted of Tesla M2050 GPUs,
as well as hexacore Opterons with 12.8 GB/s of memory bandwidth. The GPUs
are about 10 times as fast as the CPUs, when measured by memory bandwidth,
as the GPUs have about 129.5 GB/s of bandwidth with ECC turned on, and we
always compare a GPU against a whole CPU running all six cores. The network
is 4x quad-rate Infiniband with 3.2 GB/s of maximal throughput.
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In Fig. 2 we present performance comparison results for two different models:
One is based on the SU(2) symmetry where the link matrices are 2-by-2 complex
matrices with 4 parameters; The other is the normal QCD symmetry group,
the fundamental SU(3), where we store all 9 complex numbers of the 3-by-3
matrix. An easy opportunity for optimization here would be to use a smaller
representation of the SU(3) matrix – the almost standard optimization is to use
12 real parameters and the remaining 6 parameters can be found by requiring
unitarity of the matrix (see for example [23], page 5). The runs have 1 flavor of 2
pseudofermions and the SU(3) run implements the so-called clover improvement
to the fermion action [24]. The results are what can be expected by looking at
performance differences between the processor types and it can seen that our
GPU version of the simulator is running at near-optimal speed, provided that
the CPU code is running at near-optimal speed. In order to measure the quality
of our GPU-porting work we decided to use as a measure the relative speed-up
over the CPU code, as we know that our old CPU code performs well.8

Fig. 2. GPU Performance against optimized CPU-versions

Multi-GPU scaling was studied with various models as well. In Fig. 3 we
present results for SU(2) runs on a lattice of 244 sites and we can observe here
that while the scaling from 1 to 2 GPUs is good and from 2 to 4 GPUs is de-
cent, the relatively easy symmetry group of the model means less local work at
each site and hence scaling from 4 to 8 GPUs starts hit the MPI-limitations.
The performance is given as number of conjugate gradient (CG) iterations per
second and the timings include force computations between steps – the number
is therefore obtained by computing the total number of CG iterations done in
one trajectory divided by the amount of time it took to compute the trajectory.

8 Often authors give results in amount of GFlops/s (See [11,23]).
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An interesting fact in this particular case is the superlinear scaling of the CPU
performance; This is most likely caused by better utilization of the caches of the
CPUs, starting to take advantage of the temporal locality in the algorithm.

Scaling of clover improved SU(3) theory is presented in figures 4, 5 and 6.
Here we can see the effect of the local lattice volume clearly: the 304 lattice
scales quite well up to 8 GPUs but in the 184 case the scaling from 4 to 8 GPUs
is already quite bad, indicating that either the MPI implementation cannot
keep up with the GPUs anymore, or that the local lattice size for each GPU
is starting to become too small to fill the GPU completely – we suspect both,
based on simulating a system of the size of the local volume with a single GPU,
but have not studied further the balance of the two effects.

Fig. 3. Scaling of the SU(2) model at 244 sites from 1 to 8 GPUs and CPUs (6 to 48
cores)

We ran out of memory running the 304-sized lattice with just one GPU so the
result here is absent. The scaling on the GPUs is good at large lattice-sizes and
exhibits typical weak scaling – we can scale to 8 GPUs with 304-sized lattices
and probably beyond, but could not yet test it as we did not have access to
a system with more GPUs. This means that we can employ GPUs to get the
same performance with smaller resource usage when studying small lattices and
they enable us to study large lattices with significantly higher performance. Our
GPU scaling with large enough lattices cuts execution time by 35 to 45 percent
for every doubling of processor resources and CPU scaling cuts 50% for each
doubling almost without exception – in this study we did not try how far we can
keep on scaling CPUs.
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Fig. 4. Scaling of the SU(3) model at 184 sites from 1 to 8 GPUs and CPUs (6 to 48
cores)

Fig. 5. Scaling of the SU(3) model at 244 sites from 1 to 8 GPUs and CPUs (6 to 48
cores)
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Fig. 6. Scaling of the SU(3) model at 304 sites from 1 to 8 GPUs and CPUs (6 to 48
cores)

It should be noted also, that as our results are measured from entire trajec-
tories, the number of iterations per trajectory vary slightly, resulting in small
variations in the ratio of CG iterations to force computations between different
number of MPI processes. These variations may skew the comparisons between
CPUs and GPUs by a few percent and in order to fight this effect we have tried to
select trajectories with similar amounts of CG-iterations per force computations.

2.3 Novel Aspects of Our Solution

We feel that our solution for the parallelization is unique in many respects. The
major difference to other large projects, such as the ones discussed in [11] and [23]
is that we do not hide the code running on the GPUs behind libraries, but make
it more accessible to developers and easier to make changes – only the difficult
things, such as memory layout handling, MPI tweaks and implementation of the
parallel algorithms, have been abstracted away and even those are a few function
or macro calls away.

Bringing the GPU code to the developer also enables us to avoid memory
copies between the CPU and GPUs as the fields can be kept on the GPU mem-
ory just by implementing the necessary functionality with GPU code. There
are already groups that implement the entire HMC trajectory, or a large por-
tion of it, using the GPU [25,15], but extending the application of GPUs even to
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measurements, like in our code, is not common yet. The QDP++ Library [11]
seems to provide such tools. Also writing new code with our system is a breeze:
it is as easy as programming for the CPUs and one can debug the code using
the CPU-compiled version of the same code. Our only regrets are the memory
layout issue and the fact that we had to move the parallel code outside the logic
functions (see Section 2.1).

3 Discussion

Thanks to the fact that we were able to find such an easy way to port the
existing parallel sections of the code to the GPUs, we ended up porting almost
all of them. The conventional thinking in parallel computing has long been that
one should look at the profiler, see where more than 90 percent of the time is
spent, and parallelize that.

As it turns out in our case, 80 to 90 percent of the time (in typical runs)
is pretty nicely contained within the conjugate gradient algorithms, but there
are several of those, and the remaining 10 to 20 percent is already quite a large
part. Let us assume that we can reach the tenfold performance improvement by
applying GPU acceleration to the parallel sections of the code and let us quickly
check an example of how the performance scales:

TCG TRest Ttot Improvement
Baseline 8 2 10 1x
Optimize CG 0.8 2 2.8 3.6x
Optimize All 0.8 0.2 1.0 10x

Here we see that optimizing only the conjugate gradient will result in a mere
3.6-fold overall performance gain. While in itself it is not that bad, even more
impressive is, if we can achieve the full tenfold improvement promised by the
architecture we are using.

We believe that one should choose the right tool for the job, and therefore
parallel sections of the code should by default be run on parallel architectures.
If this is not feasible for some legacy code, then we should at least try to pave
the way for the correct solution when we write new code. We believe that most
algorithms involved in high performance computing have a notion of trivial level
of parallelization, let it be a ‘site’ or ‘cell’, as in our case, or a node, a particle
or just an entry in an array, and that this parallelism should be exploited to the
fullest in order to reduce wasted processor time and energy.

On the other hand productivity is also a major concern and here there is still
a lot of work to do: programming on massively parallel architectures should be
made as simple as possible and libraries, such as Thrust [17], should provide so-
lutions for all common, abstractable parallel algorithms. The programming lan-
guage used should be expressive enough to enable hiding different levels of par-
allelism and yet provide low-level access to code needed in micro-optimizations.
As an example of a modern effort to reach these goals see for example [26].

In our simulation code, we achieve good performance on a relatively small
amount of parallel threads per site, which means that there are always



138 T. Rantalaiho

multiple independent instructions for the compiler to use in hiding the pipeline
and memory latencies. We have noticed though that in some kernels register
pressure is starting to limit performance, and extending our strategy to deploy
multiple threads per site to those situations where the threads collaboratively
produce a result, would help both with register pressure and with strong scal-
ing, as then a smaller local lattice volume is needed to fill the GPU with work.
The abstraction of such interfaces might be non-trivial though and may require
some sort of adjustable libraries to be implemented for the most time-critical
kernels. It is made even further difficult by the fact, that in different kernels an
optimal amount of threads per site might vary, creating even more pressure to
get a permanent solution for the memory-layout problem, since the number of
threads per site, dictates the optimal layout of fields in the memory, which of
course cannot vary within one simulation.

This issue is related to the memory layout issue and the ideal solution probably
would deal with both. One possibility for such a solution would be that once the
compiler detects portions of code that have excessive register pressure, it would
automatically issue multiple threads to handle the auto-vectorizable portions
of the code by taking advantage of the unused processing units. Another option
would be to simply have the hardware support strided access directly would ease
the situation considerably and would probably pave way for a good software-
based solution for the parallelism-problem. In the mean time we shall explore
the various ideas we have on the subject.

Another option would be to run more threads in one site on the kernels that
experience high register pressure to exploit the vector-level parallelism inherent
in the small matrix-vector operations, but it is not a trivial task to hide this
parallelization from the user with current programming languages. Here a nice
solution could be something like a device-side BLAS-library, that would provide
optimized code for small linear-algebra operations inside the kernels, although
it might very well be, that the crude C-programming language does not provide
good way to abstract away the number of threads needed for each operation.

Note. During the review process of the present paper we have implemented
a collaborative intra-site threading technique for CUDA capable GPUs in two of
the heavy computational loops that do improve performance by relieving register
pressure, allowing more thread-level parallelism. The implementation uses on-
chip shared memory to share the different color-components of a Wilson vector
between the collaborating GPU threads in the colormatrix-vector multiplication
needed in Eq.1 and therefore each of the threads only have to fetch one row of
the matrix. The sharing of the color-components is done between strictly differ-
ent thread-warps in order to avoid costly shared-memory bank-conflicts (apart
from the ones necessarily caused by 64-bit accesses inherent in double precision
calculations) between threads of the same warp (see [19]) – this requires us to
synchronize the different warps a few times in order to ensure correct ordering
of operations, but the performance impact of the synchronizations seems minor.
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4 Conclusions

We have presented our solution for a lattice QCD simulator for CUDA-capable
GPUs that has been implemented by porting an existing C+MPI-based simula-
tor, derived from the MILC-collaboration’s original code[16]. Our code includes a
large number of lattice QCD related algorithms and is aimed mostly at exploring
new physics and new models.

Our algorithm provides weak scaling over MPI-nodes and a clear performance
benefit over optimized CPU-versions, with 6 to 11 fold increase in performance
over the hexacore Opterons.9 The scaling across MPI processes with GPUs is not
as strong as with CPUs due to overheads caused by memory layout changes, in-
creased PCI Express traffic and also because GPUs simply require more network
bandwidth since they run faster, yet multi-GPU performance is competitive with
large lattice sizes and should be even more competitive, once GPUDirect v.2 is
taken advantage of.

The extreme ease of use of our framework coupled with very real performance
benefits lead us to believe that we will be ready to face the challenges of the new
massively parallel computing era. We feel that our way of expressing parallelism
can stand the test of time, as the level of abstraction is high enough to enable
the developer to forget underlying architecture, while still being low enough to
allow removal of bottlenecks in performance critical sections of the code.
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Abstract. We demonstrate the effectiveness of graphics processing units
(GPU) in computing the time evolution of a many-body quantum state.
We study the Hubbard model with exact diagonalization. We discretize
the time into small steps and expand the time evolution operator into a
Taylor series. An algorithm for calculating the time evolution on a GPU
is given and tested on a 1D lattice to observe spin-charge separation.

1 Introduction

In quantum physics, the goal is to solve the Schrödinger equation,

H |ψ〉 = i� ∂
∂t
|ψ〉 , (1)

where H is the Hamiltonian that characterizes the energy of the system in ques-
tion. Formally, given some initial state |ψ0〉, we can solve the above equation to
give the state of the system at time t as

|ψ(t)〉 = T̂ e− i
�

∫
t
0
H(τ)dτ |ψ0〉 , (2)

where T̂ is the time-ordering operator. In computations, the integral is dis-
cretized into N small timesteps Δt:

|ψ(t)〉 =

⎛⎝ 0∏
j=N

e−
i
�
H(jΔt)

⎞⎠ |ψ0〉 , (3)

where the operators are time-ordered such that the earliest Hamiltonian operates
first. If we assume that the Hamiltonian is time-independent, then we get the
simple result,

|ψ(t)〉 = e−iHt/� |ψ0〉 , (4)

where we see that the time evolution of a state is given by the operator e−iHt

when we choose � = 1.
In condensed matter physics, one popular choice for the Hamiltonian H is

the Hubbard model, which was introduced in the 1960s to describe interacting
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electrons in a solid[1,2,3]. It has since been the subject of extensive study and is
still a source of interesting physics[4]. It is perhaps the simplest model to display
many of the essential features of electron correlations, such as ferromagnetism
and conductor-Mott-insulator transition.

In the Hubbard model, the solid is described by a fixed lattice, where electrons
can hop from one lattice site to another. The electrons are always bound to an
atom, such that their wave functions are vectors whose components squared
are the probabilities of finding the electron at the corresponding lattice site.
Interactions take place only between electrons that are residing on the same
site.

The Hamiltonian can be written as

H = Hhop +Hint (5)

= −t
∑
<ij>

∑
σ=↑,↓

(c†i,σcj,σ + h.c) + U
∑
i

ni,↑ni,↓, (6)

where < ij > denotes a sum over neighboring lattice sites, c†i,σ and ci,σ are
the creation and annihilation operators which respectively create and annihilate
an electron at site i with spin σ, and ni,σ = c†i,σci,σ counts the number of
such electrons. U is the interaction energy and t is the hopping amplitude. The
creation and annihilation operators obey the typical anticommutation rules for
fermions, {

c†iσ, cjτ
}
= δijδστ and

{
c†iσ, c

†
jτ

}
= {ciσ, cjτ} = 0, (7)

which means that there are four possible occupations for a lattice site: either it
is empty, has one up electron, one down electron or one of each.

An important property of the Hamiltonian is that the numbers of both up
and down electrons are separately conserved. This is convenient because it allows
one to fix the number of up and down electrons and thus restrict to a subspace
of the whole Hilbert space.

Despite the model’s simplicity, an analytic solution is only available in one
dimension, and it was found by Lieb and Wu in 1968[5]. In general, computa-
tional methods are required. While both terms in the Hamiltonian are easy to
diagonalize separately, their sum is highly nontrivial. One method to numeri-
cally solve the Hubbard model is exact diagonalization. The idea is to simply
calculate the matrix elements in a suitable basis and then diagonalize the result-
ing matrix. The obvious downside of this approach is that the number of lattice
sites and particles that can be considered is quite low due to the very rapid
growth of the dimension of the Hamiltonian matrix as a function of the system
size. However, the major advantage is that the results are exact up to numerical
accuracy, which makes exact diagonalization well-suited to situations where a
perturbative solution is not possible. It can also be used to test the reliability of
other, approximative methods by comparing their results with the exact ones.
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2 Exact Diagonalization

We will now present our scheme for labeling the basis states and forming the
Hamiltonian matrix for the Hubbard model. The approach is very intuitive, and
similar schemes can be found in the literature, for example in Ref. [6].

To calculate the matrix elements of the Hubbard Hamiltonian in Equation (6),
we choose a simple basis where the lattice sites are numbered from 0 upward and
the basis states correspond to all the ways of distributing the electrons in the
lattice. For example, if we have Ns = 4 lattice sites, N↑ = 2 spin up electrons
and N↓ = 3 spin down electrons, then

c†0↑c
†
2↑c

†
0↓c

†
2↓c

†
3↓ |O〉 (8)

is one basis state. In state (8), the up electrons reside on sites 0 and 2 and the
down electrons on sites 0, 2 and 3. The empty lattice into which the electrons
are created is denoted by |O〉. To resolve any ambiguities arising from different
orderings of the creation operators in Equation (8), we define that in the basis
states all spin up operators are to the left of all spin down operators, and site
indices are in ascending order.

The dimension of the Hamiltonian matrix is equal to the number of ways of
distributing N↑ spin up electrons and N↓ spin down electrons into Ns lattice
sites, i.e.

dimH =

(
Ns

N↑

)(
Ns

N↓

)
. (9)

The size of the basis grows extremely fast. For example, in the half-filled case
where N↑ = N↓ = Ns/2, for 12 sites dimH = 853776, for 14 sites dimH ≈
11.8 × 106 and for 16 sites dimH ≈ 166 × 106. In addition, the matrices are
very sparse, because the number of available hops, and thus the number of
nonzero elements in a row, grows only linearly while the size of the matrix grows
exponentially.

To form the Hamiltonian, we need to label and order the basis states. A
convenient way to do this is to represent each state with binary numbers such
that occupied and unoccupied sites are denoted by 1 and 0, respectively. For
example, the state in (8) becomes

c†0↑c
†
2↑c

†
0↓c

†
2↓c

†
3↓ |O〉 → (0101)︸ ︷︷ ︸

up

× (1101)︸ ︷︷ ︸
down

. (10)

Note that in our convention site indices run from right to left in the binary
number representation.

A simple way to order the basis states is to do it according to the size of
the binary number that represents the state. Using this scheme, if we index the
states by J , the conversion from the binary representation is given by

J = i↑

(
Ns

N↓

)
+ i↓, (11)
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Table 1. A scheme for labelling the basis states for Ns = 4, N↑ = 2, N↓ = 3. States are
ordered first according to the up spin configuration (first column) and then according
to the down spin configuration (second column), in ascending order.

↑ ↓ i↑ i↓ J

0011 0111 0 0 0

0011 1011 0 1 1

0011 1101 0 2 2

0011 1110 0 3 3

0101 0111 1 0 4

0101 1011 1 1 5

0101 1101 1 2 6

0101 1110 1 3 7

0110 0111 2 0 8
...

...
...

...
...

1100 1101 5 2 22

1100 1110 5 3 23

where i↑ and i↓ are the positions of the up and down configurations in an ordered
list, starting from 0, of all Ns-bit numbers with N↑ and N↓ bits set, respectively.
To clarify, for example in (10), the possible up configurations, in order, are 0011,
0101, 0110, 1001, 1010 and 1100, so 0101 is the second configuration, and i↑ = 1.
Similarly, 1101 is the third 4-bit number with 3 bits set, so i↓ = 2. Thus, we get

J = 1×
(
4

3

)
+ 2 = 6, (12)

which is confirmed by Table 1.
Forming the Hamiltonian matrix is now straightforward. The interaction part

Hint is diagonal, and it essentially just counts the number of doubly occupied
lattice sites and increases the energy by U for each instance. The matrix elements
of the hopping part, Hhop, are ±t between basis states that can be reached from
each other by a hop of a single electron, and vanish otherwise.

For example, if we have a one-dimensional lattice with periodic boundaries,
from Table 1, we see that

| 〈2|Hhop |6〉 | = t and 〈3|Hhop |6〉 = 0 (13)

because |6〉 can be reached from |2〉 when the up electron at site 1 hops to site
2. From |3〉 to |6〉 it takes two hops so the matrix element vanishes. Because
of the binary number representation of the basis states, in the computer these
calculations can be conveniently done with integers and bitshift operations.

The signs of the nonzero matrix elements are determined by the anticom-
mutation relations of the creation and annihilation operators. An extra minus
sign is picked up for each electron of the same spin that is hopped over. So in
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the one-dimensional case, if the hop is over the periodic boundary and the total
number of electrons of the same spin is even, the matrix element changes sign.
For example,

〈6|Hhop |22〉 = t and 〈0|Hhop |3〉 = −t (14)

because there is an even number of up spins and an odd number of down spins
(note the minus in the Hamiltonian). Note that the method is completely general
and applies to any kind of lattice and any number of electrons. In a general
lattice, the sign is determined by the number of electrons of the same spin
residing in lattice sites whose labels are between the labels of the origin and the
destination of the hop.

3 GPU Computing

3.1 Introduction

Graphics processing units (GPU), originally developed to aid the central process-
ing unit (CPU) in rendering graphics, have evolved into powerful computational
engines, capable of general purpose calculations. In recent years, they have been
increasingly used in a variety of scientific disciplines, including physics, to speed
up computations that benefit from the architecture of the GPU.

The GPU is quite different than the CPU. Simply put, while the CPU per-
forms few concurrent tasks quickly, the GPU executes a very large number of
slower tasks simultaneously, i.e. in parallel. Although modern CPUs typically
consist of multiple cores, allowing parallel computation to some extent, the scale
of parallelization in the GPU is orders of magnitude larger, up to tens of thou-
sands of simultaneous threads in modern cards.

To benefit from GPUs, the problem has to be suitable for large scale paral-
lelization. In addition, specifics of the GPU architecture need to be taken into
account. For example, to get a performance gain, the program should have high
arithmetic intensity, defined as the number of arithmetic operations divided by
the number of memory operations. This is because accesses to the memory have
a high latency and it is therefore desirable to hide this latency with calculations.
Also, data transfer between the CPU and the GPU through the PCI Express
bus is slow, and should therefore be minimized.

3.2 CUDA

Compute Unified Device Architecture (CUDA) is a parallel computing architec-
ture by the GPU manufacturer NVIDIA. It allows programmers to utilize GPUs
with CUDA capability in general purpose computation through the use of an
extension of the C programming language.

CUDA programs consist of the main program that runs on the CPU (the
host), and special functions called kernels that run on the GPU (the device).
Since the GPU has a SIMD architecture, kernels are written from the viewpoint
of a single thread. Threads are organized into groups that are called blocks.
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When a kernel is launched from the host code, the programmer specifies the
number of blocks and the number of threads per block in the kernel call. Each
thread has its identification number within the block stored in an internal vari-
able threadIdx, which can be one-, two- or three-dimensional. Similarly, the
block ID is stored in a variable called blockIdx. With these ID numbers the
programmer can assign the threads to different data.

Threads can be synchronized within a block, but blocks have to be able to ex-
ecute independently. Within a block, threads have a common fast memory space
called shared memory that can be used as a user-managed cache. Optimally, one
would like to read the relevant data from the slow global memory into the fast
shared memory, perform the calculation there and write the result back to the
global memory. In the latest generation of NVIDIA GPUs, called Fermi, there
are also automatic L1 and L2 caches for global memory accesses. For a more
thorough overview of CUDA, we refer to Ref. [7]

4 Time Propagation on the GPU

Previously, GPU implementations relating to time-propagation in quantum me-
chanics have been reported in References [8] and [9]. In the former, the time-
dependent Schrödinger equation is solved with a CUDA program based on
Chebyshev polynomials and and the FFT algorithm. The latter introduces a
generic solver for a system of first-order ordinary differential equations, which is
applied to the time-dependent Schrödinger equation. We will focus on a straight-
forward series expansion of the time evolution operator, which to our knowledge
has not been discussed before in the literature.

4.1 Taylor Series

Although there are numerous ways to compute the exponential of a matrix[10],
the computation of the matrix for e−iHt would be very complicated and time-
consuming. Fortunately, we are not interested in the matrix itself, but in the
state after the time evolution, i.e. the product e−iHtx, where x is the initial
state vector. The simplest way to obtain the resulting vector y is to expand the
exponential in a Taylor series:

y = e−iHtx =

(
1− iHt− H

2t2

2
+
iH3t3

6
+ . . .

)
x. (15)

There is a simple recursion relation between consecutive terms in the series: if
we denote the nth term by yn, we have

yn =
−iHt
n

yn−1, y0 = x. (16)

So all we need to calculate the time evolved state y is to repeatedly operate with
H and accumulate the sum to desired order. Our GPU implementation of the Hx
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1 y = x

2 For n= 1 , 2 , . . . , k , Do

3 temp = Hx

4 temp = temp ∗( i∗dt/n )
5 y = y + temp

6 x = temp

7 End Do

Fig. 1. The algorithm for the time evolution of the initial state x0 by a timestep of
lenght dt. The Taylor series is computed to the kth order, and the result is stored in
the vector y.

operation has been reported in Ref. [11], where we calculate the ground state of
the Hubbard model with the Lanczos algorithm, where the Hx operation is the
most time-consuming part of the algorithm with about 99.9% of the total time.
We also present the details of our Hx kernel and benchmark results against
a single-core CPU implementation. For example, we obtain speedups of over
100 and 60 for the Lanczos algorithm in the case of the 1D Hubbard model
at half-filling. Against implementations on N cores, the speedup is divided by
approximately N , since the relevant linear algebra operations can be parallelized
easily.

To compute the time evolution, we just have to program the recursion defined
by Equation 16. The algorithm for a single timestep of length dt can be seen in
Figure 4.1. First, we initialize the result vector y with the initial vector x (the
first term in Eq. 16). Then, we use the vector temp to compute the next term in
the series by the recursion rule, and add the result to y. Finally, we copy temp
to x for the next iteration. The loop runs up to k, which determines the order
of the Taylor expansion. Numerical accuracy of the time evolution is controlled
by k and the length of the time step, dt. For small dt, the series (15) converges
rapidly, and we can take fewer terms in the expansion.

In practice, the multiplication on line 4 has been incorporated into the end of
ourHx kernel reported in Ref. [11] to avoid unnecessary global memory accesses.
The sum on line 5 is done with the axpy function from the CUBLAS library.
Finally, on line 6, instead of moving the actual data, we only switch the pointers
x and temp for the next iteration.

To reach the state at some time t, we just repeat the loop in Figure 4.1 to
propagate by dt each time. If the Hamiltonian is time-dependent, we update the
Hamiltonian between iterations. The accuracy should be checked by verifying
that the norm of the vector stays at unity. In the time-dependent case, the rate
of change in the Hamiltonian also affects the required timestep length. A good
way to ensure unitarity is to split a timestep in two and check that the results
agree to an adequate degree.
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4.2 Imaginary Time Propagation

The algorithm from the previous section also offers an alternative way to find
the ground state of the system with the so called imaginary time propagation
method (ITP)[12]. In ITP, we study the time evolution of the system under
imaginary time, t→ −it, which transforms the time evolution operator to e−Ht.
To see what this does, consider a state |ψ〉 , decomposed into a superposition of
the eigenstates of H , denoted by |φn〉 , with amplitudes αn:

|ψ〉 =
∑
n

αn |φn〉 . (17)

Now, applying the time evolution operator with imaginary time on this state
results in

e−Ht |ψ〉 =
∑
n

αne
−Ht |φn〉 =

∑
n

αne
−Ent |φn〉 , (18)

where En is the energy of the nth eigenstate.
From (18) we see that as time goes on, the eigenstates decay with a rate

that is determined by the corresponding energy. The eigenstate with the lowest
energy, i.e. the ground state, decays slowest, so the time evolution tends toward
the ground state. Note that the time evolution is no longer unitary because of
the missing i in the exponent, meaning that we have to normalize the vector
after each step.

Compared to the Lanczos algorithm, finding the ground state with ITP is
much slower: typically thousands of steps are required in ITP to reach conver-
gence, while the Lanczos algorithm usually converges in under a hundred steps.
Additionally, depending on the order of the Taylor series, there are multiple
costly operations with H per step in ITP, while Lanczos only has one per step.
However, one use for ITP is to check that the Lanczos implementation is working
properly by comparing the results of both methods.

5 Example: Spin-Charge Separation

A curious phenomenon in interacting many-body systems is the decoupling of
the charge and spin degrees of freedom. The low-energy excitations are spinons,
carrying only spin, and holons, carrying only charge. The spinons and holons
move with different velocities, which leads to spin and charge becoming spatially
separated. This phenomenon is called spin-charge separation.[13] Its existence in
one-dimensional systems is clear because exact solutions to various models are
available, and there is also experimental evidence [14].

Jagla et al.[15] studied spin-charge separation in the Hubbard model with
exact diagonalization and found that, indeed, at least in one dimension, the
Hubbard model exhibits this phenomenon. They considered a one-dimensional
chain of 16 sites with periodic boundary conditions. They first calculated the
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Fig. 2. Time evolution of charge (green) and spin (red) densities, when U = 0. The
pictures correspond to times t = 0, 1 (top row) and t = 2, 3 (bottom row).
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Fig. 3. Time evolution with U = 10. The pictures correspond to times t = 0, 2, 4, 7
and 13.
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two-electron ground state, |φ0〉 , and then created another up electron as a wave
packet at time t = 0, such that the initial state became

|ψ(t = 0)〉 =
∑
j

αjc
†
j↑ |φ0〉 . (19)

The coefficients α generate a Gaussian wave packet,

αj = e
ik0(xj−x0)−β|xj−x0|2 , (20)

where k0 is the momentum and x0 is the position of the wave packet. The width
of the packet is 1/

√
β.

The quantities of interest are the charge and spin densities, which are respec-
tively defined by ρc(j, t) where njσ are the number operators that count the
number of electrons with spin σ at site j. Jagla et al. then studied the time
evolution of the charge and spin densities, starting from the state (19) with mo-
mentum k0 = π

2 . In the non-interacting case, U = 0, they found that the charge
and spin wave packets move with the same velocity, as expected. But when the
interaction is on, the charge packet moves faster than the spin packet, and the
two become spatially separated, indicating spin-charge separation. Results of the
duplication of this study with our GPU implementation can be seen in Figures
2 and 3.

In the non-interacting case, the charge and spin densities remain identical,
apart from a constant, which is due to the background from the two-electron
ground state. In the case U=10, the spin density wave packet starts to lag behind
the charge density packet (the second picture in Figure 3). The charge wave
packet retains its form, but the spin wave packet spreads wide, and it becomes
almost stationary as the charge is on the opposite side of the ring (the fourth
picture). When the charge wave packet has completed the loop and arrives at the
spin density center of mass, the spin density narrows again (the fifth picture),
which Jagla et al. interpret to imply interaction between the charge and spin
excitations.

6 Conclusions

We have presented a straightforward way to propagate many-body wave func-
tions in time on a GPU by using the exact diagonalization method and a Taylor
series expansion of the time evolution operator eiHt. The crucial advantage in
using a GPU is the speedup of the Hx operation, for which an efficient imple-
mentation has been detailed in Ref. [11].

To demonstrate our program, we applied it to a 1D Hubbard chain to observe
the spin-charge separation when an electron was created as a wave packet in the
ground state. Our results were consistent with the ones in Ref. [15].

Our approach could be very useful, for example, in the context of quan-
tum dots, which could serve as realizations of the qubit in a working quantum
computer[16]. For instance, our GPU implementation could be used to speed up
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spin dynamics calculations, which involve multiple time propagations with differ-
ent parameters[17,18]. Furthermore, dynamics can be used in studying electronic
structure and transport properties[19]. For example, efficient time propagation
allows the computation of large ensembles over different scatterer configurations,
needed for realistic modeling[20].
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Abstract. This paper describes the implementation of parallel comput-
ing to model seismic waves in heterogeneous media based on Laguerre
transform with respect to time. The main advantages of the transform are
a definite sign of the spatial part of the operator and its independence
of the parameter of separation. This property allows one to efficiently
organize parallel computations by means of decomposition of the com-
putational domain with successive application of the additive Schwarz
method. At each step of the Schwarz alternations, a system of linear
algebraic equations in each subdomain is resolved independently of all
the others. A proper choice of Domain Decomposition reduces the size
of matrices and ensures the use of direct solvers, in particular, the ones
based on LU decomposition. Thanks to the independence of the matrix
of the parameter of Laguerre transform with respect to time, LU decom-
position for each subdomain is done only once, saved in the memory and
used afterwards for different right-hand sides.

A software is being developed for a cluster using hybrid OpenMP
and MPI parallelization. At each cluster node, a system of linear alge-
braic equations with different right-hand sides is solved by the direct
sparse solver PARDISO from Intel Math Kernel Library (Intel MKL).
The solver is extensively parallelized and optimized for the high perfor-
mance on many core systems with shared memory. A high performance
parallel algorithm to solve the problem has been developed. The algo-
rithm scalability and efficiency is investigated. For a two-dimensional
heterogeneous medium, describing a realistic geological structure, which
is typical of the North Sea, the results of numerical modeling are
presented.

1 Introduction

The large-scale numerical simulation of elastic wave propagation in realistic 3D
heterogeneous media is impossible without parallel computations based on do-
main decomposition. So far, the most popular approach here is to use explicit
finite-difference schemes based on staggered grids, despite drawbacks such as the
necessity to perform data send/receive at each time step, full re-simulation of
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the wavefield for each new source, and hard disk data storage for implementation
of a reverse-time migration. In this regard, considerable attention has recently
been given to the development of alternative techniques for simulation of seis-
mic waves, especially, the ones working in the temporal frequency domain [1].
However, the use of such methods for general heterogeneous media also faces a
range of significant issues. The main issue is a consequence of the indefiniteness
of the impedance matrix. This property brings about a very slow rate of conver-
gence for the iterative procedures solving the linear algebraic equations resulting
from the finite-dimensional approximation of the elastic wave equations in the
temporal frequency domain.

Our motivation is to overcome this difficulty and to do that, we apply the
approach based on the Laguerre transform with respect to time. This leads to a
uniformly elliptic system of linear equations [2] and, so, ensures the convergence
of the Schwarz alternations [3], based on a suitable domain decomposition with
overlapping [4]. We choose the domain decomposition providing the possibility
of applying in each of elementary subdomains the LU factorization of the cor-
responding matrix. Once LU decomposition is performed, it is stored and later
used for each component of the Laguerre decomposition and each source posi-
tion. It should be stressed that it is a consequence of the main advantage of the
Laguerre transform: the matrix of the corresponding system does not depend on
the separation parameter and, hence, the LU factorization in each subdomain is
performed only once.

2 Statement of the Problem: Separation of Time

Let us consider a 2D system of second order elastic equations for a volumetric
source with zero initial conditions:

ρ∂2u1

∂t2 = ∂
∂x

[
(λ+ 2μ)∂u1

∂x + λ∂u2

∂z

]
+ ∂

∂z

[
μ∂u2

∂x + μ∂u1

∂z

]
+ g(x, z)f ′(t);

ρ∂2u2

∂t2 = ∂
∂x

[
μ∂u2

∂x + μ∂u1

∂z

]
+ ∂

∂z

[
λ∂u1

∂x + (λ+ 2μ)∂u2

∂z

]
+ h(x, z)f ′(t);

uj
∣∣
t=0

=
∂uj

∂t

∣∣
t=0

= 0, j = 1, 2.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(1)

Here ρ is density, λ, μ are Lamet coefficients (P, S-velocities is defined in the

following way: Vp =
√

λ+2μ
ρ and Vs =

√
μ
ρ ). The functions g(x, z) and h(x, z)

reflect spacial distribution of the source, f(t) is the source function. Further as
a function f(t) we will take the Richer impulse with dominant frequency ν0:

f(t) =

[
1− 2π2ν20

(
t− t0

ν0

)2
]
· e−π2ν2

0

(
t− t0

ν0

)2

.
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2.1 Laguerre Transform and Additive Schwarz Method

The integral Laguerre transform for the function F (t) ∈ L2(0,∞) is given by
the following relation:

Fn =

∫ ∞

0

F (t)(ht)−
α
2 lαn(ht)dt, (2)

with the inversion formula

F (t) =

∞∑
n=0

Fn · (ht)
α
2 lαn(ht). (3)

Here lαn(ht) are orthonormal Laguerre functions

lαn(ht) =

√
n!

(n+ α)!
(ht)

α
2 e−

ht
2 Lα

n(ht),

with h ∈ R+, α ∈ Z+ and Lα
n(ht) being classical Laguerre polynomials [5]:

Lα
n(y) =

1

n!
eyy−α d

n

dyn
(
yα+ne−y

)
. (4)

h is the scaling parameter and it is responsible for dilation/compression of the La-
guerre functions. The parameter α reflects the attenuation rate i.e. for a smaller
size of α – the Laguerre function attenuate faster (see Figure 1).

Application of the integral Laguerre transform (2) to the system of elastic
equations (1) transforms it to the system of eliptic second order partial differ-
ential equations with a negative definite operator:

∂
∂x

[
(λ + 2μ)

∂un
1

∂x + λ
∂un

2

∂z

]
+ ∂

∂z

[
μ

∂un
2

∂x + μ
∂un

1

∂z

]
− ρh2

4 u
n
1 = (û1)n−1;

∂
∂x

[
μ

∂un
2

∂x + μ
∂un

1

∂z

]
+ ∂

∂z

[
λ
∂un

1

∂x + (λ+ 2μ)
∂un

2

∂z

]
− ρh2

4 u
n
2 = (û2)n−1.

⎫⎪⎪⎬⎪⎪⎭
Its right-hand side is defined by the recurrence formulas

(û1)n−1 = ρh2
√

n!
(n+α)!

n−1∑
k=0

(n− k)
√

(k+α)!
k! uk1 − g(x, z)fn,

(û2)n−1 = ρh2
√

n!
(n+α)!

n−1∑
k=0

(n− k)
√

(k+α)!
k! uk2 − h(x, z)fn.
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In order to define how many Laguerre functions should be used in expansion (3)
an empirical criterion is applyed. It is based on the fact that the waveform of
volumetric source in a 3D homogeneous medium coincides with the first deriva-
tion of the source function. That is why the number of Laguerre functions N is
chosen from the condition:

∫ T

0

⎡⎣f ′(t− T )− N(T )∑
n=0

fn(ht)
−α/2lαn(ht)

⎤⎦2

dt ≤ ε2

that ensures the prescribed accuracy of the root-mean-square deviation of an
initial impulse from its expansion by the Laguerre functions on the time interval
(0, T ). An example of such a choice, but for an insufficient number of Laguerre
functions is shown in Figure 2.
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3

;
0 1 2 3
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−0.5

0

0.5

1

1.5

2

Fig. 1. The Laguerre functions lαn(ht) with n = 10, h = 100 for different values of α:
α = 5 on the left; α = 20 on the right

Fig. 2. Line 1 – the Richer impulse, line 2 – its reconstruction for some value of N
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3 Numerical Approximation and Organization of Parallel
Calculations

Parallelization of the algorithm is implemented on the base of the domain de-
composition and the additive Schwarz method.

3.1 Additive Schwarz Method

A full description of the additive Schwarz method can be found in [3,6]. The
basic idea of this method is to search for the solution not in the original compu-
tational domain, if it is too large, but to decompose it to elementary subdomains
of an appropriate size and to resolve the problem in each of these subdomains.
In particular, to resolve the boundary value problem in the domain D with the
boundary S, it is decomposed to two overlapping subdomains D1 and D2 (Figure
3), so two new boundaries S1 and S2 are introduced. The Schwarz alternations
start with computation of solutions within subdomainsD1 andD2 with arbitrary
boundary conditions on S1 and S2, respectively. For each subsequent iteration
(m+1), the solution in D1 is constructed using as boundary conditions on S1 the
trace of a solution in D2 computed by the previous iteration (m). The same pro-
cedure is used to update the solution in D2. The convergence of iterations for this
version of the additive Schwarz method is ensured by the negative definiteness
of the operator and overlapping of the neighboring subdomains [3,6].

As a stopping criterion for the Schwarz alternations, we should attain the
desired level of threshold of the following value:

Err = max

(
‖un1 − un−1

1 ‖Γ
‖un−1

1 ‖Γ
,
‖un2 − un−1

2 ‖Γ
‖un−1

2 ‖Γ

)
, (5)

where Err characterizes a relative correlation of the solution on two sequential
time steps, Γ is the unification of all the boundaries introduced by domain de-
composition on overlapping interfaces. In our numerical simulation, the threshold
Err ≤ 10−5.

Fig. 3. The overlapping domain decomposition and Schwarz iterations
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3.2 Restriction of the Computational Domain

In order to restrict the target area, we use a certain modification of the elastic
Perfectly Matched Layer (PML) presented in [7]. Such a modification was pro-
posed and implemented by G.V. Reshetova and V.A. Tcheverda [8]. The main
idea is to introduce the PML for a system of first order elastic equations and
then to implement the Laguerre transform. As a result, we obtain the following
system of equations:

ρ
(
h
2 + dx(x)

)
un1,1 =

∂σn
1

∂x − ρ(ū1,1)n−1,

ρ
(
h
2 + dz(z)

)
un1,2 =

∂σn
3

∂z − ρ(ū1,2)n−1,

ρ
(
h
2 + dx(x)

)
un2,1 =

∂σn
3

∂x − ρ(ū2,1)n−1,

ρ
(
h
2 + dz(z)

)
un2,2 =

∂σn
2

∂z − ρ(ū2,2)n−1,(
h
2 + dx(x)

)
σn1,1 = (λ + 2μ)

∂un
1

∂x − (σ̄1,1)n−1 +G(x, z)fn,(
h
2 + dz(z)

)
σn1,2 = λ

∂un
2

∂z − (σ̄1,2)n−1,(
h
2 + dx(x)

)
σn2,1 = λ

∂un
1

∂x − (σ̄2,1)n−1 +H(x, z)fn,(
h
2 + dz(z)

)
σn2,2 = (λ+ 2μ)

∂un
2

∂z − (σ̄2,2)n−1,(
h
2 + dx(x)

)
σn3,1 = μ

∂un
2

∂x − (σ̄3,1)n−1,(
h
2 + dz(z)

)
σn3,2 = μ

∂un
1

∂z − (σ̄3,2)n−1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (6)

where (ū1,1)n−1, (ū1,2)n−1, (ū2,1)n−1, (ū2,2)n−1, (σ̄1,1)n−1, (σ̄1,2)n−1, (σ̄2,1)n−1,
(σ̄2,2)n−1, (σ̄3,1)n−1, (σ̄3,2)n−1 are calculated by the following recurrent relation:

(w̄)n−1 = h
√

n!
(n+α)!

n−1∑
k=0

√
(k+α)!

k! wk.

Recall that unknown functions inside the PML are split to the two components

u1 = u1,1 + u1,2, u2 = u2,1 + u2,2;

σxx = σxx,1 + σxx,2, σzz = σzz,1 + σzz,2, σxz = σxz,1 + σxz,2;

and seismic wave absorption is provided by special damping functions along the
axes x and z: (

dx(x)
dz(z)

)
= 0, if

(
x ≤ a
z ≤ a

)
;

(
dx(x)
dz(z)

)
=
d0

(
x−a
δ

)4
d0

(
z−a
δ

)4
}
, otherwise
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,
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with a numerical value

d0 =

∣∣∣∣ln(
1

R

)∣∣∣∣ 2max
x,z

(vp(x, z))

δ
.

Here a is the beginning of the PML, δ is its width, R is the value of a desired level
of artificial reflection from the PML (in our experiments, it was taken R = 10−5).

Next let us multiply each odd equation of the system of equations (6) by
d2 = dz(z), each even equation by d1 = dx(x) and after several substitutions we
obtain the following system of second order partial differential equations:(

h
2 + d2

)
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(8)

It is worth mentioning that system (7) – (8) introduces an unsplit PML (see [8]).

3.3 Numerical Approximation

The finite-difference approximation of system (7) – (8) is done by the standard
staggered grid scheme [9] that was modified for second order systems [10]. Its
stencil is presented in Figure 4. Formally, we need u1 and u2 only, all other



160 M.A. Belonosov et al.

variables are complement. But their knowledge is necessary for simulation, and
so they are computed in the corresponding nodes.

This approximation gives a system of linear algebraic equations with a sparse
nine-diagonal matrix. It is worth mentioning that the matrix of this system does
not depend on the separation parameter n.

For each value of the separation parameter n, we have a system of linear
algebraic equations (SLAE) with the same sparse negative definite matrix but
with different right-hand sides. The negative definiteness of the matrix ensures
convergence of the additive Schwarz method (see [6]). Since it does not depend
on the separation parameter, it is reasonable to use direct solver on the base of
LU decomposition: in each subdomain it can be done only once, saved in the
RAM and subsequently be used for all right-hand sides.

J+1

J

J-1

J

I-3/2 I-1/2 I+1/2

Fig. 4. Stencil of the finite-difference scheme that is used for approximation of system
(7) – (8). Squares and circles are for un

1 and un
2 respectively, while σ is calculated in

triangles.

3.4 LU FACTORIZATION

In order to perform the LU factorization and to solve a SLAE for a large number
of right-hand sides we use Intel Math Kernel Library (Intel MKL) PARDISO di-
rect solver (http://software.intel.com/sites/products/documentation/doclib/m
kl sa/11/mklman/index.htm ) that is parallelized via OpenMP. The PARDISO
package is a shared-memory multiprocessing parallel direct solver, designed to
solve sparse SLAEs. It is based on row-column reordering of an initial matrix,
effective parallelization of a factorization and solving steps. To perform the row-
column permutation, Intel MKL PARDISO uses a nested dissection algorithm
from the METIS package [11] that decreases the size of a required RAM to
store LU factors. In Table 1 we present an amount of RAM required for LU
decomposition for the problem we deal with. One can conclude that

1. Because of a sparse structure of a matrix we need only a few megabytes of
RAM to store a matrix of finite-difference approximation.

2. The main amount of RAM is used to store the LU factorization.
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Table 1. Properties of the LU factorization of a nine-diagonal matrix obtained after
finite-difference approximation of system (7) – (8)

Domain Matrix Nonzero Nonzero LU (MB)
size, size elements elements

nx = nz of the matrix of LU factors

100 20 200 180 196 1 620 174 12

200 80 400 720 396 8 108 008 62

400 320 800 2 880 796 39 251 440 299

800 1 281 600 11 521 596 187 492 542 1 430

1 600 5 123 200 46 083 196 858 718 476 6 552

A factorization step of the Intel MKL PARDISO solver is extensively paral-
lelized and optimized for providing a high performance on multi-core systems
with shared memory. In order to improve the factorization performance, algo-
rithms of Intel MKL PARDISO are based on a Level-3 BLAS update. Moreover,
there are additional features in PARDISO, which can improve the performance,
in particular, left-looking [12] and two-level [13] factorization algorithms. The
first algorithm improves the scalability on a small number of threads while the
second – on many threads (more than eight). The computational cost of solv-
ing SLAE with many right-hand sides (RHS) is the same or higher than those
needed for factorization. A solving step in Intel MKL PARDISO is optimized
both for one RHS and for many RHS. The comparison of PARDISO vs. SuperLU
has been made on the cluster of Siberian Supercomputer Center (nodes based
on X5675 3.00 GHz Westmere). The results obtained are presented in the chart:

Fig. 5. Dependence the of normalized solving time on the number of RHS
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3.5 Parallel Computations

High performance computations are usually performed on computational sys-
tems with distributed memory or with MPP (Massive Parallel Processing) ar-
chitecture. Such systems consist of several nodes with several processors. Each of
them has access to RAM of this node. Each processor is usually multi-core. That
is why modern computational systems have a hybrid architecture and organized
as a set of nodes with distributed memory (MPP architecture), each of them is
also computational system with shared memory. Proposed numerical algorithm
is orientated onto such architectures and can be effectively loaded at any cluster
and consists of the following steps:

1. domain decomposition on ”elementary” subdomains providing possibility to
store the LU factorization in shared memory of a node (see Table 1);

2. usage of PARDISO MKL for effective parallel computations on the node
with OpenMP (SMP architecture);

3. exchanges between subdomains in the process of the Schwarz iterations via
MPI (MPP architecture).

The scheme of parallel computations is presented in Figure 6. Numerical ex-
periments were carried out on computational systems with a hybrid parallel
architecture. At each node, there are 8 GB RAM, so we can decompose our
computational domain to squares of 800× 800 mesh points.

Fig. 6. Parallel computations. Strips 1 correspond to overlapping of two neighbors,
while rectangles 2 match overlapping of four subdomains. Arrows correspond to the
direction of exchanges between the nodes (MPI).

4 Numerical Experiments

Numerical experiments were carried out on the high performance computer of
the Moscow State University with a hybrid parallel architecture: 519 nodes, each
of them consists of two quad-core processors and has 8 GB RAM.

The first experiments were performed to understand the main properties of
the method. We have considered a simplest situation: a homogeneous elastic
medium with the wave propagation velocities Vp = 2500 m/s, Vs = 2000 m/s
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and the density ρ = 2000 kg/m3. As the source function, we chose Ricker impulse
with dominant frequency 30 Hz. Parameters of the Laguerre transform: h = 300,
α = 5. For the total simulation time T = 3 s, 550 polynomials were used. The
size of the computational domain was 1000× 1000 m with PML.

4.1 Dependence of the Number of Iterations on the Width of
Overlapping

First of all, the dependence of the number of iterations on the width of over-
lapping is analyzed. These results are presented in Table 2. As one can see, the
optimal overlapping is equal to 25 points.

Table 2. Dependence of number of iterations on width of the overlapping

Width of the Width of the overlapping Number of iterations
overlapping (m) (number of mesh points)

30 15 7

40 20 6

50 25 5

70 35 5

Next both weak and strong scalabilities (see [14]) of the algorithm were
studied.

4.2 Weak Scalability

Schematically, the way to estimate weak scaling is presented in Figure 7. We fix
the load of a node that is equal to the size of the subdomain and enlarge the size
of the global computational domain. Thereby we enlarge the number of nodes.
As the measure for weak scaling, we use the following function:

effweak(N) =
T (N)

T (N0)
, (9)

where T (N) is the calculation time for N nodes as long as the size of the prob-
lem N times increases (Figure 7). The ideal weak scalability corresponds to
effweak(n) ≡ 1.

For the numerical experiment, we took 800×800 mesh points on each node.
In Figure 8 the curve T (N)/T (9) is presented. As can be seen, it has a low
variations around the one that reflects good weak scalability of the algorithm.

4.3 Strong Scalability

Schematically the way to estimate strong scaling is presented in Figure 9. In
contrast to weak scaling, here we fix the size of the global computational domain
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Fig. 7. Weak scaling comuputation

Fig. 8. Weak scalability of the algorithm

and enlarge the number of subdomains. To estimate strong scalability, we use
the following function:

effstrong(N) =
T (N)

N0 · T (N0)
, (10)

where N0 is the initial number of processes. The ideal strong scalability should
coincide with the linear dependence of calculation time on the number of pro-
cesses, that is T (N) = αN−1, where α is certain coefficient. That is why for the
ideal strong scalability effstrong(N) = N−1.

Numerical experiments to estimate strong scalability were carried out in the
same conditions as previously: a homogeneous medium, the Richer impulse with
dominant frequency 30 Hz, 550 Laguerre functions, a global computational do-
main of 2400×2400 mesh points, that is, nine initial subdomains of 800× 800
points, each of them being loaded on its own node.

The result (function 10) is presented in Figure 10 (line 2). Line 1 is the ideal
scalability. Thus, one can conclude that the algorithm possesses satisfactory
strong scalability as well.
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Fig. 9. Strong scaling comuputation

Fig. 10. Strong scalability of the algorithm: line 1 is the ideal scalability, line 2 is the
scalability obtained in the numerical experiment

5 Numerical Experiment for Realistic Model

Finally, we would like to present the results of the numerical experiment for
presented in Fig.11 (on the left) the realistic Gullfaks model, describing some
geological area of the North Sea [15].

The volumetric point source with coordinates (1620, 20) radiates a Ricker
impulse with the dominant frequency 30 Hz. The model was discretized on the
uniform grid hx = hz = 2 m that corresponds to 25 mesh points on a wavelength.
The integral Laguerre transform with 550 harmonics is computed with h = 300
and α = 3. The total simulation time is T = 3 s. The computational domain
is decomposed to (3 × 3) identical subdomains with overlapping of 50 m (25
points). To obtain solution with the residual Err ≤ 10−5 (see (5)) it took 10
Schwarz iterations. The result of this experiment is presented in Figure 11 (on
the right).
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Fig. 11. The 2D Gullfaks model: P-wave velocity (left image); a snapshot for the
Gullfaks model (right image)

6 Conclusions

This paper presents the algorithm for the numerical simulation of elastic waves in
an inhomogeneous medium based on decomposition of a computational domain,
implementation of the integral Laguerre transform and the additive Schwarz
method. This algorithm is ideally suited to parallel high-performance computers
with a hybrid architecture, representing a set of nodes that combine several
multi-core processors with shared memory that are unified by InfiniBand to
exchange the data between parallel processes at different nodes. The system of
linear algebraic equations for each subdomain is solved with the use of PARDISO
from Intel Math Kernel Library (Intel MKL), which is parallelized via OpenMP.
The revealed scalability of the algorithm confirms the prospects of the numerical
simulation on the base of this algorithm in 3D inhomogeneous media.

To conclude, let us point out that the LU factorization is not the only way to
solve the system obtained after numerical approximation. In particular we can
use the Cholesky factorization for interior subdomains (outside the PML) and the
LU factorization for boundary subdomains. Also one can use an approximation
of sparse matrices by matrices of a lower rank (see e.g. [16])).

Acknowledgements. The research described was performed in cooperation
with Schlumberger Moscow Research and partially supported by RFBR grants
11-05-00947, 12-05-31008 and President of Russia grant for young scientists MK-
77.2013.5. We are also grateful to the R&D site of Intel at Novosibirsk (MKL
group) for assistance while application of PARDISO from Intel Math Kernel
Library.

References

1. Plessix, R.E.: A Helmholtz iterative solver for 3D seismic-imaging problems. Geo-
physics 72(5), 185–194 (2007)

2. Mikhailenko, B.G., Mikhailov, A.A., Reshetova, G.V.: Numerical viscoelastic mod-
eling by the spectral Laguerre method. Geophysical Prospecting 51, 37–48 (2003)



Parallel Numerical Simulation of Seismic Waves Propagation with Intel MKL 167

3. Chan, T., Mathew, T.P.: Domain decomposition. Acta Numerica 3, 61–143 (1994)
4. Gander, M., Halpern, L., Nataf, F.: Optimized Schwarz Methods. In: 12th Inter-

national Conference on Domain Decomposition Methods, pp. 15–27 (2001)
5. Suetin, P.K.: Classical orthogonal polynomials. Nauka, M. 203–243 (1974)
6. Nepomnyashchikh, S.V.: Domain decomposition methods. Radon Series Comput.

Appl. Math. 1, 81–159 (2007)
7. Collino, F., Tsogka, C.: Application of the PML absorbing layer model to the linear

elastodynamic problem in anisotropic heterogeneous media. Geophysics 66(1), 294–
307 (2001)

8. Reshetova, G.V., Tcheverda, V.A.: Implementation of Laguerre transform to con-
struct perfectly matched layer without splitting. Mathematical Modelling 18(1),
91–101 (2006)

9. Virieux, J.: P-SV wave propagation in heterogeneous media: Velocity - stress finite-
difference method. Geophysics 51(4), 889–901 (1986)

10. Zahradnik, J., Priolo, E.: Heterogeneous formulations of elastodynamic equations
and finite-difference schemes. Geophysical Journal International 120(3), 663–676
(1995)

11. Karypis, G., Kumar, V.: A fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1998)

12. Schenk, O., Gartner, K., Fichtner, W.: Efficient Sparce LU Factorization with Left-
right Looking Strategy on Shared Memory Multiprocessors. BIT 240(1), 158–176
(2000)

13. Schenk, O., Gartner, K.: Two-level scheduling in PARDISO: Improved Scalabil-
ity on Shared Memory Multiprocessing Systems. Parallel Computing 28, 187–197
(2002)

14. Colella, P., Bell, J., Keen, N., Ligocki, T., Lijewski, M., van Straalen, B.: Perfor-
mance and scaling of locally-structured grid methods for partial differential equa-
tions. Journal of Physics: Conference Series 78, 012013 (2007)

15. Fossen, H., Hesthammer, J.: Structural geology of the Gullfaks Field, northern
North Sea, vol. 127, pp. 231–261. Geological Society, London (1998) (Special Pub-
lications)

16. Zhang, Z., Zha, H., Simon, H.: Low-Rank Approximation with Sparce Factors:
Basic Algorithms and Error Analysis. SIAM J. of Matrix Analysis and Applica-
tions (3), 706–727 (1999)



Part III

Parallel Algorithms



Blocked Schur Algorithms

for Computing the Matrix Square Root

Edvin Deadman1, Nicholas J. Higham2, and Rui Ralha3

1 Numerical Algorithms Group
edvin.deadman@nag.co.uk
2 University of Manchester

higham@maths.manchester.ac.uk
3 University of Minho, Portugal

r ralha@math.minho.pt

Abstract. The Schur method for computing a matrix square root
reduces the matrix to the Schur triangular form and then computes a
square root of the triangular matrix. We show that by using either stan-
dard blocking or recursive blocking the computation of the square root of
the triangular matrix can be made rich in matrix multiplication. Numeri-
cal experiments making appropriate use of level 3 BLAS show significant
speedups over the point algorithm, both in the square root phase and in
the algorithm as a whole. In parallel implementations, recursive block-
ing is found to provide better performance than standard blocking when
the parallelism comes only from threaded BLAS, but the reverse is true
when parallelism is explicitly expressed using OpenMP. The excellent
numerical stability of the point algorithm is shown to be preserved by
blocking. These results are extended to the real Schur method. Blocking
is also shown to be effective for multiplying triangular matrices.

1 Introduction

A square root of a matrix A ∈ Cn×n is any matrix satisfying X2 = A. Matrix
square roots have many applications, including in Markov models of finance, the
solution of differential equations and the computation of the polar decomposition
and the matrix sign function [12].

A square root of a matrix (if one exists) is not unique. However, if A has
no eigenvalues on the closed negative real line then there is a unique principal
square root A1/2 whose eigenvalues all lie in the open right half-plane. This is the
square root usually needed in practice. If A is real, then so is A1/2. For proofs
of these facts and more on the theory of matrix square roots see [12].

The most numerically stable way of computing matrix square roots is via
the Schur method of Björck and Hammarling [6]. The matrix A is reduced to
upper triangular form and a recurrence relation enables the square root of the
triangular matrix to be computed a column or superdiagonal at a time. In §2 we
show that the recurrence can be reorganized using a standard blocking scheme or
recursive blocking in order to make it rich in matrix multiplications. We show ex-
perimentally that significant speedups result when level 3 BLAS are exploited in
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the implementation, with recursive blocking providing the best performance. In
§3 we show that the blocked methods maintain the excellent backward stability
of the non-blocked method. In §4 we discuss the use of the new approach within
the Schur method and explain how it can be extended to the real Schur method
of Higham [10]. We compare our serial implementations with existing MAT-
LAB functions. In §5 we compare parallel implementations of the Schur method,
finding that standard blocking offers the greatest speedups when the code is ex-
plicitly parallelized with OpenMP. In §6 we discuss some further applications of
recursive blocking to multiplication and inversion of triangular matrices. Finally,
conclusions are given in §7.

2 The Use of Blocking in the Schur Method

To compute A1/2, a Schur decomposition A = QTQ∗ is obtained, where T is
upper triangular and Q is unitary. Then A1/2 = QT 1/2Q∗. For the remainder of
this section we will focus on upper triangular matrices only. The equation

U2 = T (1)

can be solved by noting that U is also upper triangular, so that by equating
elements,

U2
ii = Tii, (2)

UiiUij + UijUjj = Tij −
j−1∑

k=i+1

UikUkj . (3)

These equations can be solved either a column or a superdiagonal at a time,
but solving a column at a time is preferable since it allows more efficient use of
cache memory. Different choices of sign in the scalar square roots of (2) lead to
different matrix square roots. This method will be referred to hereafter as the
“point” method.

The algorithm can be blocked by letting the Uij and Tij in (2) and (3) refer
to m × m blocks, where m � n (we assume, for simplicity, that m divides
n). The diagonal blocks Uii are then obtained using the point method and the
off-diagonal blocks are obtained by solving the Sylvester equations (3) using
LAPACK routine xTRSYL (where ‘x’ denotes D or Z according to whether real
or complex arithmetic is used) [4]. Level 3 BLAS can be used in computing the
right-hand side of (3) so significant improvements in efficiency are expected. This
approach is referred to as the (standard) block method.

To test this approach, a Fortran implementation was written and compiled
with gfortran on a 64 bit Intel Xeon machine, using the ACML Library for
LAPACK and BLAS calls. Complex upper triangular matrices were generated,
with random elements whose real and imaginary parts were chosen from the
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uniform distribution on [0, 1). Figure 1 shows the run times for the methods, for
values of n up to 8000. A block size of 64 was chosen, although the speed did
not appear to be particularly sensitive to the block size—similar results were
obtained with blocks of size 16, 32, and 128. The block method was found to
be up to 6 times faster than the point method. The residuals ‖Û2 − T ‖/‖T ‖,
where Û is the computed value of U , were similar for both methods. Table
1 shows that, for n = 4000, approximately 85% of the run time is spent in
ZGEMM calls.
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Fig. 1. Run times for the point, block, and recursion methods for computing the square
root of a complex n× n triangular matrix for n ∈ [0, 8000]

A larger block size enables larger GEMM calls to be made. However, it leads
to larger calls to the point algorithm and to xTRSYL (which only uses level 2
BLAS). A recursive approach may allow increased use of level 3 BLAS.

Equation (1) can be rewritten as(
U11 U12

0 U22

)2

=

(
T11 T12
0 T22

)
, (4)

where the submatrices are of size n/2 or (n ± 1)/2 depending on the parity of
n. Then U2

11 = T11 and U2
22 = T22 can be solved recursively, until some base

level is reached, at which point the point algorithm is used. The Sylvester equa-
tion U11U12 + U12U22 = T12 can then be solved using a recursive algorithm
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devised by Jonsson and Kågström [14]. In this algorithm, the Sylvester equation
AX +XB = C, with A and B triangular, is written as(

A11 A12

0 A22

)(
X11 X12

X21 X22

)
+(

X11 X12

X21 X22

)(
B11 B12

0 B22

)
=

(
C11 C12

C21 C22

)
,

where each submatrix is of size n/2 or (n± 1)/2. Then

A11X11 +X11B11 = C11 −A12X21, (5)

A11X12 +X12B22 = C12 −A12X22 −X11B12, (6)

A22X21 +X21B11 = C21, (7)

A22X22 +X22B22 = C22 −X21B12. (8)

Equation (7) is solved recursively, followed by (5) and (8), and finally (6). At
the base level a routine such as xTRSYL is used.

The run times for a Fortran implementation of the recursion method in com-
plex arithmetic, with a base level of size 64, are shown in Figure 1. The approach
was found to be consistently 10% faster than the block method, and up to 8 times
faster than the point method, with similar residuals in each case. The precise
choice of base level made little difference to the run time.

Table 2 shows that the run time is dominated by GEMM calls and that the
time spent in ZTRSYL and the point algorithm is similar to the block method.
The largest GEMM call uses a submatrix of size n/4.

Table 1. Profiling of the block method for computing the square root of a triangular
matrix, with n = 4000. Format: time in seconds (number of calls).

Total time taken: 24.03

Calls to point algorithm: 0.019 (63)
Calls to ZTRSYL 3.47 (1953)
Calls to ZGEMM: 20.54 (39711)

3 Stability of the Blocked Algorithms

We use the standard model of floating point arithmetic [11, §2.2] in which the
result of a floating point operation, op, on two scalars x and y is written as

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u,

where u is the unit roundoff. In analyzing a sequence of floating point operations
it is useful to write [11, §3.4]

n∏
i=1

(1 + δi)
ρi = 1 + θn, ρi = ±1,
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Table 2. Profiling of the recursive method for computing the square root of a triangular
matrix, with n = 4000. Format: time in seconds (number of calls).

Total time taken: 22.04

Calls to point algorithm: 0.002 (64)
Calls to ZTRSYL 3.37 (2016)
Calls to ZGEMM total: 18.64 (2604)

Calls to ZGEMM with n = 1000 7.40 (4)
Calls to ZGEMM with n = 500 5.34 (24)
Calls to ZGEMM with n = 250 3.16 (112)
Calls to ZGEMM with n = 125 1.81 (480)
Calls to ZGEMM with n <= 63 0.94 (1984)

where
|θn| ≤

nu

1− nu =: γn.

It is also convenient to define γ̃n = γcn for some small integer c whose precise
value is unimportant. We use a hat denote a computed quantity and write |A|
for the matrix whose elements are the absolute values of the elements of A.

Björck and Hammarling [6] obtained a normwise backward error bound for

the Schur method. The computed square root X̂ of the full matrix A satisfies
X̂2 = A+ΔA, where

‖ΔA‖F ≤ γ̃n3‖X̂‖2F . (9)

Higham [12, §6.2] obtained a componentwise bound for the triangular phase of

the algorithm. The computed square root Û of the triangular matrix T satisfies
Û2 = T +ΔT , where

|ΔT | ≤ γ̃n|Û |2. (10)

This bound implies (9). We now investigate whether the bound (10) still holds
when the triangular phase of the algorithm is blocked.

Consider the Sylvester equation AX + XB = C in n × n matrices with tri-
angular A and B. When it is solved in the standard way by the solution of n
triangular systems the residual of the computed X̂ satisfies [11, §16.1]

|C − (AX̂ + X̂B)| ≤ γ̃n(|A||X̂ |+ |X̂ ||B|). (11)

In the (non-recursive) block method, to bound ΔTij we must account for the
error in performing the matrix multiplications on the right-hand side of (3).
Standard error analysis for matrix multiplication yields, for blocks of size m,∣∣∣∣∣fl

(
j−1∑

k=i+1

ÛikÛkj

)
−

j−1∑
k=i+1

ÛikÛkj

∣∣∣∣∣ ≤ γ̃n|Û |2ij .
Substituting this into the residual for the Sylvester equation in the off-diagonal
blocks, we obtain the componentwise bound (10).



176 E. Deadman, N.J. Higham, and R. Ralha

To obtain a bound for the recursive blocked method we must first check if
(11) holds when the Sylvester equation is solved using Jonsson and Kågström’s
recursive algorithm. This can be done by induction, assuming that (11) holds at
the base level. For the inductive step, if suffices to incorporate the error estimates
for the matrix multiplications in the right hand sides of (5)–(8) into the residual
bound.

Induction can then be applied to the recursive blocked method for the square
root. The bounds (10) and (11) are assumed to hold at the base level. The
inductive step is similar to the analysis for the block method. Overall, (10) is
obtained.

We conclude that both our blocked algorithms for computing the matrix
square root satisfy backward error bounds of the same forms (9) and (10) as
the point algorithm.

4 Serial Implementations

When used with full (non-triangular) matrices, more modest speedups are ex-
pected because of the significant overhead in computing the Schur decomposi-
tion. Figure 2 compares run times of the MATLAB function sqrtm (which does
not use any blocking) and Fortran implementations of the the point method
(fort point) and the recursive blocked method (fort recurse), called from
within MATLAB using a mex interface, on a 64 bit Intel i3 machine. The matri-
ces have elements whose real and imaginary parts are chosen from the uniform
random distribution on the interval [0, 1). The recursive routine is found to be
up to 2.5 times faster than sqrtm and 2 times faster than fort point.

An extension of the Schur method due to Higham [10] enables the square root
of a real matrix to be computed without using complex arithmetic. A real Schur
decomposition of A is computed. Square roots of the 2 × 2 diagonal blocks of
the upper quasi-triangular factor are computed using an explicit formula. The
recurrence (3) now proceeds either a block column or a block superdiagonal at
a time, where the blocks are of size 1 × 1, 1 × 2, 2 × 1, or 2 × 2 depending
on the diagonal block structure. A MATLAB implementation of this algorithm
sqrtm real is available in the Matrix Function Toolbox [9]. The algorithm can
also be implemented in a recursive manner, the only subtlety being that the
“splitting point” for the recursion must be chosen to avoid splitting any 2 ×
2 diagonal blocks. A similar error analysis to §3 applies to the real recursive
method, though since only a normwise bound is available for the point algorithm
applied to the quasi-triangular matrix the backward error bound (10) holds in
the Frobenius norm rather than elementwise.

Figure 3 compares the run times of sqrtm and sqrtm real with Fortran im-
plementations of the real point method (fort point real) and the real recursive
method (fort recurse real), also called from within MATLAB. The matrix el-
ements are chosen from the uniform random distribution on [0, 1). The recursive
routine is found to be up to 6 times faster than sqrtm and sqrtm real and 2
times faster than fort point real.
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Fig. 2. Run times for sqrtm, fort recurse, and fort point for computing the square
root of a full n× n matrix for n ∈ [0, 2000]

Both the real and complex recursive blocked routines spend over 90% of
their run time in computing the Schur decomposition, compared with 44% for
fort point, 46% for fort point real, 25% for sqrtm, and 16% for sqrtm real.
The latter two percentages reflect the overhead of the MATLAB interpreter in
executing the recurrences for the (quasi-) triangular square root phase. The 90%
figure is consistent with the flop counts of 28n3 flops for computing the Schur
decomposition and transforming back from Schur form and n3/3 flops for the
square root of the triangular matrix.

5 Parallel Implementations

The blocked and recursive algorithms allow parallel architectures to be exploited
simply by using threaded BLAS. Further performance gains might be extracted
by explicitly parallelizing the triangular phase using OpenMP.

In (3), the (i, j) element of U can be computed only after the elements to its
left in the ith row and below it in the jth column have been found. Computing
U by column therefore offers no opportunity for parallelism within the column
computation. Instead we will compute U by superdiagonal, which allows the
elements on each superdiagonal to be computed in parallel. Parallelization of
the blocked algorithm is analogous.
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Fig. 3. Run times for sqrtm, sqrtm real, fort recurse real and fort point real for
computing the square root of a full n× n matrix for n ∈ [0, 2000]

The recursive block method can be parallelized using OpenMP tasks. Each
recursive call generates a new task. Synchronization points are required to ensure
that data dependencies are preserved. Hence, in equation (4), U11 and U22 can
be computed in parallel, and only then can U12 be found. When solving the
Sylvester equation recursively, only (5) and (8) can be solved in parallel.

When sufficient threads are available (for example when computing the Schur
decomposition) threaded BLAS should be used. When all threads are busy (for
example during the triangular phase of the algorithm), serial BLAS should be
used, to avoid the overhead of creating threads unnecessarily. Unfortunately, it
is not possible to control the number of threads available to individual BLAS
calls in this way. In the implementations described below threaded BLAS are
used throughout, despite this “overparallelization” overhead.

The parallelized Fortran test codes were compiled on a machine containing
4 Intel Xeon CPUs, with 8 available threads, linking to ACML threaded BLAS
[1]. Figure 4 compares run times for the triangular phase of the algorithm, with
triangular test matrices generated with elements having real and imaginary parts
chosen from the uniform random distribution on the interval [0, 1).

The point algorithm does not use BLAS, but 2-fold speedups on eight cores
are obtained using OpenMP. With standard blocking, threaded BLAS alone
gives a 2-fold speed up, but using OpenMP gives a 5.5 times speedup. With
recursive blocking, a 3-fold speedup is obtained by using threaded BLAS,
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Fig. 4. Run times for parallel implementations of the point, block, and recursion meth-
ods for computing the square root of a 4000 × 4000 triangular matrix

but using OpenMP then decreases the performance because of the multiple syn-
chronization points at each level of the recursion. Overall, if the only paral-
lelization available is from threaded BLAS, then the recursive algorithm is the
fastest. However, if OpenMP is used then shorter run times are obtained using
the standard blocking method.

Figure 5 compares run times for computing the square root of a full square
matrix. Here, the run times are dominated by the Schur decomposition, so the
most significant gains are obtained by simply using threaded BLAS and the gains
due to the new triangular algorithms are less apparent.

6 Further Applications of Recursive Blocking

We briefly mention two further applications of recursive blocking schemes.
Currently there are no LAPACK or BLAS routines designed specifically for

multiplying two triangular matrices, T = UV (the closest is the BLAS routine
xTRMM which multiplies a triangular matrix by a full matrix). However, a block
algorithm is easily derived by partitioning the matrices into blocks. The product
of two off-diagonal blocks is computed using xGEMM. The product of an off-
diagonal block and a diagonal block is computed using xTRMM. Finally the
point method is used when multiplying two diagonal blocks.
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Fig. 5. Run times for parallel implementations of the point, block, and recursion meth-
ods for computing the square root of a 4000 × 4000 full matrix

In the recursive approach, T = UV is rewritten as(
T11 T12
0 T22

)
=

(
U11 U12

0 U22

)(
V11 V12
0 V22

)
.

Then T11 = U11V11 and T22 = U22V22 are computed recursively and T12 =
U11V12 + U12V22 is computed using two calls to xTRMM.

Figure 6 shows run times for some triangular matrix multiplications using
serial Fortran implementations of the point method, standard blocking, and re-
cursive blocking on a single Intel Xeon CPU (the block size and base levels were
both 64 in this case, although the results were not too sensitive to the precise
choice of these parameters). As for the matrix square root, the block algorithms
significantly outperform the point algorithm, with the recursive approach out-
performing the standard blocking approach by approximately 5%. However, if
the result of the multiplication is required to overwrite one of the matrices (so
that U ← UV , as is the case in xTRMM) then standard blocking may be prefer-
able because less workspace is required.

The inverse of a triangular matrix can be computed recursively, by expanding
UU−1 = I as (

U11 U12

0 U22

)(
(U−1)11 (U−1)12

0 (U−1)22

)
=

(
I 0
0 I

)
.
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Fig. 6. Run times for the point, block, and recursion methods for multiplying randomly
generated n× n triangular matrices for n ∈ [0, 8000]

Then (Û−1)11 and (Û−1)22 are computed and (Û−1)12 is obtained by solving

U11(Û
−1)12 + U12(Û

−1)22 = 0. Provided that forward substitution is used, the
right (or left) recursive inversion method can be shown inductively to satisfy
the same right (or left) elementwise residual bound as the point method [7]. A
Fortran implementation of this idea was found to perform similarly to LAPACK
code xTRTRI, so no real benefit was derived from recursive blocking.

7 Conclusions

We investigated two different blocking techniques within Björck and Hammar-
ling’s recurrence for computing a square root of a triangular matrix, finding that
in serial implementations recursive blocking gives the best performance. Neither
approach entails any loss of backward stability. We implemented the recursive
blocking with both the Schur method and the real Schur method (which works
entirely in real arithmetic) and found the new codes to be significantly faster
than corresponding point codes, which include the MATLAB functions sqrtm

(built-in) and sqrtm real (from [9]). Parallel implementations were investigated
using a combination of threaded BLAS and explicit parallelization via OpenMP.
When the only parallelization comes from threaded BLAS recursive blocking still
gives the best performance. However, when OpenMP is used better performance
is obtained using standard blocking. The new codes will appear in a future mark
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of the NAG Library [15]. Since future marks of the NAG Library will be imple-
mented explicitly in parallel with OpenMP, the standard blocking algorithm will
be used. Recursive blocking is also fruitful for multiplying triangular matrices.

Because of the importance of the (quasi-) triangular square root, which arises
in algorithms for computing the matrix logarithm [2], [3], matrix pth roots [5], [8],
and arbitrary matrix powers [13], this computational kernel is a strong contender
for inclusion in any future extensions of the BLAS.
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Abstract. The paper presents a distributed computing system that is based on 
evolutionary algorithms and utilizing a web browser on a client’s side. Evolu-
tionary algorithm is coded in JavaScript language embedded in a web page sent 
to the client. The code is optimized with regards to the memory usage and 
communication efficiency between the server and the clients. The server side is 
also based on JavaScript language, as node.js server was applied. The proposed 
system has been tested on the basis of permutation flowshop scheduling prob-
lem, one of the most popular optimization benchmarks for heuristics studied in 
the literature. The results have shown, that the system scales quite smoothly, 
taking additional advantage of local search algorithm executed by some clients. 

Keywords: distributed computing, browser-based computation, evolutionary 
algorithm, JavaScript, flowshop scheduling. 

1 Introduction 

A lot of problems that can be found in the real world are hard to solve, especially the 
ones that are proven to be NP-hard. For large instances of such problems it is imposs-
ible to find an optimal solution within a reasonable period of time, so various heuris-
tics are usually used in order to find suboptimal solutions in an acceptable time. 
Among them the most popular and widely studied in the world literature are metaheu-
ristics based on phenomena and laws taken from nature, e.g. evolutionary algorithms 
(EA), simulated annealing (SA), or most recently, ant colony optimization  (ACO), 
particle swarm optimization (PSO) and artificial bee colonies (ABC). Besides these 
metaheuristics there are many others like tabu search (TS), iterative local search (ILS) 
or variable neighbourhood search (VNS). All of them can be divided into two groups: 
operating on a single solution in each iteration (SA, TS, ILS, VNS) and operating on a 
set of solutions, often referred  to as a population (EA, ACO, PSO, ABC). 

Further decrease of computation time for hard-to-solve problems can be achieved 
by the parallelization of heuristic algorithms, which can be introduced in a simple and 
almost natural way for the metaheuristics, which deal with the population of solu-
tions. There are three general types of such parallelization that are usually exploited in 
distributed systems. In the global parallelization model there is one population, but 
calculations of objective function for the population's members are performed in a 
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parallel way by slave units. This approach is particularly useful in a multicore or a 
multiprocessor architecture, where communication time for large problem instances is 
almost negligible. In the island model the whole population is divided into subpopula-
tions that can be run even on different heterogeneous machines. In this case commu-
nication time is significant, so subpopulations are run independently and occasionally 
exchange solutions among each other. Finally, in the master-slave model there is a 
central population that communicates with subpopulations to collect the solutions [1]. 

Distributed computing usually utilizes the island model, as it is the most universal, 
machine and system independent and does not require symmetric or synchronised 
communication. This paper presents such system that is primary intended for comput-
ing large instances of NP-hard problems. The system is based on evolutionary algo-
rithm and on the client’s side it utilizes currently probably the most popular and 
widely used computer tool – a web browser. 

In the next section the idea of distributed computing over the Internet will be dis-
cussed. The third section describes architectural details of the proposed system, while 
in the fourth section some computational experiments in finding solution to the  
permutation flowshop scheduling problem are provided. 

2 Distributed Computing Based on Web Browsers 

Distributed computing based on the Internet clients for solving large scientific prob-
lems has become popular in the recent decade, since contemporary ordinary personal 
computers that can be found at our homes or offices have significant computing pow-
er that, if combined, can outperform not one contemporary supercomputer. Currently 
(as of October 2012), the world’s fastest supercomputer IBM Sequoia has a compu-
ting power of 16.3 PetaFLOPS, the second K computer has 10.5 PetaFLOPS and the 
third Tianhe-IA has 'only' 2.5 PetaFLOPS [2], while the most popular distributed 
computing network BOINC consisted of more than 300 thousand computers is esti-
mated to have a 24-hour average computing power of more than 7.2 PetaFLOPS [3].  

The most frequently used platforms for distributed computing over the Internet are 
the aforementioned Berkeley Open Infrastructure for Network Computing (BOINC) 
and distributed.net. They both require the participants in a computational project to 
install a special application dedicated to a particular operating system. Such applica-
tion can be then run in a background as a demon or as a service, utilizing some of the 
client’s CPU or GPU resources to perform a particular task. The task that is calculated 
depends on the project, e.g. participants compute some mathematical problems in 
ABC@home for, biochemical problems in Rosetta@home or astronomical challenges 
in the most popular project SETI@home. 

Despite the growing popularity of distributed computing over the Internet, systems 
that do not require any additional application on the client’s side, e.g. based entirely 
on a web browser and JavaScript are very uncommon. Only few examples of such 
systems can be found in the world literature. One of the first was a browser-based 
distributed evolutionary system proposed by Merelo et. al. [4]. The system utilized the 
master-slave model of distributed computing and used AJAX technology for sending 
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a request from a client to a server in order to receive a task to compute. The server for 
each request generated an individual and sent it back to the client for evaluation. After 
evaluation the value of objective function for that individual was sent back to the 
server. As only the server was responsible for generation of new populations, the 
system scaled poorly. Moreover, the clients’ web browsers were permanently occu-
pied with the calculations of objective functions so it was virtually impossible to  
simultaneously use them for other purposes like browsing the Internet. 

More efficient distributed system called Parasitic JavaScript was proposed by Jen-
kin in [5]. The system utilized JavaSript Object Notation (JSON) instead of XML for 
exchanging information between the web browsers and the server, and it was possible 
to limit the CPU load on the clients machines thanks to timer based programming. 
The author described that his system could be used e.g. for genetic algorithm solving 
n-queens problem, but did not provide any detailed results. 

The idea of parasitic computing was first described by Barabasi et al in [6]. Their 
system consisted of a collection of target nodes (web servers) connected to a network 
and a single home parasite node that initiated the computation by sending messages to 
target computers directing them to perform particular computations. The construction 
of the message was such that an invalid solution failed the TCP checksum and was 
dropped, thus only valid solutions were carried back to the server. In that way the 
authors solved a 2-SAT problem. Although the proposed method was not very practi-
cal for solving the problem, it showed that user computers could be applied for com-
putational purpose even without the awareness of their owners. 

The system proposed in this paper can be also used in parasitic computing, how-
ever, the users that would like to participate in some computations have to intention-
ally  go to a given web address. Moreover, they can look at the JavaScript code that 
is embedded in a web page to see what kind of computations are performed.  

3 System Architecture 

Distributed evolutionary system proposed in this paper uses Internet technologies 
similar to the ones used in Jenkin’s Parasitic JavaScript system, but first of all, it is 
based on the island model, so the best solutions found by the clients are exchanged 
and the system uses collective intelligence of the independent agents running in web 
browsers. The second difference is that our system is based almost solely on the Java-
Script language, as also the server side is built around node.js system [15]. Node.js is 
a framework for developing high-performance, concurrent programs that do not rely 
on the mainstream multithreading approach, but use asynchronous I/O with an event-
driven programming model [16]. The prototype version of the system uses node.js 
version 0.6.10 with socket.IO library version 0.8.7 [17]. 

One of the advantages of the node.js server is its ability to serve a huge number of 
concurrent requests. In the preliminary tests presented in Section 4 there were only 16 
clients used, however, the tests performed by some developers indicate that node.js is 
able to handle even 100 000 concurrent connections on a single core [18]. Moreover, 
the current version of node.js framework has an experimental support for easy  
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clustering. Such cluster implements a typical prefork server, in which child processes 
(called workers) are spawned per CPU. Cluster implementation in node.js also pro-
vides crucial functionality like zero-downtime restarts and worker resuscitation [19].  

The node.js server has been chosen to build a prototype of the system, because it is 
relatively easy to implement, as it uses JavaScript language like on the clients’ side. 
To make the system even more scalable, C++ or some modern functional language 
will be considered on the server’s side in the future. 

The clients use JavaScript code embedded in a web page provided by the server. 
JavaScript code is precompiled by all contemporary web browsers, so computing 
potential of the language is comparable to other programming languages that use JIT 
compilation like Java or C#. Very fast interpretation of JavaScript code was first in-
troduced by Google programmers in their V8 engine project [19]. For some popular 
benchmarks it has been shown that JavaScript was only two times slower than Fortran 
language that usually had the best performance [20]. The authors of the paper have 
used different web browsers (Mozilla FireFox, Google Chrome and Internet Explorer 
8) for the clients of the system and did not found any significant differences in the 
time of JS code execution. 

The server and the clients communicate with each other by sending messages in 
JSON format. The size of a single message depends on the size of the problem, e.g. 
for the flowshop problem with 20 jobs it used about 215 bytes per one message – it 
was then shorter than an average HTTP header. 

Concerning the memory usage on the clients’ side, the JavaScript code that is run 
in web browsers is designed in the way that ensures efficient work of a built-in gar-
bage collector. For example the code does not have any cycle references, so the gar-
bage collector can freely remove unused objects from memory.  

General architecture of the system is outlined in Figure 1. 
 

 

Fig. 1. The overall system architecture 
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A client (a desktop computer, a mobile phone or any other device able to interpret 
JavaScript code) connects to the server by opening a web page that includes embed-
ded JavaScript code executing a genetic algorithm or a local search algorithm (VNS). 
Following scenarios are possible: 

1. A client is authorized by the server and this request is put on the stack of the users 
awaiting for the data from the server (solid line). 

2. A client finds better solution than the best solution found so far and this solution is 
put on the stack of the best solutions found by all genetic algorithms executed by 
the clients. The stack created in this way will be used later for local search algo-
rithms in order to further improve the results. Simultaneously this solution is 
broadcasted to the remaining clients, informing them about the most current best 
solution (dashed line). 

3. The client that received the request to execute a local search algorithm first re-
quests the server for the solution to be improved (from the stack). The server sends 
a random solution, and the client executes the local search. If the solution is im-
proved it is sent to the server, but it is not put on the stack of the best solutions 
(dotted line). 

As it was mentioned earlier, the framework proposed by Merelo et al. used AJAX 
technology to maintain client-server communication, what caused the server to be 
overloaded when too many users were connected. Jenkins used asynchronous AJAX 
that did not require permanent communication with the server, thus his system scaled 
more smoothly. The system proposed in this paper uses another, more efficient tech-
nology, so called push technology, which can be perceived as a reverse of AJAX. The 
data is pushed from the server to the clients even if the browser did not request it ex-
plicitly. This technology is not natively supported by web browsers, so it was neces-
sary to implement it as AJAX long polling. 

4 Computational Experiments 

In order to evaluate the performance of the system the authors took a permutation 
flowshop scheduling problem (PFSP), one of the most studied optimization problems 
in the literature, and commonly used to test new heuristics. The most common objec-
tive function for this problem is to find the same order of n jobs on m machines that 
minimizes the completion time of the last job on the last machine, so called makes-
pan. Finding the makespan for more than three machines was proved to be NP-
complete and is equivalent to travelling salesmen problem (TSP) [7]. As there is n! 
possible solutions the PFSP becomes really hard to solve, especially for instances 
with more than 100 jobs. Thus many heuristics have been proposed for solving this 
problem, including the ones based on metaheuristics like tabu search, genetic algo-
rithms, simulated annealing, and recently also on swarm intelligence, such as ant co-
lony optimization, particle swarm optimization or artificial bee colony. Unfortunately 
even in the most current publications the authors of the proposed algorithms usually 
performed their experiments with maximum 100 jobs as the computation time for 
larger instances of the problem sometimes exceeded 500 minutes [8]. 
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To overcome this problem, parallel computing can be applied. Parallel methods for 
the PFSP based on metaheuristics presented in the literature usually utilize either 
many threads on a single computer or POSIX threads and MPI communication on a 
dedicated system [9][10].  

In our distributed system the web browsers contributing in the calculations together 
in order to obtain the lowest possible value of makespan. As it was described pre-
viously, each client runs its own population and exchanges its best solutions with 
other clients through the server. The only tasks for the server is then to provide the 
instance of the problem to be solved by a client, and to receive the best solutions and 
further broadcast them to other clients.  

In the preliminary experiments the clients computed a standard version of genetic 
algorithm (part of evolutionary algorithms family). An outline of this algorithm is 
presented in Fig. 2. 

Initialise P = {s
1

, s
2

, … s
pop_size

} 

Repeat 
   P’  Selection(P) 
   For i=1 To pop_size Step 2 
   If rand<p_crs {s’

i

,s’
i+1

}  Crossover(s’
i

,s’
i+1

) 

   If rand<p_mut s’
i

  Mutation(s’
i

) 

   Next i 
Until stop_condition = true 

Fig. 2. An outline of genetic algorithm executed by the clients 

One exception from the standard genetic algorithm was the application of a OX2 
crossover instead of standard one- or mutli-point crossovers.  The OX2 crossover 
was proposed by Syswerda [11] and it was found to be quite efficient for the sequen-
tial representation of solutions. As a mutation operator, a simple insertion mutation 
was used. Population size was set to 100 individuals and 250 generations were com-
puted by each client. 

The computational experiments with the makespan minimization for the flowshop 
scheduling problem have been conducted for the instances with 50, 100 and 200 jobs 
and constant number of 10 machines. The problems have been chosen from the stan-
dard Taillard’s benchmark set [12]. The results of 20 independent runs with different 
number of clients in the form of average increase over the best-known solution for a 
given instance published on Taillard’s website are provided in Fig. 3. 

Contrary to the expectations, quality of the solutions achieved for the problems 
with smaller number of jobs was worse than for the problems with higher number of 
jobs. This is due to the fact that our system intentionally utilized only standard genetic 
algorithm without any problem-specific local improvement dedicated to the PFSP, as 
the system was intended to be universal and problem-independent. Special local 
search algorithms are usually very effective for small problems, as they can found 
optimal solutions in a relatively small solution space.  
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Fig. 3. Average increase over best-known solutions for the flowshop problem for different 
instances and different number of clients 

Regarding the scalability of the system, it scaled quite well for the relatively small 
number of web clients (up to 8-10), while the gain from larger number of web clients, 
especially for the problems with 100 and 200 jobs, was not so impressive.  

To further improve the quality of solutions a local search algorithm based on vari-
able neighbourhood search (VNS) method has been applied. VNS was proposed by 
Mladenovic and Hansen [13] as a metaheuristic for solving combinatorial and global 
optimisation problems, but it often successfully used as a local search algorithm for 
other metaheuristics in hybrid systems [14].  The overall schema of VNS algorithm 
used by some system’s clients is shown in Fig. 4. 

Initialise s* 
Repeat 
 s’  RandomSolution(Nk(s*)) 
 s*’  LocalSearch(s’) 
 If f(s*’) < f(s*) Then 
  s*  s*’; k  1 
 Else  
  k  k + 1 
Until stop_condition = true 

Fig. 4. An outline of variable neighbourhood search algorithm 

The main idea of VNS is a systematic change of neighbourhood within a local 
search. VNS changes the neighbourhood Nk of the current solution s* in two stages. 
Firstly, to find a local optimum, and then to change the neighbourhood (perturbation 
stage), if no further improvement can be achieved within the current neighbourhood.  

In the proposed distributed system some clients receive a code that executes vari-
able neighbourhood search algorithm instead of evolutionary algorithm. In order to 
evaluate the impact of local search on the quality of solutions in the next phase of the 
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experiments one client always executed VNS algorithm. The role of this client was to 
improve the solutions that were placed on the stack of the best solutions found by 
genetic algorithm. Fig. 5 presents the results of the experiments with VNS client. 

 

 

Fig. 5. Comparison of the distributed evolutionary system with and without a local search algo-
rithm (VNS)  for different number of clients 

As it was expected, the application of VNS algorithm in the system allowed to im-
prove the solutions obtained by genetic algorithms, but it also caused that the system 
scaled a little bit better. It is worth to notice that VNS local search still does not ex-
ploit any specific future of PFSP, so the system remains universal. These experiments 
showed primarily that the introduction of other metaheuristics to the system may 
bring significant advantages.  

5 Conclusions and Future Work 

Distributed computing based on JavaScript is cheap, relatively easy to implement, 
while simultaneously may be quite efficient. The code embedded in a web page is 
precompiled by contemporary web browser engines so it is executed almost as fast as 
the code written in other languages. The main advantage of the proposed system over 
the popular distributed systems like BOINC is that the participants do not have to 
install any additional applications in order to join some computational project. For 
these reasons the authors believe that web-based distributed systems will become 
more and more popular in the near future. 

The system proposed by the authors requires further testing, especially with larger 
amount of clients distributed all over the Internet and to solve problems other than the 
flowshop problem. Genetic algorithm used in the system as a main solving method should 
also be improved. Other operators will be introduced as well as some mechanism for auto-
adjustment of the algorithm parameters will be developed (currently all parameters are 
fixed). Additionally, some other local search algorithms like iterative local search (ILS) 
will be introduced to the system as well for further improvement of solutions. After the 
necessary improvements the proposed system is planned to be published for public use. 
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Abstract. The FETI methods blend iterative and direct solvers. The
dual problem is solved iteratively using e.g. CG method; in each itera-
tion, the auxiliary problems related to the application of an unassembled
system matrix (subdomain problems’ solutions and projector application
in dual operator) are solved directly. The paper deals with the compar-
ison of the direct solvers available in PETSc on the Cray XE6 machine
HECToR (PETSc, MUMPS, SuperLU) regarding their performance in
the two most time consuming actions in TFETI – the pseudoinverse
application and the coarse problem solution. For the numerical experi-
ments, our novel TFETI implementation in FLLOP (FETI Light Layer
on top of PETSc) library was used.

Keywords: Domain decomposition, FETI, Total FETI, TFETI, FLLOP,
PETSc, parallel direct solver, pseudoinverse, natural coarse space matrix,
coarse problem.

1 Introduction

The class of methods called FETI (Finite Element Tearing and Interconnecting)
turned out to be one of the most successful for parallel solution of elliptic par-
tial differential equations arising from many engineering problems. They blend
iterative and direct solvers. The dual problem is solved iteratively using e.g. CG
method; in each iteration, the auxiliary problems related to the application of
an unassembled system matrix (subdomain problems’ solutions and projector
application in dual operator) are solved directly.

The first auxiliary problem is the stiffness matrix’s pseudoinverse application.
It is parallelizable without any data transfers because of a nice block-diagonal
structure, each core then factorizes the regularized local block (subdomain stiff-
ness matrix). The second one is the coarse problem (CP) solution appearing in
the application of the projector onto the kernel of so called natural coarse space
matrix. However, this problem does not possess such a nice structure suitable
for parallel processing; some communication is needed in this case.

Natural effort using the massively parallel computers is to maximize the num-
ber of subdomains so that sizes of subdomain stiffness matrices are reduced which
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accelerates their factorization and subsequent forward/back solves carrying out
the pseudoinverse applications. On the other hand, negative effect of that is an
increase of the null space dimension and the number of Lagrange multipliers on
the subdomains’ interfaces (dual dimension), which decelerate the CP solution.
It can hardly be solved sequentially on the master core for large scale problems
so that it becomes a bottleneck.

In this paper, we compare an effect of a choice of the LU direct solver from a set
available in PETSc on HECToR (PETSc, MUMPS, SuperLU) on performance
of the TFETI massively parallel implementation in our FLLOP library (FETI
Light Layer on top of PETSc) [15]. As a benchmark, a model 3D linear elasticity
problem was chosen. The best choice was then used to solve an engineering
problem. The LU factorization was used because of objectivity to the compared
libraries (SuperLU is not able to compute Cholesky factorization) and also due
to better observed performance.

2 TFETI

The FETI-1 method is based on the decomposition of the spatial domain into
non-overlapping subdomains that are ”glued” by Lagrange multipliers, enforcing
arising equality constraints by special projectors. The original FETI-1 method
assumes that the boundary subdomains inherit the Dirichlet conditions from
the original problem, so that the dimensions of subdomains’ stiffness matrices’
kernels may vary from zero (corresponding to the boundary subdomains with
sufficient Dirichlet data to fix rigid body motions) to a certain positive maximum
(corresponding to the floating subdomains).

The basic idea of Total-FETI (TFETI) [2] is to keep all the subdomains
floating and enforce the Dirichlet boundary conditions by means of the matrix
of constraints and the Lagrange multipliers, similarly to the gluing conditions
along the subdomains’ interfaces. Use of this concept simplifies implementation
of the subdomain stiffness matrix pseudoinverse needed in FETI methods. The
key point is that the kernels of local stiffness matrices are known a priori, have
the same dimension, can be formed directly in parallel, and enable effective
regularization of the subdomain stiffness matrices [3].

Let us consider a partitioning of a global domain Ω into Ns subdomains Ωs

and denote by Ks the subdomain stiffness matrix and by Rs a matrix whose
columns span the kernel ofKs. Let Bs be a matrix with values −1, 0, 1 describing
the gluing of the subdomains and

K =

⎡⎢⎣K
1

. . .

KNs

⎤⎥⎦ , R =

⎡⎢⎣R
1

. . .

RNs

⎤⎥⎦ , B = [B1, . . . , BNs ]. (1)

Let Np denote the primal dimension, Nd the dual dimension, Nn the null space
dimension and Nc the number of cores being at disposal for our computation.
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Let us apply the duality theory to the primal problem

min
1

2
uTKu− uTf s.t. Bu = 0 (2)

and let us establish the following notation

F = BK†BT , G = RTBT , d = BK†f, e = RT f,

where K† denotes a generalized inverse matrix satisfying KK†K = K, G the
natural coarse space matrix. We obtain a new minimization problem

min
1

2
λTFλ− λT d s.t. Gλ = e. (3)

Further the equality constraints Gλ = e can be homogenized to Gλ = 0 by
splitting λ into μ + λ̃ where λ̃ satisfies Gλ̃ = e (e.g. λ̃ = GT (GGT )−1e) which
implies μ ∈ KerG. We then substite λ = μ+ λ̃, omit terms without μ, minimize
over μ and add λ̃ to μ.

Finally, the equality constraints Gλ = 0 can be enforced by the projector
P = I −Q onto the null space of G, where Q = GT (GGT )−1G is the projector
onto the image space of GT (ImQ = ImGT and ImP = KerG). It holds that
Pμ = μ because μ ∈ KerG, so the final problem reads

PFμ = P (d− Fλ̃). (4)

The problem (4) may be solved effectively by the conjugate gradient method
thanks to the classical estimate by Farhat, Mandel and Roux of the spectral
condition number:

κ(PFP |ImP ) ≤ CH
h

where h is the discretization parameter and H is the decomposition parameter.
This estimate remains valid for TFETI.

3 Direct Solvers Available in PETSc

PETSc (Portable, Extensible Toolkit for Scientific Computation) [10] is a suite of
data structures and routines for the parallel solution of scientific applicationsmod-
eled by partial differential equations. It supports MPI, shared memory pthreads,
and NVIDIA GPUs, as well as hybridMPI-sharedmemory pthreads or MPI-GPU
parallelism. PETSc includes an expanding suite of parallel linear, nonlinear equa-
tion solvers and time integrators that may be used in application codes written
in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many
of the mechanisms needed within parallel application codes, such as parallel ma-
trix and vector assembly routines. The library is organized hierarchically, enabling
users to employ the level of abstraction that is most appropriate for a particular
problem. By using techniques of object-oriented programming, PETSc
provides enormous flexibility for users. PETSc contains built-in direct solvers for



Use of Direct Solvers in TFETI Massively Parallel Implementation 195

in-place, symbolic, numeric LU and Cholesky factorizations of matrix. It also sup-
ports many external packages; we will be particularly interested in direct solvers
MUMPS and SuperLU that are shipped with PETSc on Cray [14].

MUMPS (MUltifrontal Massively Parallel sparse direct Solver) [11] is a pack-
age for solving systems of linear equations with square sparse matrix that can be
either unsymmetric, symmetric positive definite, or general symmetric. MUMPS
employs a multifrontal method for LU and LDLT factorization [9]. MUMPS
exploits both parallelism arising from sparsity in the system matrix and from
dense factorizations kernels. The main features of the MUMPS package include
the solution of the transposed system, input of the matrix in assembled for-
mat (distributed or centralized) or elemental format, error analysis, iterative
refinement, scaling of the original matrix, out-of-core capability, parallel anal-
ysis, detection of null pivots, basic estimate of rank deficiency and null space
basis for symmetric matrices, and computation of a Schur complement matrix.
MUMPS offers several built-in ordering algorithms and a tight interface to some
external ordering packages. MUMPS is available in various arithmetics (real or
complex, single or double precision). The software is mainly written in Fortran
90 although a C interface is available. The parallel version of MUMPS requires
MPI, BLAS, BLACS, and ScaLAPACK libraries.

SuperLU [12] is a general purpose library for the direct solution of large,
sparse, nonsymmetric systems of linear equations on high-end computers, based
on the supernodal LU factorization method. The library is written in C and is
callable from either C or Fortran. The library routines perform an LU decom-
position with numerical pivoting and triangular system solves through forward
and backward substitution. The LU factorization routines can handle non-square
matrices but the triangular solves are performed only for square matrices. The
matrix columns may be preordered. Working precision iterative refinement sub-
routines are provided for improved backward stability. Routines are also provided
to equilibrate the system, estimate the condition number, calculate the relative
backward error, and estimate error bounds for the refined solutions. The routines
have been carefully designed for optimal performance in solving large systems
on modern computer architectures. The factorization algorithm uses a graph
reduction technique to reduce graph traversal time in the symbolic analysis,
and data movement between levels of the memory hierarchy is reduced through
loop ordering and the use of dense matrix operations in the numerical kernel.
For the distributed memory implementation, a two-dimensional block cyclic ma-
trix distribution is used to enhance scalability. SuperLU contains a collection
of three related subroutine libraries: sequential SuperLU for uniprocessors, the
multithreaded version for medium-size SMPs, and the MPI version for large
distributed memory machines.

4 Parallel Implementation and Numerical Experiments

Parallelization of FETI/TFETI can be implemented mostly using SPMD tech-
nique – distributing matrix portions among processing units. This allows algo-
rithms to be almost the same for sequential and parallel case; only data structure
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implementation differs. Distribution of primal matrices is quite straightforward
as every subblock reflects a subdomain. K and R possess nice block-diagonal
layout and can be implemented using a block-diagonal matrix composite type
where subblocks are ordinary sequential matrices and every core holds an array
of subblocks associated with its subdomains. Let us specify the current core by
rank (rank = 0, ..., Nc − 1) and its associated X-object’s portion by X[rank].

As it was mentioned, natural effort using the massively parallel computers is
to maximize number of subdomains so that sizes of subdomain stiffness matrices
are reduced; this accelerates their factorization and subsequent pseudoinverse
application. Negative effect of that is an increase of dual and null space di-
mension, which decelerate the CP solution. In the following two subsections we
discuss and compare various approaches for these crucial phases realized in our
FLLOP (FETI Light Layer on top of PETSc) library implementing the TFETI
method [15].

Matrices and vectors for numerical experiments were obtained from a regular
decomposition and discretization of a model problem of an elastic cube with
edge length of 1 mm, Young modulus 2.0e+5 MPa and Poisson ratio 0.3 (see
Figure 9). Dirichlet boundary conditions are prescribed on three sides (for each
side there are zero displacements in normal direction). On one of the free sides
there is a Neumann condition with pressure 10 MPa in the normal direction. To
illustrate the efficiency of various direct solvers we used a discretization of the
cube into 4,096,000 elements and a decomposition into 512; 1,000; 4,096; 8,000
subdomains. The patterns of matrices to be factorized are for the decomposition
into 8 subdomains illustrated in Figure 1 and Figure 2 (not to scale). Let us
mention here that the regular discretization and decomposition was chosen for
the detailed analysis to ensure an equal workload of all cores.

The numerical experiments were run on HECToR supercomputer [13] oper-
ated by EPCC. It’s the UK’s front-line national supercomputing service. For
our experiments, we used the current Phase 3 system (Cray XE6). Regarding
supplied software, the Cray compiler suite and Cray-supplied optimized PETSc
3.2-p7 (petsc/3.2.01 module) together with the TPSL (Third Party Scien-
tific Libraries) (tpsl/1.2.01 module) were used. The Cray’s TPSL suite pro-
vides optimized versions of numerical libraries like MUMPS, SuperLU( DIST),
(Par)METIS, HYPRE and other. The solvers in Cray PETSc are heavily op-
timized using the Cray Adaptive Sparse Kernels (CASK) library. CASK is an
auto-tuned library within the Cray PETSc package that is transparent to the
application developer, but improves the performance of most PETSc iterative
solvers.

About hardware, the Phase 3 system is contained in 30 cabinets and comprise
of a total of 704 compute blades. Each blade contains four compute nodes giving
a total of 2816 compute nodes, each with two 16-core AMD Opteron 2.3GHz
Interlagos processors. This amounts to a total of 90,112 cores. Each 16-core
socket is coupled with a Cray Gemini routing and communications chip. Each
16-core processor shares 16 GB of memory. The theoretical peak performance of
the phase 3 system is over 800 Tflops.
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Fig. 1. Pattern of Kreg matrix Fig. 2. Pattern of GGT matrix

4.1 Pseudoinverse Action

In the case of the pseudoinverse, each core regularizes subdomain stiffness matrix
K[rank] using fixing nodes [3,4,5] and factorizes it in the preprocessing phase

factorize(Kreg
[rank])− > LK,[rank], UK,[rank].

The application of K†, i.e. the matrix-vector multiplication K†v then consists
of purely local backward and forward substitutions once in each CG iteration

K†
[rank]v[rank] = UK,[rank]\(LK,[rank]\v[rank]).

The time for the preprocessing and the average time for one application for
PETSc, MUMPS and SuperLU are shown in Table 1 and graphically illustrated
in Figures 3 and 4 (log. scale); there is a nice time reduction due to the decompo-
sition of the domain into more and more subdomains, decreasing the local matrix
dimension. The best results were obtained with MUMPS library; SuperLU was
for the factorization of the problem with the largest sudomain dimension 10
times worse and PETSc built-in LU even 25 times worse. It is obvious that
the multifrontal approach is very suitable for the subdomain stiffness matrix’s
structure.

4.2 Coarse Problem Solution

The natural coarse space matrix G is computed in a way where each of cores
owns sparse sequential matrices R[rank] and B[rank], so that this core computes
local block G[rank] = R

T
[rank]B

T
[rank] of Gmatrix without any communication. We

then redistribute horizontal sequential sparse blocks G[rank] into vertical ones
(i.e. horizontal GT

[rank]).

According to the observations, the actions Gw, GTw take approximately the
same time for different G matrix distributions (assembled G distributed into
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Table 1. Performance of Kreg factorization / K† action / factorization + all actions
for varying decompositions in sec

Ns = Nc 512 1,000 4,096 8,000
Np/Nc 27,783 14,739 3,993 2,187

solver iters. 30 26 18 15

PETSc Kreg fact. 2.03e+02 7.44e+01 3.35e+00 8.06e-01
K† act. 2.64e-01 1.17e-01 1.90e-02 9.05e-03

fact. + all act. 210.8 77.4 3.7 0.9

MUMPS Kreg fact. 7.93e+00 3.05e+00 5.72e-01 2.11e-01

K† act. 1.50e-01 6.34e-02 1.76e-02 9.11e-03
fact. + all act. 12.4 4.7 0.9 0.3

SuperLU Kreg fact. 8.55e+01 1.88e+01 1.49e+00 5.32e-01

K† act. 6.38e-01 2.11e-01 3.04e-02 1.35e-02
fact. + all act. 104.6 24.3 2.0 0.7

Fig. 3. Times for Kreg factorization (log. scale)

Fig. 4. Times for K† action (log. scale)
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horizontal blocks, assembled G distributed into vertical blocks, unassembled G
kept in the form RTBT ). So the action time and level of communication depend
primarily on the implementation of the CP solution

GGTx = y,

which can be hardly solved sequentially on the master core for large scale
problems.

We have suggested and compared several strategies of CP solution (iteratively
using PCG, directly using LU factorization, applying explicit inverse of GGT , or-
thonormalizing rows of G so that the CP is eliminated) in [1,8]. Here we compare
the use of sequential and parallel direct solvers using the LU factorization.

The groups of cores (so called subcommunicators) arise from splitting all
cores in the global ”world” communicator using PETSc built-in ”pseudopre-
conditioner” PCREDUNDANT; the number of these subcommunicators is Nr

(number of cores doing redundant work), i.e. the number of cores in each sub-
communicator is equal to Nc/Nr. We have to transfer whole G matrix to the
zeroth core or to all subcommunicators. Master core or subcommunicators’ cores
then compute product GGT using matrix-matrix multiplication. This CP matrix
is factorized

factorize(GGT )− > LGGT , UGGT

sequentially on master core (by in PETSc built-in LU) or in parallel using
MUMPS [11] or SuperLU DIST [12] in subcommunicators. The application of
(GGT )−1, i.e. the matrix-vector multiplication (GGT )−1w then consists of back-
ward and forward substitutions, which are not local and not negligible amount
of the communication is needed once in each CG iteration

(GGT )−1w = UGGT \(LGGT \w).

Parallel approach has a big advantage consisting in the reduction of memory
requirements for the CP solution; there are practically no memory limits as
more and more cores can be engaged into the subcommunicators.

The performance results of sequential direct solvers for varying decomposition
are depicted in Table 2 and illustrated in Figures 5 and 6 and the performance
of parallel direct solvers for the decomposition into 8,000 subdomains in Table
3 and in Figures 7 and 8 (log. scale).

Figures 3, 4, 5 and 6 illustrate the so called communicating vessels effect:
the computational savings for Kreg factorization and K† action reached by the
decomposition into more subdomains are eliminated by an increasing computa-
tional and communication requirements for the CP solution – GGT factoriza-
tion and (GGT )−1 action. Decomposition into more subdomains for the fixed
discretization leads to the reduction of the condition number of the dual oper-
ator and the number of iterations, but on the other hand it increases the CP
dimension, so that there is no doubt about the parallel solution of the CP.

However, the CP dimension is not large enough to justify the fully parallel
approach; in this case, communication takes over computation. The significant
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Table 2. Performance of sequential GGT factorization / (GGT )−1 action / factoriza-
tion + all actions on the master core for varying decompositions in sec

Ns = Nc 512 1,000 4,096 8,000
solver Nn 3,072 6,000 24,576 48,000

PETSc GGT fact. 1.07e+00 4.55e+00 8.50e+01 3.37e+02
(GGT )−1 act. 1.28e-02 3.24e-02 2.36e-01 6.21e-01

fact. + all act. 1.5 5.4 89.2 346.7

MUMPS GGT fact. 2.73e-01 7.34e-01 7.94e+00 2.65e+01
(GGT )−1 act. 1.12e-02 2.32e-02 1.34e-01 2.99e-01

fact. + all act. 0.6 1.3 10.4 31.0

SuperLU GGT fact. 1.14e+00 3.67e+00 4.28e+01 1.78e+02
(GGT )−1 act. 4.49e-02 1.24e-01 8.63e-01 2.42e+00

fact. + all act. 2.5 6.9 58.4 214.2

Fig. 5. Times for GGT factorization in seq. case (log. scale)

Fig. 6. Times for (GGT )−1 action in seq. case (log. scale)



Use of Direct Solvers in TFETI Massively Parallel Implementation 201

Table 3. Performance of parallel GGT factorization / (GGT )−1 action / factorization
+ all actions depending on the subcommunicator’s size for the decomposition into 8,000
subdomains in sec

Nr 2,000 1,000 500 20 16 10
solver Nc/Nr 4 8 16 400 500 800

MUMPS GGT fact. 2.33e+01 1.54e+01 1.61e+01 1.18e+01 1.10e+01 1.22e+01

(GGT )−1 act. 9.03e-01 4.07e-01 2.60e-01 1.36e-01 1.48e-01 1.75e-01
fact. + all act. 36.9 21.5 20.0 13.8 13.2 14.8

SuperLU GGT fact. 2.94e+01 2.04e+01 1.62e+01 6.38e+00 6.73e+00 failed

(GGT )−1 act. 1.03e+00 4.99e-01 4.07e-01 1.44e-01 8.35e-02 failed
fact. + all act. 44.9 27.8 22.3 8.5 8.0 failed

Fig. 7. Times for GGT factorization in parallel depending on the subcommunicator’s
size for the decomposition into 8,000 subd

Fig. 8. Times for (GGT )−1 action in parallel depending on the subcommunicator’s size
for the decomposition into 8,000 subd
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Fig. 9. Model cube benchmark

Table 4. Total performance of FLLOP TFETI with the best direct solvers for the
cube problem in sec, Np=17,496,000; Nd=5,053,920; Nn=48,000; Nc = Ns=8,000; CG
iterations: 15, MUMPS/SuperLU(Nr=16)

Kreg fact. all K† act. GGT fact. all (GGT )−1 act. total prep. total sol.

0.2 0.1 6.7 1.25 11.4 1.9

Fig. 10. Engine benchmark

Table 5. Total performance of FLLOP TFETI with the best direct solvers for the
engine problem in sec, Np=98,214,558; Nd=13,395,882; Nn=30,072; Nc = Ns=5,012;
CG iterations: 181, MUMPS/SuperLU(Nr=16)

Kreg fact. all K† act. GGT fact. all (GGT )−1 act. total prep. total sol.

3.89 15.0 18.0 74.8 28.2 233.0
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efficiency improvement can be achieved by means of the partial parallelization of
this CP solution; see Table 3 and Figures 7 and 8. The optimal number of cores
per subcommunicator for our problems is 500 which corresponds to Nr=16.

5 Results for the Best Choice of Solvers

Previous sections have shown that the best combination of direct solvers for
TFETI is following. Regarding the direct solver realizing actions of the stiffness
matrix pseudoinverseK†, which is a fully local problem, MUMPS appeared to be
the best from the PETSc / MUMPS / SuperLU trio; the multifrontal method em-
ployed in MUMPS is really very efficient for the matrices arising from the FEM
discretizations. For the CP, parallel solution in subcommunicators should always
be considered, and the supernodal approach represented by the SuperLU DIST
library proved to be more suitable than the multifrontal approach.

To support these conclusions, we ran two benchmarks, now using the above-
mentioned combined approach. MUMPS was used for the pseudoinverse, and
for the CP SuperLU DIST on 500 cores (Nr=16). The first benchmark was
the cube case from previous sections, decomposed into 8,000 subdomains; the
second one was an engineering problem of a car engine block (see Figure 10),
decomposed into 5,012 subdomains by METIS. In Tables 4, 5, we report the
computational times for Kreg factorization, all K† actions, GGT factorization,
all (GGT )−1 actions, total preprocessing time and total solution time for the
best direct solvers.

6 Conclusions

Without CP parallelization we are not able to solve large problems because the
whole CP resides in the master process’ memory which is of course limited.
Furhermore, the master performs the sequential computation while all other
cores have to wait; this breaks the scalability of the whole method. So there is
no other way than using some parallel direct solver. On the other hand, engaging
all processes in “world” communicator in the CP solution leads to an enormous
communication overhead. Therefore, we conclude that the CP should be solved
only in the subcommunicators of appropriate size. For the used Cray XE6 ar-
chitecture, its vendor supplied libraries and our PETSc-based implementation
(FLLOP [15]) we recommend to use MUMPS for the pseudoinverse applica-
tion and SuperLU DIST for the coarse problem solution in parallel on 500 cores
(Nr=16).
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Abstract. We present two parallel strategies to compute the inverse of
a dense matrix, based on the so-called Sherman-Morrison algorithm and
demonstrate their efficiency in memory and runtime on multicore CPU
and GPU-equipped computers. Our methods are shown to be much more
efficient than the direct method to compute the inverse of a nonsingular
dense matrix, yielding up to 12 times faster performance on the CPU.

1 Introduction

The task to compute explicitly the inverse of a given nonsingular matrix is among
the heaviest computational kernels in matrix linear algebra. We consider a real
square nonsingular matrix A of size n × n and pose the task to compute A−1.
We restrict ourselves to the class of dense matrices.

First, we briefly mention some well-known algorithms, and then we present
our contribution. One straightforward approach to compute A−1 could be to
determine its columns as solutions of the linear systems LUxi = In, where LU
is the factorization of A and In is the identity matrix of size n. The so-obtained
matrix X = {xi}, i = 1, · · ·n is then the inverse of A. As is well-known, the
computational cost to factorize A is O(n3) and each solution with L and U costs
O(n2) operations. The total cost to compute A−1 is then O(n3). In this paper,
the above approach is refereed to as the direct method to compute the inverse of
a non-singular matrix. Another often used way to compute A−1 is via the Gauss-
Jordan method. Its computational cost is also O(n3). Both of these algorithms
are numerically unstable and require permutations. There exist parallel blocked
versions of both the LU factorization with partial pivoting and the Gauss-Jordan
method, e.g., [3,7,6]. The parallel performance of these algorithms is out of the
scope of this paper.

As we aim at handling large problems, it becomes critical to achieve full
utilization of the available complex computer hardware resources. It is well-
known that, for instance, the solution of systems with triangular matrices is
inherently serial and it is, therefore, not likely that such an algorithm could be
efficiently implemented on multicore and GPU-equipped computers. Applying
permutations is another matrix manipulation, which is not easily parallelizable.

Instead, we consider here an approachbased on the so-called Sherman-Morrison
(SM) algorithm, explained below. The major difference is that although the com-
putational complexity of the SM algorithm is still O(n3), the algorithm can be

P. Manninen and P. Öster (Eds.): PARA 2012, LNCS 7782, pp. 206–219, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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written in a block form that uses only BLAS3 operations. Provided that we pos-
sess highly efficient BLAS operations, tuned for multicore architectures or GPUs,
we can expect that for large enough problems, the SM implementation would make
a much better utilization of all the computational resources and, thus, could out-
perform other methods for computing the inverse of a matrix, such as the above
mentioned ones.

To apply SM, we present A in a particular form, namely, as

A = A0 +XY
T (1)

where A0 ∈ Rn×n is a matrix, whose inverse is easy to compute (e.g., A0 could
be diagonal, or even the identity matrix) and X,Y ∈ Rn×m.

Note, that any matrix can be represented in the form (1), for instance by
taking A0 to be the diagonal of A, X = A − A0 and Y = In. Clearly, the
representation of A in the form (1) is not unique. There are numerous application
areas, however, where we need to compute the inverses of matrices, which arise
directly in the form (1), as in some statistical problems, for example, related
to seismic, genetic studies, in certain flow problems etc. Moreover, due to the
treatment of large data sets, n can often be of order 106 or more, and m can
be of order 104 to 106. In some applications X and Y can be sparse, however
taking advantage of the sparsity falls out of the scope of this work.

In certain cases, as in some statistical applications, the inverse of A has to be
computed explicitly and is needed in further analysis. In other cases, it suffices
to compute only an approximation of A−1, to be used as a high quality multi-
plicative preconditioner to A, when applying iterative solution methods in large
scale scientific computations. Dropping relatively small-valued entries, related to
some given tolerance, is the usual technique to obtain a sparse approximation
of A−1, however this is also left out of the scope of this paper. The interested
reader is referred to [1].

The SM algorithm and a block version of it have been derived and studied
earlier in [1,2,4]. We focus here on the parallel implementation of the SM al-
gorithm on two computer architectures - shared memory multicore CPU and
GPU. The paper is organized as follows. In Section 2 we present a recursive
form (referred here to as the ’single vector’ form) and two block forms of the
SM algorithm. The implementation of the two block SM algorithms is presented
in Section 3. Performance results for the CPU and GPU implementations are
reported in Section 4 and some discussion points are found in Section 5.

2 The SM Algorithm

2.1 The Single Vector form of the SM Algorithm

Let A be of the form (1) and Im ∈ Rm×m be the identity matrix of size m.
Provided that the matrix Im + Y TA−1

0 X is nonsingular, Sherman-Morrison-
Woodbury’s formula gives an explicit form of (A0 +XY

T )−1, expressed as

(A0 +XY
T )−1 = A−1

0 −A−1
0 X(Im + Y TA−1

0 X)−1Y TA−1
0 . (2)
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Applying formula (2) on the columns of X and Y , in [1,2] an algorithm is derived
to compute A−1 in the following form

A−1 = A−1
0 −A−1

0 UR−1V TA−1
0 , (3)

where R ∈ Rm×m is a diagonal matrix and U, V ∈ Rn×m. The computational
procedure and the matrices U , V and R are explicitly presented in the SVSM
algorithm. We use Matlab-type vector notations and IA, IA0 denote A−1 and
A−1

0 , respectively.

Algorithm. SVSM-Single Vector SM

for k = 1:m
U(:,k) = X(:,k)
V(:,k) = Y(:,k)
for l = 1:k-1

U(:,k) = U(:,k) - (V(:,l)’*IA0*X(:,k)) * R(l,l) * U(:,l)
V(:,k) = V(:,k) - (Y(:,k)’*IA0*U(:,l)) * R(l,l) * V(:,l)

end
R(k,k) = 1/(1+V(:,k)’*IA0*X(:,k))

end
IA = IA0 - IA0*U*R*V’*IA0

As we can see, SVSM consists of vector and matrix-vector (BLAS1, BLAS2)
operations only, which are less efficient than BLAS3. A block implementation
consisting of more efficient matrix-matrix operations can be expected to achieve
better performance.

2.2 Block Version of the SM Algorithm

A block version of the SM algorithm has already been suggested in [4], simi-
lar to the method we now propose. Consider X and Y to be of block-column
form. Thus, let X = {Xk}k=1,...,p, Y = {Yk}k=1,...,p and Xk, Yk ∈ Rn×sk with∑p

k=1 sk = m. Then, clearly, there holds that

A = A0 +

p∑
k=1

XkY
T
k . (4)

Define Ak = Ak−1+XkY
T
k and assume that the matrices Rk = Isk +Y

T
k A

−1
k−1Xk

are nonsingular for k = 1, . . . , p. Applying formula (2), we express the inverses
of the matrices Ak as follows:

A−1
k = A−1

k−1 −A
−1
k−1XkR

−1
k Y T

k A
−1
k−1, k = 1, . . . , p. (5)
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Since A−1
p = A−1 then, applying formula (5) recursively, we obtain

A−1 = A−1
0 −

p∑
k=1

A−1
k−1XkR

−1
k Y T

k A
−1
k−1. (6)

Then, another sequence of factors {Uk, Vk}k=1,...,p ∈ Rn×sk , where

Uk = Xk −
k−1∑
i=1

UiR
−1
i V T

i A
−1
0 Xk, (7)

Vk = Yk −
k−1∑
i=1

ViR
−T
i UT

i A
−T
0 Yk, (8)

are well defined. In addition, the following relations hold:

A−1
k−1Xk = A−1

0 Uk, Y
T
k A

−1
k−1 = V T

k A
−1
0 ,

and
Rk = Isk + Y T

k A
−1
0 Uk = Isk + V T

k A
−1
0 Xk. (9)

The above relations enable us to compute the factors U, V and R blockwise.
Namely, for U = [U1, U2, . . . , Up] and V = [V1, V2, . . . , Vp] with matrices Uk and
Vk as block columns, the inverse of A can be rewritten as

A−1 = A−1
0 −A−1

0 UR−1V TA−1
0 , (10)

where R−1 = diag(R−1
1 , R−1

2 , . . . , R−1
p ).

We see that in this case we have to invert matrix blocks Rk of certain sizes
sk. However, we can tune the block sizes in a suitable way so that the time to
compute the block inverses does not dominate the overall run time. Clearly, the
block size parameter sk may vary between the different steps of the recursion.
Without loss of generality, from now on we consider sk = s to be constant.
Algorithm BSM presents the pseudo-code of the latter block algorithm.

The BSM algorithm requires four block-column matrices of size n×s, Pk, Qk,
Uk, Vk and one square matrix R0 of size s × s. For s = 1, BSM reduces to the
single vector SM algorithm. Due to the same reason mentioned already, the BSM
algorithm can be expected to be more efficient compared to the single vector SM
algorithm especially for large matrices (see the numerical experiments in [4]).
Here we choose to use the direct method to compute the inverse of R0. The
description of this method is presented in Section 1. As mentioned already, the
total cost to compute R0−1 via the direct method is O(s3). The reason why we
choose the direct method here is that in practice the size of R0 is relatively small
and the efficiency of the direct method for small matrices is very acceptable. A
detailed discussion about the choice of the block size s is presented in Section
2.4. The computational complexity of BSM is shown in Table 1.
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Algorithm. BSM (Block SM)

p = m/s; % p - number of blocks, s - block size, Is - identity of size s
U(:,1:s) = X(:,1:s); V(:,1:s) = Y(:,1:s)
R0 = Is + Y(:,1:s)’ * IA0 * U(:,1:s); R(1:s,1:s) = inv(R0)
for k = 2:p

X_{k} = X(:, (k-1)*s+1:k*s)
Y_{k} = Y(:, (k-1)*s+1:k*s)
W = IA0 * X_{k}
P_{k}(1:(k-1)*s,:) = V(:,1:(k-1)*s)’ * W
Q_{k}(1:(k-1)*s,:) = R(1:(k-1)*s,1:(k-1)*s) * P_{k}
U_{k} = X_{k} - U(:,1:(k-1)*s) * Q_{k}(1:(k-1)*s,s)

W = IA0’ * Y_{k}
P_{k}(1:(k-1)*s,:) = U(:,1:(k-1)*s)’*W
Q_{k}(1:(k-1)*s,:) = R(1:(k-1)*s,1:(k-1)*s)’ * P_{k}
V_{k} = Y_{k} - V(:,1:(k-1)*s) * Q_{k}(1:(k-1)*s,s)
R0 = Is + Y_{k}’ * IA0*U_{k}
R((k-1)*s+1:k*s,(k-1)*s+1:k*s) = inv(R0)
U(:,(k-1)*s+1:k*s) = U_{k}
V(:,(k-1)*s+1:k*s) = V_{k}

end
IA=IA0 - IA0*U*R*V’*IA0

Table 1. The computational complexity of the BSM algorithm, σ = m/n

the computational work for Pk, Qk, Uk, Vk and R0−1

at the kth step k = 1, 2, · · ·, p
Pk Qk Uk, Vk R0−1

2[2(k − 1)ns2] 2[2(k − 1)s3] 2[2(k − 1)ns2 + ns] 5s3 + 2ns2

total work by summing up k

Pk Qk Uk, Vk R0−1

2nm(m− s) 2m(m− s)s 2nm(m− s) + 2nm 5ms2 + 2nms

total computational complexity of BSM
4σ2n3 + 2σ(1 + σs− s)n2 + 3σs2n

Remark 1. As is seen from the assumptions, the BSM algorithm may break down
- either when a zero scalar entry (Rk,k) is encountered in SVSM or a singular
block (R0) is produced in BSM. We refer to [1] for a discussion on that issue and
some techniques how to handle such a situation. In our numerical simulations,
a breakdown of the BSM algorithm has never been encountered.



Parallel Implementation of the Sherman-Morrison Matrix Inverse Algorithm 211

Remark 2. Even though A−1 is unique, the factors U , V and R in the resulting
form of the inverse in (10) are not. These depend on the choice of A0, the order
the columns of X and Y are used, the block factors sk etc.

2.3 Block SM with Reduced Memory Footprint

BSM stores the factors U and V separately, each of them being a matrix of size
n×m. This can be a problem when n is large and m is close to n. To simplify our
discussion regarding the shape of these factor matrices, we introduce σ ≡ m/n.
We present a variant on the above algorithm that stores the product of UR−1V
as a whole matrix H instead of separately storing the matrix factors, in this
way significantly reducing memory requirements when m is a large fraction of n
(σ ∼ 1). For small m, however, the storage of H requires more space than the
individual factors. The trade-off for the decreased memory footprint is a higher
computational complexity.

Algorithm. RMBSM (Reduced Memory BSM)

p = m/s; % p - number of blocks, s - block size, Is - identity of size s
U=X(:,1:s); V=Y(:,1:s);
R0 = Is+Y(:,1:s)’*IA0*U; IR0=inv(R0);
H=U*IR0*V’;
for k=2:p,

X_{k} = X(:,(k-1)*s+1:k*s); Y_{k} = Y(:,(k-1)*s+1:k*s);
U = X_{k}-H*IA0*X_{k}; V = Y_{k} -H’*IA0’*Y_{k};
R0 = Is+Y_{k}’*IA0*U; IR0=inv(R0);
H = H + U*IR0*V’;

end
IA=IA0 - IA0*H*IA0;

The total computational complexity of RMBSM is found to be the following:(
6 +

1

s

)
σn3 + [4s (σ − 1) + 2σ − 1]n2 + (5σs− 2) sn,

where m = σn.

2.4 Tuning the Block Size s

The block size parameter s could be chosen arbitrarily in the range [1,m], how-
ever the choice affects both performance and memory consumption. By varying
s, each of the two block SM algorithms is affected differently. Here we present
some theoretical reasoning regarding the choice of the block size, and in the next
section we present experimental results for confirmation.
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While the total computational complexity for BSM is minimized for a small s,
the algorithm is reduced to the single vector SM for s = 1, forcing BLAS to use in-
efficient BLAS1 routines. BLAS libraries tend to work most efficiently with large
matrices, i.e. for s� 1. Then, the optimal point of the tradeoff between computa-
tional complexity and BLAS library efficiency must be determined by numerical
experiments and will depend on platform and implementation specifics.

The total computational complexity for RMBSM is minimized for s = m for
all cases where σ ≡ m/n ≤ 0.5. This is the largest possible value of s, so in
this case there is no performance tradeoff as above. The total computational
complexity using the optimal block size is therefore (5σ3 + 4σ2 + 2σ)n3. The
existence of a linear term in σ dramatically decreases the effectiveness of this al-
gorithm compared to BSM. For the case when σ = 1, the complexity of RMBSM
is minimized for s = 1, leading to the same tradeoff as for the BSM algorithm.
When 0.5 ≤ σ ≤ 1, the block size that minimizes the computational complexity
varies in a somewhat complicated way in the range [1,m]. This is explored by
numerical experiments.

As it would be expected, both algorithms require more memory for larger
block sizes. The memory demand also strongly depends onm. As the experiments
presented in Section 4 show, the memory demand of the BSM algorithm increases
faster than that of RMBSM.

3 Implementing Block SM for Multicore Computers

Effective programs for multicore systems must support sufficient parallelism to
fully exploit the available hardware. The BSM and RMBSM algorithms both
feature very low level of parallelism on the algorithm description level. To com-
pute the block matrices Uk, Vk in BSM or H in RMBSM, the previous ones, i.e.,
Uk−1 and Vk−1, must be computed first, which limits available parallelism.

This problem can be addressed by recognizing that the two algorithms consist
almost exclusively of matrix products (GEMM) and the computation of a matrix
inverse (GESV), operations which provide a high degree of parallelism. The
available parallelism of GEMM depends on the shape of the matrices and the
GEMM algorithm [5], but for large enough matrices it is always much greater
than the number of cores on our machine. As long as we use reasonably large
blocks, the GEMM operations in our algorithms can be efficiently executed in
parallel by a parallel BLAS library routine. A similar argument can be made
for the GESV operation, meaning the bulk of the work of our algorithm can be
executed on a multicore machine without writing explicitly parallel code.

One goal with this work is to identify differences in the behavior of the BSM
and RMBSM algorithms running on the GPU compared to the CPU in order to
determine the utilization of a possible heterogeneous multicore version to be im-
plemented in the future. We write a straightforward implementation, by simply
replacing GEMM calls with calls to CUBLAS (Nvidia SDK 3.2) and compare
its performance with that of the CPU codes. Algorithmically, the available par-
allelism on the GPU is the same as discussed, but the GPU has many more
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cores and therefore a more stringent requirement on the size of matrices. The
effect of this and other properties of GPU hardware are observed and discussed
in Section 4.3.

4 Numerical Experiments

In this section we use the SM algorithms (SVSM, BSM and RMBSM) to compute
the inverse of a nonsingular matrix A ∈ Rn×n. We assume that the matrix A
is already available in the form A = A0 +XY

T with A0 = In (In denoting the
identity matrix of size n). In all experiments X and Y are randomly generated
dense matrices of size n × m, i.e., each element is a random number from a
uniform distribution between 0 and 1. Also, in all experiments the matrices
X and Y are equally partitioned into column sets, i.e., X = [X1, X2, · · · , Xp],
Y = [Y1, Y2, · · · , Yp], {Xk, Yk}pk=1 ∈ Rn×s, where s = m/p.

4.1 Speed Optimization

Based on the discussion in Section 2.4, we expect to see that the performance
of BSM and RMBSM vary with the block size s. The following experiments are
performed with Fortran implementations of the algorithms on a system with
eight-core Intel Xeon X6550 processors. The BLAS routines are from the Sun
Performance Library (see e.g., [9]).

In Figures 1 and 2(a) we plot the runtime for some test problems and see
that our expectations are aligned with the obtained performance results. For
mid-to-low values of σ, the impact of the block size on library efficiency is so
significant that s = m is the optimal choice of block size regardless of algorithm
and problem. For σ > 0.5, the optimal block size appears to be in the range
(0.02×m, 0.2×m).

We also see that the RMBSM algorithm, while improving on SVSM at large
s, is less efficient than the BSM algorithm. We are convinced that RMBSM is
more appropriate for larger problems.

In Figure 2(a)we observe that both BSM and RMBSM show better perfor-
mance than the direct method. The BSM algorithm with the optimal block size
performs about 12 times faster than the direct method.

The parallel speedup of the two block algorithms is plotted in Figure 2(b). We
see that both the two block algorithms achieve close to linear speedup, which
means that they fully benefit from the parallelism, inherent in BLAS3 operations.

4.2 Memory Optimization

As Figure 3 shows, the memory consumption of the BSM algorithm grows rapidly
with m, which motivated the usage of the RMBSM algorithm, designed to con-
sume less memory when m is relatively large. The memory footprint of RMBSM
varies more slowly than that of BSM, yielding a memory savings of up to about
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Fig. 1. Performance of BSM and RMBSM with varying blocksize for two sizes of factor
matrices U and V . Matrix size is n = 10k, σ ≡ m/n.

50% when m = n. With smaller m, however, the usefulness of RMBSM is more
limited (see Figure 4).

For a given n and m, block size selection not only affects the performance but
also the memory footprint. Our experimental results here can be illustrated by
the following three cases:

If m ∼ n, then memory may be a problem. If a small block size does not
sufficiently shrink the memory consumption of BSM, RMBSM will further reduce
memory consumption.

Ifm ∼ n/2, then memory can still be a significant obstacle, but RMBSM is not
very effective. Choosing a small block size can reduce the memory consumption
of BSM by up to a factor of 3.

If m � n/2, then memory consumption may not pose any problems, and
RMBSM actually consumes more memory than BSM.

4.3 Numerical Experiments Using GPU

The GPU experiments are performed on a compute node consisting of two 8-
core AMD Opteron 6220 (Bulldozer) processors at 3 GHz and a Nvidia Tesla
M2050 GPU. Since the Bulldozer processors are configured so that two cores
share a single FPU, using eight threads yields full hardware utilization and
optimal performance for our CPU codes. These codes rely on the AMD Core
Math Library (ACML) for their BLAS routines. The GPU codes use Nvidia
CUBLAS, which lack the GESV routine. We therefore perform only the GEMM
calls on the GPU, but these operations dominate the runtime to such an extent
that the results remain meaningful, especially when m� n.
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(a) Single-threaded runtimes of the algorithms with varying block size for a sample
problem (logarithmic y scale)

(b) Scaling behavior on a multicore system. Matrix size is n, σ ≡ m/n.

Fig. 2. Performance on a multicore machine
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Fig. 3. Memory usage when varying m, the width of the matrix factors U and V .
Optimized block size (Section 2.4) is equal to m for m ≤ n/2, and equal to m/5 when
m > n/2.

Fig. 4. Memory usage of algorithms for varying block sizes and two values of σ, the
ratio of m to n. Note that the memory footprint of RMBSM varies with blocksize, not
m, so only one curve is shown (double precision data).
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The Nvidia Tesla M2050 has a peak theoretical double precision performance
of 515 GFLOPS, but CUBLAS performs at only about 200 GFLOPS [8], while
the AMD processor has a peak theoretical double precision performance of al-
most 200 GFLOPS, which means that any speedup will be modest at best. As
the results in Figure 5 show that our GPU implementation achieves up to 20%
faster execution than the CPU. We can also see that the performance of the
GPU codes appears to be more sensitive to the block size choice than that of
the CPU codes. This is likely due to two factors: our straightforward implemen-
tation grossly ignores the cost of data transmission, and the profiler-reported
device occupancy is only 33%. The effect of the former factor is that we perform
unnecessary data movement between host memory and device memory, which
can take up to 50% of the total runtime, according to profiling results. A proper
implementation could decrease the data movement by up to a factor of five. The
issue with low occupancy may or may not actually impact performance depend-
ing on whether the global memory accesses on the device are successfully hidden,
but this is worth considering when designing a better optimized implementation
with respect to the GPU architecture.

Fig. 5. Speedup of running both algorithms on the Nvidia Tesla M2050 GPU compared
to the Opteron 6620@3GHz running eight threads

5 Conclusions

In this paper we consider the task to compute the inverse of a given dense non-
singular matrix and we present two parallelization strategies for the block SM
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algorithm. Even though, due to effects of floating point arithmetic the inverse,
computed using this algorithm might in some cases be less accurate than the
true inverse, the computational procedure is a useful benchmark test when de-
veloping and analyzing new algorithms and their implementations on CPU/GPU
architectures. Other possible applications are, e.g., approximate inverses to be
used as multiplicative preconditioners.

We present the parallel performance of the two block SM factorizations, i.e.,
BSM and RMBSM, using a multicore CPU as well as a GPU. The main con-
clusions are that effective parallelization is quite easily implemented and the
speedup is almost linear.

These results are achieved over a wide range of choices of the block size. The
preferred block size may be influenced by memory considerations. A small block
size can save up to 66% of the memory usage of BSM. For a larger problem, the
RMBSM algorithm can save up to 50% of that of BSM.

The results from our straightforward GPU implementation, though modest,
warrant a more serious implementation effort in the future.

The effect of sparse matrices on the performance of the block SM algorithm,
data structures and parallelization techniques, as well as obtaining an approxi-
mate inverse of a dense or sparse matrix, needs to be further considered and is
still in progress.

A relevant consideration that we have not addressed in this paper is the numer-
ical accuracy and stability of BSM and RMBSM. As already mentioned, there
exist other alternatives to compute the inverse of a non-singular matrix, e.g.,
the various direct methods, iterative methods and the Gauss-Jordan method. In
general, one could expect that the direct methods produce more accurate ma-
trix inverses. The latter issue was tested separately. The performed numerical
experiments (not included here) did not show loss of accuracy in the computed
matrix inverses, however a more rigorous error analysis of the numerical stability
of the SM algorithm is of definite practical relevance.
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Abstract. The scalability and robustness of a class of non-overlapping
domain decomposition preconditioners using 2-way nested dissection re-
ordering is studied. In particular, three methods are considered: a nested
symmetric successive over-relaxation (NSSOR), a nested version of mod-
ified ILU with rowsum constraint (NMILUR), and nested filtering fac-
torization (NFF). The NMILUR preconditioner satisfies the rowsum
property i.e., a right filtering condition on the vector (1, . . . , 1)T . The
NFF method is more general in the sense that it satisfies right filter-
ing condition on any given vector. There is a subtle difference between
NMILUR and NFF, but NFF is much more robust and converges faster
than NSSOR and NMILUR. The test cases consist of a Poisson problem
and convection-diffusion problems with jumping coefficients.

1 Introduction

We consider the problem of solving large sparse linear systems of the form

Ax = b (1)

by an iterative method preconditioned by a nonoverlapping domain decomposi-
tion method. A preconditioner B is said to satisfy “rowsum” property when

B1 = A1 (2)

where 1 = [1, 1, 1, ..., 1]T . In general, a preconditioner may satisfy a more general
(right) filtering condition as follows

Bt = At (3)

where t is a filter vector. The basic linear fixed point method for solving the
linear system (1) above is given as follows

xn+1 = xn +B−1(b−Axn) = (I−B−1A)xn +B−1b. (4)
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Now, subtracting (4) from the identity x = x−B−1Ax+B−1b, we obtain the
following expression of the error at the (n+ 1)th step

en+1 = (I−B−1A)en = (I−B−1A)2en−1 = · · · = (I−B−1A)n+1e0.

If B satisfies the filtering condition (3), we have (I − B−1A)t = 0, thus by
choosing a suitable t, a desired component of the error vector could be removed.
Good candidates for the filter vectors are approximations to the eigenvectors cor-
responding to the smallest eigenvalues of the preconditioned coefficient matrix:
B−1A [17].

In the past, several approximate and exact filtering preconditioners were pro-
posed for block tridiagonal matrices of the form A = L+D+U. The matrix A
is partitioned as follows

A =

⎛⎜⎜⎜⎜⎝
D1 U1

L1 D2
. . .

. . .
. . . Un−1

Ln−1 Dn

⎞⎟⎟⎟⎟⎠ , (5)

where the matrices L, D, and U are sparse matrices as follows

L =

⎛⎜⎜⎜⎝
0
L1 0

. . .
. . .

Ln−1 0

⎞⎟⎟⎟⎠ , D =

⎛⎜⎜⎜⎝
D1

D2

. . .

Dn

⎞⎟⎟⎟⎠ , U =

⎛⎜⎜⎜⎝
0 U1

. . .
. . .

0 Un−1

0

⎞⎟⎟⎟⎠ .
The exact block LU factorization of the matrix A reads

A = (T+ L)(I +T−1U),

where T is a block diagonal matrix obtained from the following recurrence

Ti =

{
D1, i = 1,
Di − Li−1T

−1
i−1Ui−1, 1 < i ≤ n. (6)

The Schur complements Ti, (i > 1) are costly to compute because the sub-
matrices Ti, i > 1 usually become denser (even though T1 is sparse). There exist
many preconditioners that involve some approximation of the Schur complement.
However, we are particularly interested in the approximations that retain the fil-
tering condition (3). For some approximations, satisfying filtering condition with
vector 1 is particularly useful for convection-diffusion problems as we will see
later. One of the earliest known methods satisfying (3) is the modified incom-
plete LU [17]; this method is applicable to general matrices that may not have
block tridiagonal form. For block tridiagonal matrices, in [18], a tridiagonal ap-
proximation to T−1

i−1 and Li−1T
−1
i−1Ui−1 was proposed. Axelson and Polman [16]

proposed an approximation that satisfies the following relation

T̃i1 = (Di − Li−1T̃
−1
i−1Ui−1)1,
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T̃in = (Di − Li−1T̃
−1
i−1Ui−1)n,

where 1 and n = [1, 2, . . . , n]T are test vectors. In [15], a sequence of filtering
decompositions is proposed where the choice of filter vectors are the sine and
cosine functions that damp both the high and low frequency components of
the error. Recently, improved filtering decompositions were proposed [13, 14]. A
parallel implementation of a filtering decomposition appeared in [12].

In [9] a class of parallel preconditioners based on a 2-way nested dissection
(ND) ordering was proposed. In particular, a method named nested filtering
factorization (NFF) was proposed. Given a matrix A, the 2-way ND reordering
leads to a permuted matrix PTAP with the following structure

PTAP =

⎛⎝D0 U0

D1 U1

L0 L1 S0

⎞⎠ = (T + L)(I+T−1U), (7)

where

L =

⎛⎝
L0 L1

⎞⎠, T =

⎛⎝T0 T1
T2

⎞⎠, U =

⎛⎝ U0

U1

⎞⎠ .
This leads to the following recursion for Ti

Ti =

{
Di, i = 0, 1,

S0 − L0T
−1
0 U0 − L1T

−1
1 U1, i = 2.

Unlike (6), where Ti depends on Ti−1, for the recursion above, T0 and T1 are
independent but T2 depends on both T0 and T1. To achieve more concurrency
in the algorithm, we apply the 2-way ND reordering to the domains D0 and D1

and obtain a similar factorization. The factored forms of D0 and D1 could then
be used to estimate T2. The preconditioners are obtained by approximating the
Schur complements as was done in the block tridiagonal case. In this paper, we
consider three possible approximations (first introduced in [11]) as follows:

– NSSOR: Here T2 = S0, the terms L0T
−1
0 U0 and L1T

−1
1 U1 are dropped. We

call this NSSOR because the method is a multilevel extension of the classical
SSOR method.

– NMILUR: Here T2 is approximated as follows

T2 = S0 − diag(L0T
−1
0 U01)− diag(L1T

−1
1 U11).

– NFF: Here T2 is approximated as follows

T2 = S0 − L0β1U0 − L1β2U1

where

β1 = diag(T−1
0 (U0t0)./(L0t0)), β2 = diag(T−1

1 (U1t1)./(L1t1)),

here ./ is a point-wise vector division, diag is the MATLAB operator, t0 and
t1 are given column vectors.
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Table 1. Number of iterations for the Poisson problem on 40 × 40 × 40 grid with zero
boundary condition. Preconditioners used are AMG: BoomerAMG in Hypre, AGMG:
unsmoothed aggregation based multigrid [19], CG: conjugate gradient, PARASAILS:
sparse approximate preconditioner in Hypre [2], tolerance for the relative residual is
10−7. Ndoms stands for number of subdomains.

Solvers GMRES CG
Preconditioners/Ndoms NSSOR NMILUR NFF AMG AGMG PARASAILS none

2 24 60 12 5 12 52 92

4 27 86 13 6 12 55 92

Notice the subtle difference in the approximations for NMILUR and NFF both
satisfying a right filtering property; NMILUR satisfies right filtering on the vector
of all ones and NFF satisfies filtering on any given filter vector t. As we will see
later, NFF is remarkably fast and robust compared to NMILUR and NSSOR
and is a “potential” competitor of the algebraic multigrid methods (AMG). In
Table 1, we compare the iteration count of GMRES preconditioned by NSSOR,
NMILUR and NFF, and CG preconditioned by state-of-the-art preconditoners
of Hypre [2] (PARASAILS and boomer AMG) and AGMG (aggregation based
AMG) [19]. Unlike AMG methods which rely on smoothing and a coarse grid
solve, the methods considered in this paper belong to a class of multilevel Schur
complement based methods. In this paper, we present preliminary results on
the scalability of these methods on a shared memory architecture. Our choice of
using 2-way ND is justified as follows:

– The recursive 2-way ND reordering leads to a blindly cache-aware algorithm
exhibiting both spatial and temporal locality as illustrated in Figure 3.

– The matrix-vector product, setup, and solution phases (forward and back-
ward solves) can be executed concurrently as explained in the sections that
follow.

– It is well known that ND is a fill-reducing reordering for direct methods.
Such reorderings also reduce fill-ins for the preconditioners considered in
this paper.

We show a straightforward parallelization of the methods using cilk plus with
new vectorization features using elemental functions. We also identify the pos-
sible future work that may lead to better parallelization. Our numerical experi-
ments consist of a model Poisson problem and convection-diffusion problem with
jumping coefficients.

2 Nested Filtering Factorization

As mentioned above, effective parallelism and cache reuse can be achieved by
the 2-way nested dissection reordering first proposed by Alan George [10] in
1973 for a regular finite element mesh. The method has been extended to tackle
general problems where only the adjacency graph of the matrix is required [6–8].



224 P. Kumar, K. Meerbergen, and D. Roose

6

1

0

5

6

4

6

2 5

0 1 3 4

0

1

2

3

4

5

6

2

Fig. 1. Top: Graph partitioned into 4 parts, the four parts are first numbered, fol-
lowed by the separator. Bottom Left: Corresponding tree, Bottom right: Corresponding
matrix after reordering.

In Fig. 1, we illustrate the ND reordering, the corresponding tree graph, and
the structure of the ND reordered matrix. In the 2-way ND method, a separator
(vertices or edges of the graph) is selected which (when removed) separates the
graph into two or more subgraphs. The process is continued recusively on the
separated subgraphs. In Fig. 1, we show the typical block structure of a ND
reordered matrix; such structure is obtained by renumbering the nodes in the
separated graphs first, followed by numbering the nodes in the separator. In Fig.
1 we show a graph partitioned into four parts. Renumbering the nodes is equiv-
alent to permuting the matrix. Assume that ND has been applied recursively
l + 1 times. We will refer to the top level as level l + 1 (vertex 6 of Fig. 1 is
at top level) and the bottom level as level 0 (vertices 0, 1, 3, and 4 in Fig. 1).
Let P ∈ Nn×n be the required permutation matrix, then the permuted matrix
corresponding to ND reordering is a bordered block diagonal matrix with the
following structure

PTAP =

⎛⎝Dl
0 U l

0

Dl
1 U

l
1

Ll
0 L

l
1 S

l+1
0

⎞⎠ = (Tl + Ll)Tl
−1(Tl +Ul), (8)

where

Ll =

⎛⎝
Ll
0 L

l
1

⎞⎠, Tl =

⎛⎝Dl
0

Dl
1

T l+1
0

⎞⎠, Ul =

⎛⎝ U l
0

U l
1

⎞⎠ .
From (8), it is easy to see that T l+1

0 is

T l+1
0 = Sl+1

0 − Ll
0(D

l
0)

−1U l
0 − Ll

1(D
l
1)

−1U l
1. (9)
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Notice that T l+1
0 depends on Dl

0 and Dl
1. Both D

l
0 and Dl

1 themselves have
nested bordered block diagonal structure as follows

Dl
0 =

⎛
⎝Dl−1

0 U l−1
0

Dl−1
1 U l−1

1

Ll−1
0 Ll−1

1 Sl
0

⎞
⎠ , Dl

1 =

⎛
⎝Dl−1

2 U l−1
2

Dl−1
3 U l−1

3

Ll−1
2 Ll−1

3 Sl
1

⎞
⎠ ,

and both of them admit a block LU factorization as we had for the original
matrix PTAP in (8). The factored forms of Dl

0 and Dl
1 could then be used

to estimate (9). This process of estimating the Schur complement by using the
block LU factorization of the subdomain matrices is continued till the second
last level (the last level 0 does not have ND structure). At the second last level
l = 1, the domain matrices are represented by D1

k, k = 0, . . . , 2l − 1 where

D1
k =

⎛⎝D0
2k U0

2k

D0
2k+1 U

0
2k+1

L0
2k L

0
2k+1 S

1
k

⎞⎠ , k = 0, . . . , 2l − 1. (10)

As above, to obtain a block LU factorization for D1
k, k = 0, . . . , 2l − 1, we need

a Schur complement computation

T 1
k = S1

k − L0
2k(D

0
2k)

−1U0
2k − L0

2k+1(D
0
2k+1)

−1U0
2k+1, k = 0, . . . , 2l − 1, (11)

whereD0
2k andD0

2k+1 are assumed to be small enough to be factored cheaply and

easily by a direct method. If the Schur complements T j
k are not approximated,

we obtain an exact nested factorization, but our objective here is to obtain pre-
conditoners by avoiding the exact computation of the form Ls

2k(D
s
2k)

−1Us
2k and

Ls
2k+1(D

s
2k+1)

−1Us
2k+1, s = 1, . . . , l + 1 that appears during Schur complement

computation. From here onwards, we denote an approximation of the Schur com-
plements T s

k by T̃ s
k and an approximation of the domain matrix Ds

k by D̃s
k. Thus,

the block LU factors for the domain matrix D̃s+1
k are given as follows

D̃s+1
k =

⎛
⎝ D̃s

2k Us
2k

D̃s
2k+1 Us

2k+1

Ls
2k Ls

2k+1 Ss+1
k

⎞
⎠ =

⎛
⎝ D̃s

2k

D̃s
2k+1

Ls
2k Ls

2k+1 T̃ s+1
k

⎞
⎠

⎛
⎝ I (D̃s

2k)−1Us
2k

I (D̃s
2k+1)−1Us

2k+1

I

⎞
⎠ .

(12)

As already mentioned in the section 1, we shall consider three possible approxi-
mations as follows:

– NSSOR: Here we approximate the Schur complements by setting

T j
k = Sj

k, j = 1, . . . , l + 1, k = 0, . . . , 2j − 1.

This can be implemented by calling Algorithm 1 with parameters lev = l+1
and k = 0. Since for NSSOR the Schur complements are approximated by
the diagonal blocks, we only need to factor these diagonal block to be used
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during the solve phase. In Algorithm 1, first the top level separator block is
factored, see step (6), then, the next level separator blocks are factored by
recursive calls in steps (7) and step (8). Finally the domain matrices at the
lowermost level 0 are kept in factored form in step (4).

Algorithm 1. BuildNSSOR(lev, k)

1: INPUT: A, lev = l + 1
2: OUTPUT: T̃
3: if lev=0 then
4: Factor(D0

k)
5: else
6: Factor(Slev

k )
7: cilk spawn BuildNSSOR(lev − 1, 2k)
8: BuildNSSOR(lev − 1, 2k + 1)
9: end if

– NMILUR: In this method, the Schur complements are approximated such
that the preconditioner satisfies the so-called rowsum property (or right fil-
tering on vector of all ones).

T 1
k = S1

k − diag(L0
2k(D0

2k)−1U0
2k1) − diag(L0

2k+1(D0
2k+1)−1U0

2k+11),

k = 0, . . . , 2l − 1

T l+1
k = Sl+1

k − diag(Ll
2k(D̃l

2k)−1U l
2k1) − diag(Ll

2k+1(D̃l
2k+1)−1U l

2k+11),

where l > 0, k = 0, . . . , 2l − 1. See Algorithm 2 for implementation details.
The steps involved in building the nested preconditioners are outlined in Fig.
2. First of all, the partitioned domain matrices (D0

k) are factored and are used
to construct the Schur complements T 1

k . Afterwards, we have an approximate

block LU factorization for the domain matrices D̃1
k given by (12). Then these

approximate factors are used to build the Schur complements T 2
k which then

leads to an approximate block LU factorization for the domain matrices D̃2
k

and so on. These are precisely the steps described in algorithm 2.
– NFF: Here the Schur complements are approximated such that the precondi-

tioner satisfies the filtering property on a given filter vector tT = (tl2k, t
l
2k+1)

as follows

T̃ l+1
k = Sl+1

k − Ll
2kβ

l
2kU

l
2k − Ll

2k+1β
l
2k+1U

l
2k+1

βl2k = diag(D̃l
2k)

−1(U l
2kt

l
2k)./(U

l
2kt

l
2k) (13)

βl2k+1 = diag(D̃l
2k+1)

−1(U l
2k+1t

l
2k+1)./(U

l
2k+1t

l
2k+1) (14)

See Algorithm 3 for implementation details.

Once the Schur complements are found and stored in T̃ , the solution procedure
for solving with these nested preconditioners is identical. This involves calling
the subsequent forward and backward sweep routines shown in Algorithms 4
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Fig. 2. Steps in building the nested preconditioners

and 5 respectively. Notice here that the solve with the domain matrices D̃l
2k

and D̃l
2k+1 uses the factored form as shown in equation (12). We illustrate the

forward sweep procedure. A typical forward sweep is given as follows⎛⎝ D̃l
2k

D̃l
2k+1

Ll
2k L

l
2k+1 T̃

l+1
k

⎞⎠⎛⎝ yl2kyl2k+1

yl+1
2k

⎞⎠ =

⎛⎝ bl2kbl2k+1

b
l+1

k

⎞⎠ . (15)

Notice that the bar notation is used (for example b
l+1

k ) to denote the part of the
vector corresponding to the separator block. The forward sweep now corresponds
to the following steps:

D̃l
2ky

l
2k = bl2k,

D̃l
2k+1y

l
2k+1 = bl2k+1,

T̃ l+1
k yl+1

2k = b
l+1

k − Ll
2ky

l
2k − Ll

2k+1y
l
2k+1.

The three steps of the forward sweep procedure correspond to the steps (6), (7),
and (8) in Algorithm 4. The backward sweep procedure is similar and is shown
in Algorithm 5.

The domain matrices D̃l
2k and D̃l

2k+1 themselves allow ND representation for
l > 1, thus, the steps (6) and (7) are recursive calls to the forward sweep and
backward sweep algorithms.

Next we consider the sparse matrix vector (SpMV) operation implemented
using cilk plus. A cilk plus version of the sparse SpMV is described in Al-
gorithm 6. A typical matrix-vector product is given by⎛⎝ yl2kyl2k+1

yl+1
2k

⎞⎠ =

⎛⎝Dl
2k U l

2k

Dl
2k+1 U

l
2k+1

Ll
2k L

l
2k+1 S

l+1
k

⎞⎠⎛⎝xl2kxl2k+1

xl+1
2k

⎞⎠ (16)
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Algorithm 2. BuildNMILUR(lev, k)

1: INPUT: A, lev = l + 1
2: OUTPUT: T̃
3: if lev = 0 then
4: Factor (D0

k)
5: else
6: cilk spawn BuildNMILUR(lev − 1, 2k)
7: BuildNMILUR(lev − 1, 2k + 1)
8: cilk sync
9: Compute Schur

T̃ lev
k = Slev

k − Llev−1
2k (D̃lev−1

2k )−1(U lev−1
2k 1) − Llev−1

2k+1 (D̃lev−1
2k+1 )−1(U lev−1

2k+1 1)

where solve with D̃lev−1
2k and D̃lev−1

2k+1 uses the factored form in (12)

10: Factor(T̃ lev
k )

11: end if

Algorithm 3. BuildNFF(lev, k)

1: INPUT: A, lev = l + 1
2: OUTPUT: T̃
3: if lev = 0 then
4: Factor(Dlev

k )
5: else
6: cilk spawn BuildNFF(lev − 1, 2k)
7: BuildNFF(lev − 1, 2k + 1)
8: cilk sync
9: Compute Schur complements T̃ lev

k for NFF as follows

T̃ lev
k = Slev

k − Llev−1
2k (βlev−1

2k )Llev−1
2k+1 − Llev−1

2k+1 (βlev−1
2k+1 )Llev−1

2k+1

where βlev−1
2k and βlev−1

2k+1 are given by (13) and (14) respectively.

10: Set Factor(T̃ lev
k )

11: end if

The above computations correspond to steps (7), (8), and (9) in Algorithm 6.
The computations of Dl−1

2k x
l−1
2k and Dl−1

2k+1x
l−1
2k+1 are recursive calls to the SpMV

routine. The algorithm presented above leads to spatial and temporal locality
of data access while read phase of input vector and write phase of the output
vector as illustrated in Figure 3. In this figure, we show that due to recursion a
segment of the input and output vector fits in the L3 cache. In the subsequent
phase, the data located in the L3 cache is utilized by L2 cache. Thus, we notice
the data being used is nearby (spatial locality) and they are accessed frequently
(temporal locality).
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Algorithm 4. ForwardSweep(lev, k)

1: INPUT: T̃ ,b, lev = l + 1
2: OUTPUT: y
3: if lev = 0 then
4: Solve for y0

k in D0
ky

0
k = b0k

5: else
6: cilk spawn Solve for ylev−1

2k in D̃lev−1
2k ylev−1

2k = blev−1
2k

7: Solve for ylev−1
2k+1 in D̃lev−1

2k+1 ylev−1
2k+1 = blev−1

2k+1

cilk sync
8: Solve for ylev

k in

T̃ lev
k ylevk = b

lev
k − Llev−1

2k ylev−1
2k − Llev−1

2k+1 ylev−1
2k+1

9: end if

Algorithm 5. BackwardSweep(lev, k)

1: INPUT: T̃ ,y, lev = l + 1
2: OUTPUT: x
3: if lev = 0 then
4: Set x0

k = y0k
5: cilk spawn Find x0

2k+1 = y0
2k+1 − (D0

2k+1)−1U0
2k+1x

0
k

6: Find x0
2k = y0

2k − (D0
2k)−1U0

2kx
0
k

7: else
8: Set xlev

k = ylev
k

9: cilk spawn Find xlev
2k+1 = ylev

2k+1 − (D̃lev
2k+1)−1U lev

2k+1x
lev
k

10: Find xlev
2k = ylev

2k − (D̃lev
2k )−1U lev

2k xlev
k

11: end if

3 Numerical Experiments

The numerical experiments were performed in double precision arithmetic on a
quad core Intel processor i7-2820QM (SandyBridge) with 2.30GHz, 16 GB RAM
and three levels of cache: L1 (32kB), L2 (256kB), and L3 (8MB). We used the
Intel compiler version 12.1.4 which includes cilk keywords as extension to the
native compiler for building the NSSOR, NMILUR, and NFF methods.

To solve the Poisson problem and the convection-diffusion problems, we used
restarted GMRES with a inner subspace dimension of 500 which is kept rather
high to ignore the side effects of restarts. The algorithm is stopped whenever the
relative norm

‖b−Axk‖/‖b‖ < 10−7.

The exact solution x∗ is generated randomly and the right hand side b is set to
Ax∗. For partitioning and reordering, we use the 2-way ND reordering of METIS
[5]. The local subdomains are factored and solved using the multifrontal sparse
direct solver UMFPACK [4]. The matrix-vector products with submatrices are
computed using the Sparse BLAS library [1]. The compressed row sparse (CRS)
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Algorithm 6. SpMV(lev, k)

1: INPUT: A, x, lev = l + 1
2: OUTPUT: y = Ax
3: if lev = 1 then
4: cilk spawn ylev

2k = Dlev−1
2k xlev−1

2k + U lev−1
2k xlev

k

5: ylev
2k+1 = Dlev−1

2k+1 xlev−1
2k+1 + U lev−1

2k+1 xlev
k

6: else
7: ylev

k = Llev−1
2k xlev−1

2k + Llev−1
2k+1 xlev−1

2k+1 + Slev
k xlev

k

8: cilk spawn ylev−1
2k = Dlev−1

2k xlev−1
2k + U lev−1

2k xlev
k

9: cilk spawn ylev−1
2k+1 = Dlev−1

2k+1 xlev−1
2k+1 + U lev−1

2k+1 xlev
k

10: end if

L2

L2

L2

L2

L1

L1

L1

L1

L1

L1

L1

L1

L3
L3

Fig. 3. Illustration of cache utilization during the read phase of the input vector and
write phase of the output vector. The dotted lines indicate the data flow in cache
hierarchy.

storage scheme is an efficient storage scheme for a matrix without sufficient block
structure. For matrices reordered after nested dissection reordering, we have
several blocks per block row. This requires maintaining separate row pointers for
each of the blocks within the same row. The count of total row indices increases
like O(n

√
P ), P being the number of threads/partitions. On the other hand, for

the coordinate storage format, the number of indices used to store the non-zero
entries remain independent of the number of blocks. Hence, instead of the CRS,
the coordinate storage format is used to store the L, D, U, and T matrices.
These matrices are stored as an array of structs that encode the binary tree
representation; the indices 2i and 2i + 1 being the left and right subdomains
of the domain indexed i. The scalar products are computed using the recently
introduced elemental functions of cilk plus [3].
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3.1 Convection Diffusion Problem

We consider the following boundary value problem

div(a(x)u) − div(κ(x)∇u) = f in Ω,
u = 0 on ∂ΩD,

∂u
∂n = 0 on ∂ΩN ,

(17)

where Ω = [0, 1]n (n = 2, or 3), ∂ΩN = ∂Ω \ ∂ΩD. The velocity vector a and
the tensor κ are the given coefficients of the partial differential operator. The
domain is unit square in 2D and unit cube in 3D. The equation is discretized
using the cell-centered finite volume scheme.

We consider following three test cases:

Poisson: Here κ = 1 and a = 0. In Table 2 we observe that NSSOR is the most
efficient preconditioner since it leads to the lowest execution time in comparison
to both NMILUR and NFF. The sharp decrease in the setup time with increasing
number of cores for all the methods is both due to parallelism and smaller
subdomain sizes incurring lesser work with increasing number of subdomains.
For one and two cores, we keep the number of subdomains equal to two, thus the
iteration count remains the same, but with four subdomains using four threads,
we see a significant increase in the iteration count for both NSSOR and NMILU;
the iteration count for NFF increases slightly. We observe a speedup of roughly
1.5 for both NSSOR and NFF. The iteration count for NMILUR increases so
much that the solve time increases for four subdomains compared to that for
two subdomains.

Table 2. Number of iterations and execution times for Poisson problem on 60×60×60
grid

cores NSSOR NMILUR NFF

its setup solve total its setup solve total its setup solve total

1 29 114s 15s 129s 75 116s 39s 155s 13 137s 6s 143s

2 29 65s 11s 76s 75 65s 31s 96s 13 77s 5s 82s

4 34 10s 10s 20s 135 11s 44s 55s 15 28s 4s 32s

Skyscraper Problems: For this case, the velocity a = 0 and the tensor κ(x) is
isotropic and discontinuous as follows. The domain contains many zones of high
permeability which are isolated from each other. Let �x� denote the greatest
integer less than x. In 3D, we have

κ(x) =

{
103 ∗ (�10 ∗ x2�+ 1), if �10 ∗ xi� = 0 mod(2), i = 1, 2, 3,
1, otherwise.

In Table 3, the numerical experiments with this test case are shown. For this
problem NFF converges faster than NSSOR and NMILUR. The iteration count
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Table 3. Number of iterations and execution times for skyscraper problem on 60 ×
60 × 60 grid

cores NSSOR NMILUR NFF

its setup solve total its setup solve total its setup solve total

1 96 115s 50s 165s 75 116s 39s 155s 19 135s 10s 145s

2 106 63s 43s 76s 75 65s 31s 96s 19 77s 7s 84s

4 > 1000 9s > 344s 20s 135 11s 44s 55s 44 28s 13s 41s

for NFF is lowest, however, we do see a sharp increase in the iteration count for
NFF when the number of subdomains increase from 2 to 4.

Convective Skyscraper Problems: These problems are similar to the
skyscraper problems, but now the velocity field is changed to a =
(1000, 1000, 1000)T .

The numerical experiments for this test case are shown in Table (4). Once
again NFF has the lowest iteration count followed by NSSOR and NMILUR. For
this case, we do not see a sharp jump in the iteration count when the number
of subdomains increases from 2 to 4. The setup phase of NFF is large due to
the exact factorization of the subdomains. But as the number of subdomains
increase, we see a sharp decrease in the setup cost. The setup times of the new
methods are high because the subdomain size is large for 2-4 subdomains. The
setup times are expected to decrease drastically as the numbers of subdomains
increases.

Table 4. Number of iterations and execution times for convective skyscraper problem
on 60 × 60 × 60 grid

cores NSSOR NMILUR NFF

its setup solve total its setup solve total its setup solve total

1 81 113s 42s 155s 230 117s 131s 248s 18 134s 9s 143s

2 82 63s 33s 76s 241 65s 108s 173s 18 76s 7s 83s

4 152 9s 49s 58s 461 11s 189s 199s 21 27s 6s 33s

4 Conclusion

A class of non-overlapping domain decomposition preconditioners based on 2-
way nested dissection reordering is implemented. For multithreading, we used
cilk plus with new elemental function features. We have presented preliminary
scalability results indicating that the nested filtering factorization preconditioner
is a promising method. In particular, the NSSOR and NFF preconditioners can
be applied to general symmetric positive definite problems. Note that for Pois-
son and convection-diffusion problems, geometric or algebraic multigrid could
be used. However, for more general problems, the NFF preconditioner may be
preferred especially if the following improvements are implemented:
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– introduction of parallelism in the levels higher up the tree-for example, it is
possible to spawn more threads during Schur complement computations and
solve phases;

– better cache utilization by implementing a reordering based on a space filling
curve for more efficient sparse matrix-vector computations.
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Abstract. In this paper we focus primarily on a technique used to parallelize the 
LAPACK QR factorization of tall-and-skinny matrices. The modifications of 
the panel QR factorization we suggest neither affect the accuracy nor increase 
memory consumption. Results for tall-and-skinny matrices on the Intel® 
Xeon® platforms, and comparisons between the Intel® Math Kernel Library 
(Intel MKL) QR, PLASMA QR and the method proposed are provided. 

1 Introduction  

Since the number of cores in modern high-performance computers has increased sig-
nificantly, it is very important to develop algorithms that can be efficiently paralle-
lized, and thus exploit the capabilities of modern computers. The most difficult prob-
lem for parallelizing linear algebra algorithms is to efficiently balance the load of all 
cores. Aiming to achieve scalability on multi-core platforms, in this paper we focus 
primarily on a technique used to parallelize the LAPACK QR factorization of tall-
and-skinny matrices. The modifications of the panel QR factorization we suggest 
neither  affect the accuracy nor increase memory consumption.   

The standard LAPACK QR implementation is based on a block version of the al-
gorithm [2] that can exploit parallelism coming from highly optimized BLAS availa-
ble in Intel Math Kernel Library or its analogues. It is very efficient in a serial mode 
and shows some speed-up on multi-core computers when it exploits parallelism com-
ing from BLAS. Due to the implementation, the panel QR factorization contains 
many synchronization points and the computation of Householder vector is one of the 
bottlenecks for the parallelization of the panel QR factorization. 

In [6], a parallel tiled QR factorization algorithm has been proposed. The opera-
tions in the tiled QR algorithm are represented as a sequence of small tasks that oper-
ate on square blocks of data.  However the storage format of output matrices in the 
tiled QR is different from the standard implementation and the memory for storing 
Householder transformations is two times higher than for the standard QR implemen-
tation [2]. In addition, the tiled QR factorization requires higher computational cost.  
A parallel tiled QR factorization algorithm has been recently implemented as a part of 
the Parallel Linear Algebra Software for Multicore Architectures (PLASMA) project 
[3]. 
                                                           
* Address: Intel A/O,  6/1 pr. ak. Lavrentieva, Novosibirsk, 630090, Russia. 
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In this paper, we describe a modification of the standard panel QR factorization 
that can be applied for any matrix. The algorithm allows us to keep the LAPACK 
standard interface, provide better performance in sequential mode and get scalability 
for tall-and-skinny matrices. Due to better performance characteristics the algorithm 
described in the paper can be used as a building block for further acceleration of other 
existing QR implementations.   

The basic operations utilized by the standard panel QR factorization are the com-
putation and application of Householder transformations. At each step of the panel 
QR factorization the following two tasks are performed: construction of a Household-
er vector and application of the Householder transformation to the trailing matrix.  
The trailing matrix update involves two operations:  a matrix-vector multiplication 
with a Householder vector and a rank one update of the trailing matrix. The accumu-
lation of the Householder reflections into a compact WY form in the standard panel 
QR factorization is deferred until they have all been generated.  The accumulation is 
a recursive computation of columns for triangular matrix ܶ which also involves a 
matrix vector multiplication with the Householder vector followed by a triangular 
matrix-vector multiplication.  Since the accumulation of Householder transforma-
tions and the trailing matrix update use the same Householder vector, these two  
matrix vector multiplications can be merged into one matrix-vector multiplication.  

Moreover, observe that a Householder vector ݒ that reduces a vector ݔ to a mul-
tiple of the first standard basis vector is just a scaling of ݔ except for the first compo-
nent.  Thus, a matrix-vector multiplication involving ݒ can be easily recovered from 
a matrix-vector multiplication with  ݔ. This makes it possible to perform the most 
computational work for a matrix-vector multiplication involving a Householder vector ݒ  before or simultaneously with the 2-norm of the Householder vector.  The next 
important observation is that the 2-norm of the Householder vector can be also com-
puted with the help of a matrix-vector multiplication.  Combining these two observa-
tions we can state that the computation of the 2-norm of the Householder vector ݒ computed with the help of a matrix-vector multiply can be overloaded with other 
useful computations needed for the trailing matrix update and computation of the next 
column of the matrix  ܶ   by using components of  the vector   ݔ. 

A similar algorithm has been used by the author for accelerating ScaLAPACK re-
duction to bidiagonal form [5].  In [5], construction of a Householder vector and its 
application to the trailing matrix were only merged but accumulation of the House-
holder transformations into a compact WY form was computed by a separate routine 
such as a standard LAPACK bidiagonal reduction routine.  The modifications of the 
algorithm described in this paper allow merging all three key steps of QR factoriza-
tion, so it has better performance characteristics than the algorithm from [5]. In addi-
tion, the question of providing the same level of the accuracy as in the standard 
LAPACK QR factorization are considered in this paper. 

In a parallel environment, our approach is based on a block row partitioning of a 
given matrix A of size ݊  by  ݉(݊ ب ݉). Our parallel QR factorization of ܣ involves ݉ stages. In stage ݅, each thread performs a matrix-vector multiply by using a subma-
trix. Let the vector  ݖ of the length ݉ be the result of the local matrix-vector multip-
ly for the ݆-th thread. The next step is the reduction  ݖ ؔ ݖ  ݖ  over all threads. 
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When the master thread finishes computations of two key parameters of Householder 
transformations, all threads start their updates of the trailing submatrix independently.   

The paper is organized as follows. In section 2 we consider a representation of 
Householder reflections that permits us to work directly with components of a vector. 
Section 2 describes how the representation along with the speculative computation of 
the 2-norm of the Householder transformation can be combined with useful computa-
tions needed for the panel update and forming the next column in the triangular matrix ܶ in ்ܸܸܶ  representation.  Results for tall-and-skinny matrices on Intel Xeon pro-
cessors1, and comparisons between the Intel MKL QR form MKL 11.0 Update 1 which 
extensively uses our sequential and parallel implementations of the panel QR factoriza-
tion, PLASMA QR and our implementation of the recursive RGEQR3 algorithm from 
[9] combined with our parallel panel factorization are provided in section 6.  

We follow the notational convention used in numerical analysis, In particular,  ԡ·ԡଶ  denotes the 2-norm for both vectors and matrices, and   ݁  denotes the ݅-th 
standard basis vector in ܴ . Throughout this paper ܽ  is the ܽ  -element of the 
matrix  ܣ, the symbols ሾܣሿכ, and ሾܣሿ,כ denote the ݆-th column and the ݅-th row of ܣ, respectively. A submatrix composed of the ݅-th to the ݆-th columns of matrix ܣ is 
denoted by  ሾܣሿכ,:, and ሾܣሿ:,   denotes a sub-vector composed of the i-th to j-th 
elements of the ݇-th column of ܣ.  Let  ݔ ൌ ሺݔଵ ଶݔ   … ் ሻݔ   be a vector. A 
sub-vector composed of the i-th to j-th components of ݔ is denoted by  ሾݔሿ: .   The 
symbol ሼݔሽ: denotes the vector of length ݊, ݊  ݇ defined as:  ሼݔሽ: ൌ ሺ0 … ݔ 0  ݔ  …  0 …   0  ሻ். 

 
In other words, the j-th component of  ሼݔሽ:   is equal to the j-th element of ݔ if  ݅  ݆  ݇ and 0 otherwise.            

2 Definitions and Preliminaries  

The basic operations utilized by the QR factorization of an n-by-l matrix ܣ are the 
computation and application of Householder transformations. 

Definition 2.1 Given a vector
nRx ∈ , one can find an Householder transformation   ܪሺݔሻ  of order n so that  

ݔሻݔሺܪ  ൌ ሺݔଵ ଶݔ ିଵݔ    … ሻݔሺߚ  0 … 0ሻ் (1) 

The transformation   ܪሺݔሻ is defined by the following formula: 

ሻݔሺܪ  ൌ ܫ െ ߬ሺݔሻݒሺݔሻݒTሺݔሻ    

where the components of the Householder vector  ݒሺݔሻ and the scalar ߬ሺݔሻ are 
computed as follows:  
                                                           
1  Intel, the Intel logo, Xeon and Xeon Inside are trademarks of Intel Corporation in the U.S. 

and/or other countries. 
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ሻݔሺߚ ൌ  െ݊݃݅ݏሺݔሻԡሾݔሿ:ԡଶ 

ሻݔሺݎ  ൌ 1/ሺݔ െ  ሻሻ (2)ݔሺߚ

 ߬ሺݔሻ ൌ 1 െ   ሻݔሺߚ/ݔ

ሻݔሺݒ  ൌ ሺ0 …    0 ାଵݔሻݔሺݎ  1 ାଶݔሻݔሺݎ  ሻݔሻݔሺݎ     …

 =   ݁   ሽሺାଵሻ:ݔሻሼݔሺݎ

Remark 1 

 ԡሾݔሿ:ԡଶ ൌ ටሾݔሿ:T : ൌݔ ටݔଶሾݔሿሺାଵሻ:T ሾݔሿሺାଵሻ:  (3) 

It should be stressed that the computation of  ԡሾݔሿ:ԡଶ is a bottleneck for paralleli-
zation of panel QR factorization. The main idea of the approach described in the pa-
per is to compute the 2-norm of ሾݔሿ:  as a part of matrix-vector multiplication and 
perform some additional useful computations while computing this key parameter.  

To enhance the performance, the standard QR factorization uses a technique called 
blocking. The technique means, having chosen a block size l, a given matrix ܣ of size ݊-by-݉ is split into vertical panels ܣଵ, ,ଶܣ … , ܣ such that ܣ  is a panel ofܣ whereܣ ൌ ሾܣሿכ,ሺିଵሻכାଵ: כ  .  For each panel we generate the Householder transformations  ܪሺିଵሻכାଵ , , ାଶכሺିଵሻܪ … ,      such thatכܪ

ڮ ାଶכሺିଵሻܪ  ାଵכሺିଵሻܪ  ܣכܪ ൌ ܴ  

where ܴ is an upper  trapezoidal matrix:  ݎሺሻ ൌ 0 if  ݇  ݆  ሺ݅ െ 1ሻ כ ݈. 
Each Householder transformation is immediately applied to an unreduced part of a 

panel as follows: 

ܣܪ  ൌ ൫ܫ െ ߬ݒݒT൯ܣ ൌ   (4)ܣTݒݒ െ߬ܣ

but applying these transformations to the rest of the panels is deferred until they have 
all been generated.  

The product of a sequence of the Householder transformations  ܪሺିଵሻכାଵ  ܪሺିଵሻכାଶ ڮ    of order ݊ is accumulated within each panel and it isכܪ
represented in the  ܸܸܶT form (see, for example, [4])   as: 

ڮ ାଶכሺିଵሻܪ  ାଵכሺିଵሻܪ  כܪ ൌ ܫ െ  ܸ  ܶ ܸT   

where  ܶ   is an ݈-by-݈ upper triangular matrix.  After the Householder transforma-
tions are put in ܸܸܶT form, they are applied to the rest of the panels as: 

 ሺܣାଵ  | …  | :ሻܣ ൌ ሺܫ െ  ܸ  ܶ ܸTሻሺܣାଵ  | …  |  ሻ (5)ܣ

The standard QR factorization is constructed based on the three following elementary 
steps: DGEQR2, DLARFT and DLARFB. 
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DGEQR2: This LAPACK subroutine performs the unblocked QR factorization of 
an ݊-by-݈  panel  ܣ. The subroutine is based on the following algorithm: 

 
Algorithm 1. 
For ݇ ൌ ሺ݅ െ 1ሻ כ ݈  1, ݅ כ ݈ 

Call LAPACK subroutine DLARFG to generate a real Householder 
 transformation  ܪሺሾܣሿכ,ሻ such that 

,כሿܣ൯ሾ,כሿܣ൫ሾܪ   ൌ ሺݎଵ ଶݎ …      0ݎ    … 0ሻ் 
 
Call LAPACK subroutine DLARF to apply the Householder transformation  
  :ሻ  to the unreduced part of A,כሿܣሺሾܪ  

 ሾܣሿכ,ሺାଵሻ:כ: ൌ  כሺାଵሻ:,כሿܣ൯ሾ,כሿܣ൫ሾܪ
End for 

 
DLARFT: This LAPACK subroutine forms a triangular matrix  ܶ   and a rectan-

gular matrix  ܸ   of size  ݊-by-݈, which is defined as a product of ݈ Householder trans-
formations ܪሺିଵሻכାଵ  ܪሺିଵሻכାଶ ڮ .כܪ  This subroutine is always called after 
DGEQR2.  
 
Remark 2.  In LAPACK’s DGEQRF subroutine the arrays  ܸ  and  ܴ defined as 

 ܸ ൌ ሺ ଵܸ  | ଶܸ  | …    |   ܸ  ሻ, 

 ܴ ൌ ሺܴଵ  | ܴଶ  | …    |   ܴ  ሻ 

do not need extra space to be stored since they overwrite the matrix  ܣ. More precise-
ly, the elements on and above the diagonal of ܣ  contain the ݉-by-݉ upper triangu-
lar matrix   ܴ ; the elements below the diagonal of ܣ   contain the components of  
vectors  ݒଵ, ,ଶݒ … , ݒ  where each the vector  represents, along with ߬ݒ  ,  the 
Householder transformation ܪ.  

DLARFB: This LAPACK subroutine uses matrices ܸ  and ܶ  computed by sub-
routines DGEQR2 and DLARFT for updating unreduced panels of  ܣ according to 
(5). 

3 Panel QR Factorization 

In this section we demonstrate how to combine generation of the Householder trans-
formation with useful computations needed for a follow-up trailing matrix update and 
forming next column of a triangular matrix ܸ in the ܸܸܶT  representation. This al-
lows us to reduce the idle time at all steps of the panel QR factorization. Another 
advantage is that the number of cache misses is significantly reduced since we do not 
need to reload the Householder vectors for computing the  ܸܸܶT representation.   
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Assume that one needs to find a Householder transformation  

ሻݔሺܪ  ൌ ܫ െ ߬ሺݔሻݒ ሺݔሻݒTሺݔሻ      

of order  ݊  so that (1) holds, apply the Householder transformation to an ݊-by-ሺ݉ െ ݇ሻ matrix ܥ  and compute the   ܸܸܶT  representation of the product   ܪଵ ܪଶ ڮ  ିଵ has been already definedܪ ڮ  ଶܪ ଵܪ ሻ, and that the productݔሺܪ ିଵܪ
by 
 
ିଵܪ ڮ ଶܪ  ଵܪ  ൌ ܫ െ  ܸିଵ  ܶିଵ ܸିଵ்   

 
where ܶିଵ is ሺ݇ െ 1ሻ -by- ሺ݇ െ 1ሻ upper triangular and  ܸିଵ  is an ݊ -by- ሺ݇ െ1ሻ  matrix.  

In the first instance we consider the rank one matrix update of  ܥ. Taking into ac-
count the representation (2) of the Householder vector ݒሺݔሻ 

ሻݔሺݒ  ൌ ݁  ሽሺାଵሻ:Tݔሻሼݔሺݎ   (6) 

the product ܪሺݔሻܥ  can be written in the form: 

ܥ  ؔ ܥሻݔሺܪ  ൌ ቀܫ െ ߬ሺݔሻݒ ሺݔሻݒTሺݔሻቁ  ܥ

 ൌ ܥ    െ ߬ ሺݔሻݒሺݔሻ ൫݁ T ܥ   ݎሺݔሻሼݔሽሺାଵሻ:T ൯ (7) ൌ ܥ ܥ   െ ߬ሺݔሻݒሺݔሻ൫ሾܥሿ,כ   ሽሺାଵሻ: Tݔሻሼݔሺݎ ൯ܥ ൌ ܥ   ሻݔሺݓ ሻݔሺݒ

where   

ሻݔሺݓ  ൌ െ߬ሺݔሻሺሾܥሿ,כ   ሽሺାଵሻ: Tݔሻ ሼݔሺݎ  ሻ (8)ܥ

We are now going to demonstrate that the two matrix-vector multiplications used for 
the accumulation of Householder transformations and the trailing matrix update can 
be merged into one matrix-vector multiplication.  As it is proven in [4], the product   

ڮ  ଶܪ ଵܪ  ሻݔሺܪ ିଵܪ ൌ 

=൫ܫ െ  ܸିଵ  ܶିଵ ܸିଵT ൯ ቀܫ െ ߬ሺݔሻݒ ሺݔሻݒTሺݔሻቁ 

can be written in the form 

 ൫ܫ െ  ܸିଵ  ܶିଵ ܸିଵT ൯ ቀܫ െ ߬ሺݔሻݒ ሺݔሻݒTሺݔሻቁ 

 ൌ ܫ െ ൫ ܸିଵ ሻ൯ݔሺݒ ൬ ܶିଵ െ߬ሺݔሻ ܶିଵ ܸିଵT ሻ0ݔሺݒ  ߬ሺݔሻ ൰ ቆ ܸିଵTݒTሺݔሻቇ 

ܫ =  െ  ܸ  ܶ ܸT 

 



 An Approach of the QR Factorization for Tall-and-Skinny Matrices 241 

where the matrices ܶ and ܸ are defined by: 

 ܶ =  ൬ ܶିଵ  ܶିଵ ݖTሺݔሻ0 ߬ሺݔሻ ൰   

 ܸ ൌ ሺ ܸିଵ  , ሻሻݔሺݒ

ሻݔሺݖ  ൌ  െ߬ሺݔሻݒTሺݔሻ ܸିଵ 

In view of (2),  we have: 

ሻݔሺݖ  ൌ  െ߬ሺݔሻ ݒTሺݔሻ ܸିଵ 

 ൌ െ߬ሺݔሻ ൫݁T  ሽሺାଵሻ:Tݔሻ ሼݔሺݎ   ൯  ܸିଵ (9) 

 ൌ െ߬ሺݔሻ ሺ ሾ ܸିଵሿ,כ  ሽሺାଵሻ:Tݔሻ ሼݔሺݎ ܸିଵሻ              

It is easy to see that the two matrix-vector multiplications ሼݔሽሺାଵሻ:T ܸିଵ   and  ሼݔሽሺାଵሻ: T   can be merged into one matrix-vector multiplication defined by  ܥ

 ሼݔሽሺାଵሻ:T ሺ ܸିଵ  ሻܥ

Let us show how computation of the 2-norm of the Householder vector can be com-
bined with the latter matrix-vector multiplication. To demonstrate this we consider the 
matrix ܤ of size ݊-by-݉ defined as follows: 

ܤ  ൌ ሺ ܸିଵ ݔ  ሻ   (10)ܥ

Compute the vector ݕ  of length m by the formula 

ݕ  ൌ ሼݔሽሺାଵሻ:T  ܤ

 ൌ ሺሼݔሽሺାଵሻ:T ܸିଵ   | ሼݔሽሺାଵሻ:T ሼݔሽሺାଵሻ:    | ሼݔሽሺାଵሻ:T  ሻ (11)ܥ

It is easy to see that   ԡሾݔሿ:ԡଶ ൌ ඥݔଶ  ݕ   due to (3).  The 2-norm of the House-
holder vector gives us possibility to compute the key parameters ݎሺݔሻ and  ߬ሺݔሻ  
according to the equations (2).   

Let us update the components of the vector ݕ as  

:ݕ  ൌ ሾܤሿ,כ   (12) ݕሻݔሺݎ

 ൌ ሺሾܸሿ,כ  ሽሺାଵሻ:Tݔሻ ሼݔሺݎ ܸିଵ    | |      ݕ ሾܥሿ,כ   ሽሺାଵሻ: Tݔሻ ሼݔሺݎ  ሻ ܥ

and then scale the components of ݕ  to multiply each component  by െ߬ሺݔሻ ݕ : ؔ  െ߬ሺݔሻݕ. 
Taking into account (8) and (9), we can state that 

 ሾݕሿଵ:ሺିଵሻ ൌ  ሻݔሺݖ

 ሾݕሿሺାଵሻ: ൌ  ሻݔሺݓ
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Thus one matrix-vector multiply as in (11), one BLAS DAXPY operation defined by 
(12) and one call to DSCAL allow us to start computation of the ݇-th column in the 
triangular matrix ܶ  according to (9), and apply the Householder transformation  ܪሺݔሻ to the matrix ܥ where  ܥ is updated by (7)-(8). 

Combining all these observations we get sequential Algorithm 2 – a program 
named DGEQR2_RFT to perform all three tasks mentioned at the beginning of the 
section. We assume that the matrix ܤ defined by  ܤ ൌ ሺ ܸିଵ ݔ  ሻ has alreadyܥ
been formed and is an input argument for the algorithm. The matrix ܶ and a scalar 
integer ݇ are other input parameters. The algorithm modifies matrices   ܶ  and  ܤ.  
 
Algorithm 2.   DGEQR2_RFT(݇,   ܤ,   ܶ) 

 
Set  ሾݔሿ: ൌ ሾܤሿ:, , ሾݔሿଵ:ሺିଵሻ ൌ 0 
Call DGEMV to compute   

ݕ  ൌ ሼݔሽሺାଵሻ:் ܤ ൌ ሾݔሿሺାଵሻ:் ሾܤሿሺାଵሻ:,ଵ: 

Compute  ݎሺݔሻ,  ߚሺݔሻ and  ߬ሺݔሻ  by (2) 
Call DAXPY to update components of  ݕ:  
:ݕ   ൌ ሾܤሿ,כ   ݕሻݔሺݎ
 
Call DSCAL to compute       ݕ ൌ  െ߬ሺݔሻݕ 
If k > 1,  call DTRMV to compute the ݇-th column of   ܶ  by  

 ሾܶሿଵ:ሺିଵሻ, ൌ ሾܶሿଵ:ሺିଵሻ,ଵ:ሺିଵሻሾݕሿଵ:ሺିଵሻ்  

Set  ݐ ൌ  ߬ሺݔሻ, ݒ ൌ 1   
Call DSCAL to compute components of  the vector  ݒ: 

  ሾݒሿሺାଵሻ: ൌ  ሿሺାଵሻ:ݔሺ݇ሻሾݎ

Overwrite  ሾܤሿሺାଵሻ:,כ ൌ ሾݔሿሺାଵሻ:    by    ሾݒሿሺାଵሻ:. 
Call DGER to perform a rank 1 operation  ሾܤሿ:,ሺାଵሻ: ؔ ሾܤሿ:,ሺାଵሻ:   ሾݒሿ:ሾݕሿሺାଵሻ: 

Set ܾ ൌ ݔ ൌ  ሻݔሺߚ
 
Let us now come back to the standard QR factorization of the panel  ܣ . Assume 

that the computation of the QR factorization of  ܣ  has progressed to where column ݇  is being reduced and we have determined Householder transformations ܪଵ, ,ଶܪ … ,  ିଵ   such thatܪ

ሺሻܣ  ൌ ଶܪ ଵܪ ڮ ܣିଵܪ ൌ ቆܴିଵ ଵଶሺሻ0ܣ  ଶଶሺሻቇܣ
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where ܴ ିଵ is upper triangular matrix. In LAPACK’s DGEQRF subroutine the ele-
ments below the diagonal of  ܣ contain the components of vectors  ݒଵ, ,ଶݒ … ,  ିଵݒ
where each vector ݒ , along with  ߬, represents the Householder transformation  ܪ.  
Since  matrix ܣሺሻ has the same structure as the matrix ܤ  defined by (10)  and the ݇-th step of the panel QR factorization of ܣ requires to perform the same  three tasks 
considered in the section,  it is easy to prove that Algorithm 3 produces the QR facto-
rization of a given ݊-by-݉ matrix. 

 
Algorithm 3.   DGEQRF_Panel_Factorization(ܣ, ܶ) 

For k=1, m  
  Call  DGEQR2_RFT (݇,  (ܶ   ,ܣ
End for  

4 Accuracy 

The computation of the 2-norm of a subvector with the help of matrix-vector multipli-
cation is not reliable since it may lead to an unnecessary overflow and underflow of 
floating point numbers. For example, if ݔ and ݕ  are so small that their squares 

underflow, then  ߚሺݔሻ ൌ ඥݔଶ      from   Algorithm 2 will be zero even thoughݕ
the true value of  ߚሺݔሻ is not zero.   Because of that we are going to modify Algo-
rithm 2 to avoid unnecessary overflow and underflow.   

The standard QR panel factorization uses the DLARFG LAPACK subroutine for 
computing elements of the Householder transformation.  First of all,   DLARFG 
calls the BLAS Level 1 DNRM2 function for computing the 2-norm of a vector.  The 
value of DNRM2 is then checked whether it is in IEEE 754 double precision range, 
and if the computed value is out of the range,   additional scaling is applied to a vec-
tor to avoid underflow. More precisely,  the DLARFG LAPACK subroutine uses 
additional scaling of a vector if the DNRM2 BLAS function returns value  less than   ߝ ൌ ௦௧ ௧௩  ௦  where ݂݊݅݉ݏ  is the safe minimum such that ଵ௦  does not overflow.   

There are many ways to avoid overflow and underflow in Algorithm 2.  For ex-
ample, we can compute the infinity norm of a vector ԡݔԡஶ ൌ max |ݔ | before the 
matrix-vector multiplication and then we can use matrix-vector multiplication or use 
the DLARFG routine.  However, computation of the infinity norm increases the idle 
time in parallel mode. Another way is to compute ݕ  with the help of a matrix-vector 
multiplication, analyze its value and call the DLARFG LAPACK subroutine if  ݕ   
is out of the following predefined range: [ߝ,  ௫ is less or equal toߝ ௫ሿ  whereߝ
the double precision overflow threshold. In other words, the 2-norm of a vector is 
speculatively computed. It is evident that this approach can increase computational 
cost, but it is preferable to performing obligatory computation of the 2-norm or infini-
ty norm since additional computation is only needed in a few cases. In some cases the 
LAPACK computational drivers, such as least square drivers, perform additional 
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scaling (see, for example, the DLASCL auxiliary subroutine) before calling QR facto-
rization drivers, and this  reduces the additional computational cost.   

We give pseudo code below for the panel QR factorization which uses speculative 
computation of the 2-norm and avoids overflow and underflow.  

 
 
Algorithm 4.   DGEQR2_RFT(ܣ, ܶ) 
For k=1, m 
 Set  ሾݔሿ: ൌ ሾܣሿ:, , ሾݔሿଵ:ሺିଵሻ ൌ 0 

Call DGEMV to compute 

ݕ  ൌ ሼݔሽሺାଵሻ:் ܣ ൌ ሾݔሿሺାଵሻ:் ሾܣሿሺାଵሻ:,ଵ:  

If ݕ   ݕ    orߝ   ௫ thenߝ
  Call DLARFG  to compute scalars  ߬ሺݔሻ, ݎሺݔሻ,  ߚሺݔ)  and  

 the Householder vector  ݒ for ܪሺሾܣሿכ,ሻ 
   Call DGEMV to compute 

ݕ  ൌ ሾݒሿ:் ሾܣሿ:,ଵ: 

Else    
Compute ݎሺݔሻ,  ߚሺݔሻ and  ߬ሺݔሻ  by  (2) 
Call DAXPY to update components of  ݕ: 

:ݕ  ൌ ሾܣሿ,כ   ݕሻݔ ሺݎ

Call DSCAL to compute components of the vector 
    ሾܣሿሺାଵሻ:, ൌ ,ሿሺାଵሻ:,ܣሻ ሾݔሺݎ  ܣ ൌ 1  

 End if 
         Call DSCAL to compute ݕ ൌ  െ߬ሺݔሻ ݕ 

If ݇  1,  call DTRMV to compute the ݇-th column of  ܶ  by  

 ሾܶሿଵ:ሺିଵሻ, ൌ    ሾܶሿଵ:ሺିଵሻ,ଵ:ሺିଵሻሾݕሿଵ:ሺିଵሻ்  

Set ݐ ൌ  ߬ሺݔሻ  
Call DGER to perform the rank one operation 

     ሾܣሿ:,ሺାଵሻ: ؔ ሾܣሿ:,ሺାଵሻ:   ሾݒሿ:ሾݕሿሺାଵሻ:  

Set   ܽ ൌ ݐ  ሻ andݔሺߚ ൌ  ߬ሺݔሻ 
End for 
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5 Parallel Implementation 

In this section we discuss parallel implementation of Algorithm 4 for the panel QR 
factorization assuming that the number of threads is small.  

There are three Level 2 BLAS basic operations in Algorithm 4: matrix-vector mul-
tiplication performed by DGEMV, triangular matrix vector multiplication performed 
by DTRMV and the rank 1 matrix update performed by DGER.  It is well known that 
Level 2 BLAS computations are memory bandwidth limited and parallel implementa-
tions of DGEMV or DGER demonstrates poor scalability in parallel mode on plat-
forms like Intel Pentium® processors or Intel Core™2 Quad processors with high 
ratios of peak performance vs. memory bandwidth.   Architecture systems with the 
Intel CoreTM  i5 or i7 processors and their latest 2nd and 3rd generations bring a 
whole new level of memory bandwidth to high performance computing.  As we 
demonstrate in the next section, the recent improvement of memory bandwidth makes 
it possible to develop a scalable implementation of the panel QR factorization for tall-
and-skinny matrices.  

Theoretically the panel QR factorization described in details in the previous section 
can be parallelized for any distribution of a matrix:  by rows, by columns or using 
mixed distribution. In what follows a block row partitioning of a given panel ܣ of 
dimension ݊-by-݉ (݊ ب ݉) is the only case considered. Let  be the number of 
threads assigned for the QR factorization of ܣ. We consider rectangular blocking, 
where ܣ  is broken into an ݊ -by- ݉  block matrix with   blocks ሺሻܣ    where ݊ ൌ   :/݊

ܣ ൌ ൮ܣሺଵሻܣሺଶሻܣڭሺሻ൲ 

The panel QR factorization of ܣ involves ݉ stages.  At stage ݅, each thread per-
forms a matrix-vector multiplication using its own submatrix  ܣሺሻ. Let the vector  ݖ 
of length ݉ be the result of the local matrix-vector multiply for the ݆-th thread. The 
next step is the reduction  ݖ ؔ ݖ  - over all threads. When the master thread fiݖ
nishes computation of the key parameters ݎ  and  ߬    of Householder transforma-
tions, all threads start their updates of the trailing submatrix independently. 

Thus the simplest algorithm one might try consists in the following steps:  
 

Algorithm 5.   Parallel panel factorization(ܣ, ܶ) 

Let ݊ be the number of rows in a block, ݇ be the first row in the block  ܣሺሻ, ݈ 
be the last  row in the block  ܣሺሻ and   be the number of threads. 
For  ݇ ൌ 1, ݉ 
 Set ሾݔሿሺାଵሻ: ൌ ሾܣሿሺାଵሻ:, , ሾݔሿଵ:ሺିଵሻ ൌ 0 

 ݅ ൌ ሺሻ݉ݑ݊_݀ܽ݁ݎ݄ݐ_ݐ݁݃_݉ 1 
 ݇= ݇  

       If  ݅  1 then ݇=  ሺ݅ െ 1ሻ כ ݊  1 
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  ݈=  ݅ כ ݊ 
Call DGEMV to compute ݖ ൌ ሼݔሽ:்   ሺሻܣ
If  ݅ ൌൌ 1 then 

Set ݕ ൌ  ଵݖ
    For ݆ ൌ 2, ݕ   ؔ ݕ  ݖ  

End for 
If   ߝ   ݕ     ௫ thenߝ

Compute  ݎሺݔሻ, ߚሺݔሻ and  ߬ሺݔሻ  by (2).  
Call DAXPY to update components of  ݕ: 

:ݕ  ൌ ሾܣሿ,כ   ݕ ሻݔሺݎ

Call DSCAL to compute the vector   ݒ  
  ሾݒሿሺାଵሻ: ൌ  ሿሺାଵሻ:ݔሻሾݔሺݎ  

 Overwrite ሾܣሿሺାଵሻ:, ൌ ሾݔሿሺାଵሻ:   by    ሾݒሿሺାଵሻ:. 
        Else  

 Call DLARFG to compute the vector   ሾݒሿ: and scalars  ݎሺݔሻ,   ߚሺݔሻ and  ߬ሺݔሻ 
 Call DGEMV to compute ݕ ൌ  ሾݒሿ:் ሾܣሿ:,ଵ: 

            End if  
            Call DSCAL to compute  ݕ ൌ  െ߬ ሺݔሻݕ 

                     If  ݇  1, call DTRMV to compute the ݇-th column of  ܶ  by   

 ሾܶሿଵ:ሺିଵሻ, ൌ ሾܶሿଵ:ሺିଵሻ,ଵ:ሺିଵሻሾݕሿଵ:ሺିଵሻ்  

End if 
Call DGER to perform 1 rank operation 

 ሾܣሺሻሿ:,ሺାଵሻ: ؔ ሾܣሺሻሿ :,ሺାଵሻ:   ሾݒሿ: ሾݕሿሺାଵሻ: 

If  ݅ ൌൌ 1 then set   ܽ ൌ ݐ ,ሻݔሺߚ ൌ  ߬ሺݔሻ 
End for 

6 Performance Results 

Two different implementations of the QR factorization with our approach for tall-and-
skinny matrices referred further as TSQR are used for performance comparison in this 
section.   The first program is our own implementation of the recursive RGEQR3 
algorithm from [9] which calls our implementation of Algorithm 5 instead of 
DGEQR2 and DLARFT. The internal column block size in the implementation  
of RGEQR3 was set to 64.  A parallel matrix-vector multiplication and trailing  
matrix update are only used for the implementation of Algorithm 5.  The triangular 
matrix-vector product and scaling of a vector are performed only by the master thread 
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in a team since parallelization of these operations does not provide any significant 
benefit. 

The sequential and parallel implementations of our approach have been recently 
incorporated into Intel MKL 11.0 to increase performance of xGEQRF routines.  The 
implementation of QR factorization in Intel MKL is similar to PLASMA implementa-
tion. It also uses a DAG of tasks and these tasks are also executed asynchronously. 
Unlike the PLASMA, only block panels instead of blocks are used in Intel MKL 
xGEQRF implementation and each task can be performed by a small team of threads 
or sequentially.  At the moment the sequential version is used inside of Intel MKL on 
Intel 64 platforms.  For a large tall-and-skinny matrices considered in this section, 
the new sequential TSQR allowed increasing the performance of Intel MKL 
DGEQRF in 1.6-3 times.  

To get the best performance with PLASMA, we followed the recommendations de-
scribed in [10] and so called “pruned search”  from [10]  was used by us for finding 
the (NB, IB) pairs that maximize the performance depending on the matrix size and on 
the number of cores.  The following limited set of (NB, IB) pairs was selected: {(40, 
10), (60, 20), (84, 28), (120, 40), (168, 56), (200, 40), (256, 64)}. Then we benchmark 
the PLASMA QR factorization only with this limited number of combinations and 
finally the best performance obtained is selected.  The time for conversion from the 
Column Major Format to Block Data Layout in the case of PLASMA was not meas-
ured in order to make fair comparisons.  

The first figure demonstrates good scalability of the parallel implementation of Al-
gorithm 5 especially for large numbers of rows where the speedup of a parallel execu-
tion on ݍ cores is computed by the following formula: 

ݏ  ൌ ଵݐ ⁄ݐ   

where ݍ is the number of cores, ݐଵ the execution time of the sequential algorithm and ݐ  the execution time of the parallel algorithm when ݍ cores are used.  There was a 
serious performance drop of the matrix-vector multiplication performance in serial 
mode for large matrices when the memory needed for storing a panel exceeded the 
size of cache memory. Due to this circumstance the scalability factor for large sizes is 
larger than expected.   

The next figure shows the performance comparison of our two implementations 
mentioned before with PLASMA_DGEQRF from PLASMA 2.4.5 and DGEQRT 
from LAPACK 3.4 for tall-and-skinny random matrices of different sizes.  The 
LAPACK 3.4 DGEQRT subroutine is based on another algorithm from [9]. The fig-
ure 2 shows that the recursive RGEQR3 algorithm with our parallel TSQR is faster 
than DGEQRT. It also shows that DGEQRF form MKL 11.0 Update 1 is a bit faster 
than PLASMA_DGEQRF for this set of matrices except the matrix with 300 columns.    
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Fig. 1. Scalability of the panel QR factorization on Intel Xeon processor E5-2680 (2.7 GHz, 
RAM 32 GB, Max Memory Bandwidth 51.3 GB/s), with 64 columns 

 

Fig. 2. Performance comparison of Intel MKL 11.0 Update 1 with the new TSQR inside,   
PLASMA_DGEQRF from PLASMA 2.4.5 and DGEQRT from LAPACK 3.4  on Intel  Xeon  
processor E5-2680 (2.7 GHz, RAM 32 GB, Max Memory Bandwidth 51.3 GB/s).  The number 
of threads is 16. 
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Abstract. Systems which are narrow banded and strictly diagonally
dominant by rows can be solved in parallel using a variety of methods
including incomplete block cyclic reduction. We show how to accelerate
the algorithm by approximating the very first step. We derive tight esti-
mates for the forward error and explain why our procedure is suitable for
linear systems obtained by discretizing some common parabolic PDEs.
An improved ScaLAPACK style algorithm is presented together with
strong scalability results.

Keywords: Narrow banded, strictly and evenly diagonally dominant
linear systems, approximate incomplete cyclic reduction.

1 Introduction

Once again we consider the problem of solving a nonsingular tridiagonal linear
system

Ax ≡

⎡⎢⎢⎢⎢⎣
d1 f1

e2
. . .

. . .

. . .
. . . fn−1

en dn

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x1
...
...
xn

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
b1
...
...
bn

⎤⎥⎥⎥⎥⎦ ≡ b (1)

on a parallel machine with p processors. We assume that systems are large, i.e.

p� n, (2)

and strictly diagonally dominant by rows, i.e.

∀i : |ei|+ |fi| < |di|, (3)

where e0 and fn are undefined and should be treated as zeros. We shall make
frequent use of the dominance factor ε defined by

ε = max
i

{
|ei|+ |fi|
|di|

}
< 1.
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Finite difference methods, such as the implicit Euler method or the Crank-
Nicolson method for the one dimensional heat equation

ut = a(x, t)uxx + c(x, t)u + f(x, t), 0 < x < 1, 0 < t (4)

generate tridiagonal systems which are not only strictly diagonally dominant,
but evenly so, in the sense that

∃ ε ∈ (0, 1) ∀i : max{|ei|, |fi|} ≤
1

2
ε|di|. (5)

Our main result, Theorem 1, demonstrates the strength of this condition over
condition (3).

Given a tolerance δ > 0, our goal is to obtain an approximation y of the exact
solution x such that

‖x− y‖∞ ≤ δ‖x‖∞, (6)

and to execute the computations with high parallel efficiency.
The linear system (1) can be partitioned as a block tridiagonal linear system

as illustrated in Figure 1. Each matrix Aj is large and tridiagonal and each
matrix Cj has just a single entry. Moreover, each of the four submatrices Bj ,
Dj , Ej , and Fj is a large vector containing at most one nonzero component. All
blocks with the subscript j are stored in the local memory of processor Pj . This
is exactly the partitioning scheme used in the ScaLAPACK implementation of
cyclic reduction for certain banded matrices [1]. The blocks on the fringe, i.e.
F1, E1, Bp, Cp, Dp, βp, and ξp are all undefined and should be treated as zero.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 B1

D1 C1 E2

F2 A2 B2

D2 C2 E3

. . .
. . .

. . .

Dp−1 Cp−1 Ep

Fp Ap

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

ξ1
x2

ξ2
...

ξp−1

xp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
β1

b2
β2

...
βp−1

xp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

Fig. 1. The ScaLAPACK partitioning scheme used in PDDBTRF/PDDBTRS. The subma-
trices held by processor P2 are emphasized.

If the central components {ξj}p−1
j=1 have been computed and distributed, then

we can recover the remaining components by solving the independent linear
systems

Ajxj = bj − Fjξj−1 −Bjξj , j = 1, 2, . . . , p. (8)

The matrices Aj are all nonsingular, because A is strictly diagonally dominant

by rows. Suppose that we have computed approximations {νj}p−1
j=1 such that

|ξj − νj | ≤ δ‖x‖∞, j = 1, 2, . . . , p− 1.
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How should we proceed? In view of equation (8) it is only natural to define the
vector yj as the solution of

Ajyj = bj − Fjνj−1 −Bjνj , j = 1, 2, . . . , p, (9)

and then inquire if the vector y given by

y = (yT1 , ν
T
1 , y

T
2 , ν2, . . . , ν

T
p−1, y

T
p )

T

will satisfy the forward error bound (6)? The answer is yes! We have

xj − yj = −A−1
j

[
Fj Bj

] [ξj−1 − νj−1

ξj − νj

]
. (10)

By Corollary 3.2 [2] the strict diagonal dominance of A ensures∥∥A−1
j

[
Fj Bj

]∥∥
∞ ≤ ε < 1,

which together with (10) implies

‖xj − yj‖∞ ≤ δ‖x‖∞,

and it is clear that y will satisfy the forward error bound (6).
Now, the real numbers {ξj}p−1

j=1 can be found using, say, cyclic reduction [3] as
in ScaLAPACK [1] or approximated using incomplete cyclic reduction [4], an op-
tion which we have explored in a previous paper [5]. By design the ScaLAPACK
implementation accomplishes the vast majority of the calculations during the
very first reduction step, unless condition (2) is violated and the system is small
compared to the number of processors. If the system is large, then the benefits
of skipping steps is minimal, unless the interconnect is very slow. In this paper,
we are therefore concerned with accelerating the very first reduction step.

Our main results are derived in Section 2 and a parallel algorithm is formu-
lated and presented together with some numerical experiments in Section 3. The
new algorithm is an approximation of a single step of incomplete block cyclic
reduction using the ScaLAPACK block partitioning [1].

2 The Main Result

High parallel efficiencies can be achieved by the rapid computation of accurate
approximations of the real numbers {ξj}p−1

j=1 . Theorem 1 concerns the approxi-
mation of a single component of the solution to a large tridiagonal system.

Remark 1. In the statement of Theorem 1 the rows are numbered from −� to
m, rather than 1 through n as is customary. The goal is to focus the reader’s
attention on the central row with index 0.
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Theorem 1. Let x be the exact solution of the linear system

Ax =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d−� f−�

e1−�
. . .

. . .

. . .
. . .

. . .

e−1 d−1 f−1

e0 d0 f0
e1 d1 f1

. . .
. . .

. . .

. . .
. . . fm−1

em dm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x−�

x1−�

...
x−1

x0
x1
...

xm−1

xm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b−�

b1−�

...
b−1

b0
b1
...

bm−1

bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where A is strictly diagonally dominant by rows. Let q be an integer such that

q < min{�,m},

and let y = y(q) be the exact solution of the linear system

Aqy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d−q f−q

e1−q
. . .

. . .

. . .
. . .

. . .

e−1 d−1 f−1

e0 d0 f0
e1 d1 f1

. . .
. . .

. . .

. . .
. . . fq−1

eq dq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y−q

y1−q

...
y−1

y0
y1
...

yq−1

yq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b−q

b1−q

...
b−1

b0
b1
...

bq−1

bq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Then

|x0 − y0| ≤ ε1+q‖x‖∞. (12)

If A is strictly and evenly diagonally dominant by rows, i.e. satisfies (5), then

|x0 − y0| ≤
2ρ1+q

1 + ρ2+2q
‖x‖∞, (13)

where ρ = ρ(ε) is given by

∀ε ∈ (0, 1) : ρ(ε) =
1−
√
1− ε2
ε

. (14)
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Proof. Since Aq is nonsingular, we have a row equivalence relation of the form⎡⎢⎢⎢⎢⎢⎢⎣

e−q d−q f−q b−q

. . .
. . .

. . .
...

e0 d0 f0 b0
. . .

. . .
. . .

...
eq dq fq bq

⎤⎥⎥⎥⎥⎥⎥⎦
Aq∼

⎡⎢⎢⎢⎢⎢⎢⎣

u−q 1 v−q b
′
−q

...
. . .

...
...

u0 1 v0 b′0
...

. . .
...

...
uq 1 vq b′q

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and since A is strictly diagonally dominant by rows, Theorem 2 [5] gives a tight
estimate for

∥∥[uj vj]∥∥∞. In particular, we have

‖
[
u0 v0

]
‖∞ ≤ ε1+q. (15)

Moreover, we have

u0x−(1+q) + x0 + v0x1+q = b′0 = y0,

which allows us to write

x0 − y0 = −u0x−(1+q) − v0x1+q = −
[
u0 v0

] [x−(1+q)

x1+q

]
,

and deduce that

|x0 − y0| ≤ ‖
[
u0 v0

]
‖∞

∥∥∥∥[x−(1+q)

x1+q

]∥∥∥∥
∞
≤ ε1+q‖x‖∞.

We will now prove the upper bound given by (13) subject to condition (5). To
this end we define the matrix Ωq as follows

Ωq =

⎡⎢⎢⎢⎢⎣
0 −d−1

−qf−q

−d−1
1−qe1−q

. . .
. . .

. . .
. . . −d−1

q−1fq−1

−d−1
q eq 0

⎤⎥⎥⎥⎥⎦ .
Then the strict diagonal dominance implies ‖Ωq‖∞ < 1 and

(I −Ωq)
−1 =

∞∑
j=0

Ωj
q ≤

∞∑
j=0

|Ωq|j = (I − |Ωq|)−1,

and if A satisfies (5) then

(I − |Ωq|)−1 ≤ (I −Hq)
−1,

where

Hq =

⎡⎢⎢⎢⎢⎣
0 1

2ε

1
2ε

. . .
. . .

. . .
. . . 1

2ε
1
2ε 0

⎤⎥⎥⎥⎥⎦ .
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Therefore∣∣∣∣∣∣∣∣∣∣∣∣

⎡⎢⎢⎢⎢⎢⎢⎣

u−q v−q

...
...

u0 v0
...

...
uq vq

⎤⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
(I −Ωq)

−1

⎡⎢⎢⎢⎢⎢⎣
d−1
−qe−q 0
0 0
...

...
0 0
0 d−1

q fq

⎤⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣
≤ (I −Hq)

−1

⎡⎢⎢⎢⎢⎢⎣
1
2ε 0
0 0
...

...
0 0
0 1

2ε

⎤⎥⎥⎥⎥⎥⎦ .

Moreover, equality is achieved when A = B(ε), where

B(ε) = I −Hq =

⎡⎢⎢⎢⎢⎣
1 − 1

2 ε

− 1
2ε

. . .
. . .

. . .
. . . − 1

2ε
− 1

2ε 1

⎤⎥⎥⎥⎥⎦ . (16)

It remains to analyze this specific matrix. It is not hard to see that the structure
of A = B(ε) will ensure

u0 = v0,

and using Gaussian elimination without pivoting, see appendix, we discover that

v0 = − ρ1+q

1 + ρ2+2q
. (17)

Therefore, if A is strictly and evenly diagonally dominant by rows, then∥∥[u0 v0]∥∥∞ ≤
2ρ1+q

1 + ρ2+2q
(18)

and equality is achieved for the matrix A = B(ε). Inequality (13) follows
immediately. �
The upper bound given by (13) is completely determined by the central pa-
rameter ρ and the integer q. We have plotted ρ as a function of ε in Figure 2,
and the following proposition summarizes its essential properties. The proof is
straightforward and elementary.

Proposition 1. Let ρ = ρ(ε) be defined as in Theorem 1. Then

∀ε ∈ (0, 1) :
ε

2
< ρ < ε. (19)

Moreover, ρ is strictly increasing with the limits

ρ→ 1, ε→ 1, ε ∈ (0, 1), (20)

ρ→ 0, ε→ 0, ε ∈ (0, 1), (21)

and the asymptotic behavior

ρ(ε)

ε/2
→ 1, ε→ 0, ε ∈ (0, 1). (22)
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Fig. 2. The solid curve represents the central parameter ρ, i.e. y = (1 − √
1 − ε2)/ε,

while the two straight lines are given by y = ε and y = ε/2

By Theorem 1 we can approximate the central components {ξj}p−1
j=1 using Gaus-

sian elimination and 8(2q+1)(p−1) arithmetic operations. In the following three
examples we calculate the smallest possible value of q, which will allow us to com-
pute {ξj}p−1

j=1 to machine precision. The first example shows that inequality (15)
is tight.

Example 1. Let c > 0 and consider the transport equation given by

ut + cux = 0, 0 < x < 1, 0 < t,

with an initial condition u(x, 0) = u0 and a boundary condition u(0, t) = g(t).
Consider the following finite difference scheme

v
(k+1)
j − v(k)j

Δt
+ c
v
(k+1)
j − v(k+1)

j−1

Δx
= 0, j = 1, 2, . . . , n, Δx = 1/n, (23)

together with the initial/boundary conditions

v
(0)
j = u0(xj), j = 1, 2, . . . , n, and v

(k)
0 = g(tk), tk = kΔt, k ∈ N.

The scheme can be written in matrix form as

Av(k+1) = v(k) + cμg(tk+1)e
(n)
1 , where μ =

Δt

Δx
,
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where A ∈ Rn×n is the bidiagonal matrix given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(1 + cμ)

− cμ (1 + cμ)

− cμ . . .

. . .
. . .

− cμ (1 + cμ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and e
(n)
1 is the first column of the n by n identity matrix. We observe, that A is

strictly diagonally dominant and the dominance factor ε is given by

ε =
cμ

1 + cμ
< 1.

Moreover, any value of ε ∈ (0, 1) can be achieved with a suitable choice of cμ. It
is straightforward to verify that this matrix realizes the upper bound (15).

Which value of q will suffice to realize our forward error bound (6)? Clearly,
we must have

q ≥ q0 =

⌈
log δ

log ε

⌉
− 1.

The choice of δ = 2−53 corresponds to the unit round off error in IEEE double
precision floating point arithmetic, and for ε = 99/100, we have q0 = 3655.

The following example illustrates the strength of condition (5) over that of strict
diagonal dominance (3).

Example 2. Consider the implicit Euler method for the parabolic equation (4)
where a = a(x, t) ≥ 0 and c = c(x, t) ≤ 0. The finite difference equations are

v
(k+1)
j − v(k)j

Δt
= a

(k+1)
j

v
(k+1)
j−1 − 2v

(k+1)
j + v

(k+1)
j+1

(Δx)
2 + ck+1

j vk+1
j + gk+1

j ,

or equivalently
A(k+1)v(k+1) = v(k) +Δtg(k+1),

where A = A(k+1) is the tridiagonal matrix given by

dj = 1 + 2λa
(k+1)
j − c(k+1)

j Δt, ej = fj = −λa(k+1)
j = −1

2
εjdj ,

and

0 ≤ εj =
2λa

(k+1)
j

1 + 2λa
(k+1)
j − c(k+1)

j Δt
< 1,

so that

max{|ej|, |fj |} ≤
1

2
ε|dj|, ε = max

j
εj < 1,
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and we can apply the improved bound (18). The worst case is realized when
a > 0 and c = 0 are constants. Then

ε =
2aλ

1 + 2aλ
< 1.

We observe that

q ≥ q′0 =

⌈
log(δ/2)

log ρ

⌉
− 1 ⇒ 2ρ1+q

1 + ρ2+2q
≤ δ.

For ε = 99/100 we have ρ ≈ 0.8676 and with δ = 2−53 we have q′0 = 263 which
is substantially smaller than the number found in Example 1, i.e. q0 = 3655.

The final example demonstrates that it is critical that A is strictly diagonally
dominant by rows.

Example 3. Consider the two point boundary value problem for the differential
equation

u′′(x) = g(x), x ∈ (0, 1).

If we use the standard space central discretization of the Laplace operator with
uniform stepsize h = 1/n, then we arrive at a tridiagonal linear system Ax = b,
where

A = n2

⎡⎢⎢⎢⎢⎣
2 −1

−1 . . .
. . .

. . .
. . . −1
−1 2

⎤⎥⎥⎥⎥⎦
(n−1)×(n−1)

is diagonally dominant by rows, but not strictly diagonally dominant by rows.
Therefore, Theorem 1 does not apply, but a direct calculation or a perturbation
argument quickly establishes that∥∥[u0 v0]∥∥∞ = 1

regardless of the value of q! It follows, that it is impossible to obtain an accurate
approximation of y0 using local information only.

3 A Parallel Algorithm and Some Experimental Results

We now derive a parallel algorithm by using our main result, Theorem 1 to
approximate the very first step of block cyclic reduction implemented in ScaLA-
PACK, specifically subroutines PDDBTRF/PDDBTRS. The ScaLAPACK memory
layout is used as discussed in Section 1.

The processors form a linear array and are numbered 1 through p. Subscripts
continue to identify the processor storing the submatrix. It is worth restating

that Cj has dimension 1. The superscripts are abbreviations. Specifically, A
(lr)
j
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is the lower right q by q corner of Aj , while A
(ul)
j is the upper left q by q corner of

Aj . Moreover, D
(r)
j refers to the q rightmost entries of the row vector Dj , while

E
(l)
j refers to the q leftmost entries of the row vector Ej . Finally, b

(b)
j consists of

the q components at the bottom of bj, while b
(t)
j consists of the q components at

the top of bj.
If 1 < p, then processor Pj works together with Pj−1 in order to solve the

linear system ⎡⎢⎢⎣
A

(lr)
j−1 B

(b)
j−1

D
(r)
j−1 Cj−1 E

(l)
j

F
(t)
j A

(ul)
j

⎤⎥⎥⎦
⎡⎢⎢⎣
z
(b)
j−1

νj−1

z
(t)
j1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
b
(b)
j−1

βj−1

b
(t)
j

⎤⎥⎥⎦ (24)

for νj−1, and if j < p then processors Pj works together with Pj+1 in order to
solve the linear system⎡⎢⎢⎣

A
(lr)
j B

(b)
j

D
(r)
j Cj E

(l)
j+1

F
(t)
j+1 A

(ul)
j+1

⎤⎥⎥⎦
⎡⎢⎢⎣
z
(b)
j

νj

z
(t)
j+1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
b
(b)
j

βj

b
(t)
j+1

⎤⎥⎥⎦ (25)

for νj . Finally, processor Pj computes the vector xj using equation (8). The
details are given as Algorithm 1.

We implemented our algorithm in Fortran 90 using non-blocking MPI send
and receive operations. As in ScaLAPACK [1] and the SPIKE/PSPIKE pack-
ages [6,7], the algorithm can be split in a factorization phase, which exclusively
accesses the matrix to produce the necessary LU factorizations, and a solution
phase, which accesses the right hand side and returns the actual solution.

Here we report on a test executed on the machine Akka, at HPC2N Ume̊a,
which demonstrates that the algorithm is viable and exhibits good scalability.
Using

p ∈ {1, 2, . . . , 32}
processors, we solved the linear systems

−xj−1 +
2

ε
xj − xj+1 = gj , j = 1, 2, . . . , n,

where x0 = xn+1 = 0 and

n ∈ {16, 32, 64, 128, 256, 512}× 103,

all with ε = 0.9 and q = 80, for which ρ ≈ 0.6268 and ρ81 ≈ 3.7× 10−17 < 2−53,
and a single right hand side g corresponding to a known solution, specifically a
vector of ones. The calculations were carried out using IEEE double precision
floating point arithmetic and every system was solved with a normwise forward
relative error equal to at most 5u, u = 2−53, a figure consistent with the infinity
norm condition numbers which are bounded by 19. Plots of the strong scalability
efficiency, i.e.

η = T1/(pTp),
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for the factorization phase is given in Figure 3. The plots for the solve efficiencies
are similar and are omitted because of the page limitation. As expected, the effi-
ciencies are high for small values of q/μ, where μ ≈ n/p is the size of the largest
tridiagonal block Aj . Developing a theory which explains the exact nature of the
curves is still an open problem, as it is not merely a matter of counting float-
ing point operations. The run-times were measured and averaged over all active
processors. Cache effects were eliminated by flushing the entire cache hierarchy
between each call to the factorization routine. The run-times include the time
required to load the matrices from RAM memory. We repeated every experiment
10 times and found that the majority of the timings were tightly clustered except
for one or two outliers which were frequently, but not consistently, among the
first in every set of repetitions. We disregarded the anomalies and generated our
plots from the rest of the data.
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Fig. 3. Strong scalability test of the factorization phase of our algorithm. Please note
that the efficiencies are all greater than 50%. All curves can be identified by their value
at p = 32 where the ordering matches that of the legend.

4 Conclusions and Some Further Discussions

In exact arithmetic our algorithm will return the same approximation as the
interface splitting algorithm introduced by Arpiruk Hokpunna [8]. There are
minor differences in the memory layout and while we have the same number of
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Algorithm 1. Approximate incomplete cyclic reduction

1: if 1 < j then
2: Processor Pj solves the linear system

A
(ul)
j

[
U

(t)
j u

(t)
j

]
=

[
F

(t)
j b

(t)
j

]
,

computes the two scalars

E
(l)
j U

(t)
j and E

(l)
j u

(t)
j

and sends them to processor j − 1.
3: end if
4: if j < p then
5: Processor Pj solves the linear system

A
(lr)
j

[
V

(b)
j v

(b)
j

]
=

[
B

(b)
j b

(b)
j

]
,

computes the two scalars

Cj −D
(r)
j V

(b)
j and βj −D

(r)
j v

(b)
j ,

and sends them to processor Pj+1.
6: end if
7: if 1 < j then
8: As the message from Pj−1 is received, processor Pj completes the computation

νj−1 =
[(

Cj−1 −D
(r)
j−1V

(b)
j−1

)
− E

(l)
j U

(t)
j

]−1 [(
βj−1 −D

(r)
j−1v

(b)
j−1

)
− E

(l)
j u

(t)
j

]
.

9: end if
10: if j < p then
11: As the message from Pj+1 is received, processor Pj completes the computation

νj =
[(

Cj −D
(r)
j V

(b)
j

)
− E

(l)
j+1U

(t)
j+1

]−1 [(
βj −D

(r)
j v

(b)
j

)
−E

(l)
j+1u

(t)
j+1

]
.

12: end if
13: if 1 < j then
14: Processor Pj updates its right hand side and solves for yj

Ajyj = bj − Fjνj−1 −Bjνj , j = 1, 2, . . . , p.

15: else
16: Processor P1 updates its right hand side and solves for y1

A1y1 = b1 −B1ν1.

17: end if
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messages, we have reduced the message size during the factorization phase from
O(q) to O(1). This reduction is not significant, because both algorithms are only
efficient for small values of q. Ahmed Sameh taught Mikkelsen how to reduce
the need for communication by replicating calculations on different processors
and how to use the corners of a matrix to approximate the action of the inverse.
These techniques are utilized repeatedly in the SPIKE/PSPIKE packages [6,7].
Thus our primary contribution is to recognize the connection to cyclic reduction
and to derive the tight error bounds given in Theorem 1. Moreover, Examples
1, 2, and 3 show that while truncation based methods can be very efficient for
discretizations of certain parabolic operators, one must be cautious of hyperbolic
operators and expect failure for elliptic operators. The numerical experiments
verify that approximate incomplete cyclic reduction is accurate and scalable for
systems which satisfy condition (5).

The concept of a tridiagonal and evenly diagonally dominant matrix has been
defined differently in the past. Xian-He Sun, Hong Zhang and Lionel M. Ni
required

|ei| ≤
1

2
|di|, |fi| ≤

1

2
|di|, ei+1fi > 0, (26)

when they performed the initial analysis of the parallel diagonally dominant
(PDD) algorithm [9]. In particular, they used this condition to show that the
reduced system of the PDD algorithm is nonsingular. However, this system is
identical to the reduced system of the truncated Spike algorithm [6], which in
turn is nonsingular whenever A is strictly diagonally dominant by rows [2].

Another paper by Sun [10] considered the matrix which we have now proved
exemplifies the worst possible behavior subject to condition (5). In particular,
Sun derived asymptotic decay rates for this and related special cases all of which
were Toeplitz matrices.

The standard space central discretization of the Laplace operator, see Example
3, produces a matrix which is evenly diagonally dominant in the sense of Sun,
Zhang and Lionel, i.e. (26), but not in our sense (5). This is not a critical loss,
because the decay rate of the elements of the inverse matrix is linear, rather
than exponential, hence insufficient to be exploited even by the PDD algorithm.

In short, by changing the definition slightly we have arrived at a class of
matrices which is large enough to contain physically relevant matrices and so
small that the worst case behavior still exhibits exponential decay and for which
a tight estimate can be given.
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Appendix

The purpose of the appendix is to derive a compact formula for the solution of
the linear system

Ax =

⎡⎢⎢⎢⎢⎣
d1 f1

e2
. . .

. . .

. . .
. . . fn−1

en dn

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x1
...
...
xn

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0
...
0
fn

⎤⎥⎥⎥⎦ = b,

where A is not only diagonally dominant by rows with dominance factor ε < 1,
but

|en|+ |fn| ≤ ε|dn|, ε < 1,

so that fn is not completely independent of the matrix A. We are primarily
interested in the case of

di = 1, ei = fi = −
1

2
ε, (27)

as well as the very specific choice of n = 2q + 1 and j = q + 1. However, it is
convenient to proceed from the general case. A straight forward application of
Gaussian elimination without pivoting reveals that⎡⎢⎢⎢⎢⎣

d1 f1 0

e2
. . .

. . .
...

. . .
. . . fn−1 0
en dn fn

⎤⎥⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎢⎣
γ1 f1 0

. . .
. . .

...
. . . fn−1 0

γn fn

⎤⎥⎥⎥⎥⎦ ,
where

γ1 = d1, γj+1 = dj+1 − ejγ−1
j fj.

By back-substitution we have

xj = (−1)n−j
n∏

i=j

[
γ−1
i fi

]
= (−1)n−j Γj−1

Γn

n∏
i=j

fi, (28)

where we have defined

Γ0 = 1, Γj =

j∏
i=1

γj .

Equation (28) is useful, because the sequence {Γj} satisfies a linear recurrence
relation, specifically

Γj+1 = γj+1Γj = (dj+1 − ej+1γ
−1
j fj)Γj = dj+1Γj − ej+1fjΓj−1. (29)
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Now, in the case of (27) we have

Γj = c1λ
j
− + c2λ

j
+, c1 =

λ−
λ− − λ+

, c2 = − λ+
λ− − λ+

, λ± =
1±
√
1− ε2
2

.

It is straight forward to verify that

c1
c2

= −ρ2, λ−
λ+

= ρ2, ρ =
1−
√
1− ε2
ε

,

and so in the special case of n = 2q + 1 and j = 1 + q we have

x1+q = −
(
ε

2λ+

)1+q

⎧⎪⎨⎪⎩
1 + c1

c2

(
λ−
λ+

)q

1 + c1
c2

(
λ−
λ+

)1+2q

⎫⎪⎬⎪⎭ = −ρ1+q

{
1− (ρ2)1+q

1− (ρ2)2+2q

}

= −ρ1+q

{
1− ρ2+2q

(1− ρ2+2q) (1 + ρ2+2q)

}
= − ρ1+q

1 + (ρ2)1+q
,

(30)

which explains the origin of equation (17). We stress that (28) and (29) are valid
only because multiplication of real numbers is commutative.
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Abstract. Two block cyclic reduction linear system solvers are con-
sidered and implemented using the OpenCL framework. The topics of
interest include a simplified scalar cyclic reduction tridiagonal system
solver and the impact of increasing the radix-number of the algorithm.
Both implementations are tested for the Poisson problem in two and
three dimensions, using a Nvidia GTX 580 series GPU and double preci-
sion floating-point arithmetic. The numerical results indicate up to 6-fold
speed increase in the case of the two-dimensional problems and up to 3-
fold speed increase in the case of the three-dimensional problems when
compared to equivalent CPU implementations run on a Intel Core i7
quad-core CPU.

1 Introduction

The linear system solvers are a very popular research topic in the field of GPU
(Graphics Processing Unit, Video Card) computing. Many of these transform
the original problem into a set of sub-problems which can be solved more easily.
In some cases, these sub-problems are in the form of tridiagonal linear sys-
tems and the tridiagonal system solver often constitutes a significant portion
of the total execution time. Conventional linear system solvers such as the LU-
decomposition, also known as the Thomas method [1] when applied to a tridi-
agonal system, do not perform very well on a GPU because of their sequential
nature. For that reason, a different kind of method called cyclic reduction [2]
has become one of the most widely used methods for this purpose [3–8].

The basic idea of the cyclic reduction method can be extended to block tridi-
agonal systems which arise, for example, from many PDE (Partial Differential
Equation) discretisations. The idea of the block cyclic reduction (BCR) was first
introduced in [2]. While the formulation is numerically unstable, it can be sta-
bilized by combining it with the Fourier analysis method [2] as was shown in
[9, 10]. The first stable BCR formulation, so called Buneman’s variant [11], was
introduced in 1969 and generalized in [12]. Later, the idea of the partial fraction
expansions was applied to the matrix rational functions occurring in the formu-
las, thus leading to the discovery of a parallel variant [13]. The radix-q PSCR
(Partial Solution variant of the Cyclic Reduction) method [14–17] represents

P. Manninen and P. Öster (Eds.): PARA 2012, LNCS 7782, pp. 265–279, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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a different kind of approach based on the partial solution technique [18, 19].
Excellent surveys on these kind of methods can be found in [20] and [21].

The cyclic reduction is a two-stage algorithm. The reduction stage generates a
sequence of (block) tridiagonal systems by recursively eliminating (block) rows
from the system and the back substitution stage solves all previously formed
reduced systems in reverse order using the known rows of the solution from the
previous back substitution step. Usually, the reduction is performed in such a
way that all odd numbered (block) rows are eliminated, i.e., the radix-number
is two. The method presented in [22] is such a method and in this paper it is
called as the radix-2 BCR method. More generalized BCR methods, such as the
radix-q PSCR, allow the use of higher radix-numbers.

Each radix-2 BCR reduction and back substitution step can be computed
in parallel using the partial fraction expansions. However, the steps themselves
must be performed sequentially. A method with a higher radix-number requires
fewer steps to be taken and thus could be more suitable for parallel computation.
A method analogous to the radix-2 BCR method can be easily obtained as a
special case of the radix-4 PSCR method. This method reduces the systems size
by a factor of four at each reduction step. Each radix-4 BCR reduction and
back substitution step requires more computation than a radix-2 step, but the
amount of sequential computation is reduced by a factor of two.

In this paper, the radix-2 and radix-4 BCR methods are applied to the fol-
lowing problem: Solve u ∈ Rn1n2 from

⎡⎢⎢⎢⎢⎣
D −I

−I D . . .

. . .
. . . −I
−I D

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
u1

u2
...
un1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
f1

f2
...
fn1

⎤⎥⎥⎥⎥⎦ , (1)

where D = tridiag{−1, 4,−1} ∈ Rn2×n2 , when f ∈ Rn1n2 is given. It is assumed
that n1 = 2k1 − 1 and n2 = 2k2 − 1 for some positive integers k1 and k2. This
choice greatly simplifies the mathematical formulation and the implementation.
The system (1) corresponds to a two-dimensional Poisson problem with Dirichlet
boundary conditions posed on a rectangle. The implementations presented in
this paper can be extended to cases where the diagonal block D is symmetric,
tridiagonal and diagonally dominant.

The diagonal block can also be of the form D = tridiag{−In3 , D̂,−In3} ∈
Rn2n3×n2n3 , where D̂ = tridiag{−1, 6,−1} ∈ Rn3×n3 and n3 = 2k3 − 1 for
some positive integer k3. In this case, the linear system (1) corresponds to a
three-dimensional Poisson problem with Dirichlet boundary conditions posed in
a rectangular cuboid.

The GPU implementations are compared with each other and to equivalent
CPU implementations. The first objective is to find out how suitable the BCR
methods are for GPU and how the radix-number effects the overall performance.
The second objective is to introduce new ideas related to the tridiagonal system
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solvers. In particular, it is considered how to deal with the GPU’s multilevel
memory architecture and its limitations.

The rest of this paper is organized as follows: The second section briefly
describes the two BCR methods considered in this paper and the third section
covers the key aspects of the implementation. The fourth section presents the
numerical results and discussion. Finally, the conclusions are given in the fifth
section.

2 Methods

2.1 Radix-2 Block Cyclic Reduction

The radix-2 BCR method can be described using the following cyclic reduction
formulation described in [23]. Let T (0) = I, D(0) = D and f (0) = f . Now the
reduced systems are defined, for each reduction step r = 1, 2, . . . , k1 − 1, as⎡⎢⎢⎢⎢⎣

D(r) −T (r)

−T (r) D(r) . . .

. . .
. . . −T (r)

−T (r) D(r)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

u
(r)
1

u
(r)
2
...

u
(r)

2k1−r−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
f
(r)
1

f
(r)
2
...

f
(r)

2k1−r−1

⎤⎥⎥⎥⎥⎦ , (2)

where

T (r) =
(
T (r−1)

)2 (
D(r−1)

)−1

,

D(r) = D(r−1) − 2
(
T (r−1)

)2 (
D(r−1)

)−1

,

f
(r)
i = f

(r−1)
2i + T (r−1)

(
D(r−1)

)−1 (
f
(r−1)
2i−1 + f

(r−1)
2i+1

)
.

(3)

These reduced systems, r = k1−1, k1−2, . . . , 0, can be solved recursively during
the back substitution stage of the algorithm by using the formula

u
(r)
i =

⎧⎨⎩
(
D(r)

)−1
(
f
(r)
i + T (r)

(
u
(r+1)
(i−1)/2 + u

(r+1)
(i−1)/2+1

))
, when i /∈ 2N,

u
(r+1)
i/2 , when i ∈ 2N,

(4)

where i = 1, 2, . . . , 2k1−r − 1 and u
(r+1)
0 = u

(r+1)

2k1−r−1 = 0. Finally, u = u(0).

As shown in [22], if the matrices D(0) and T (0) commute, then the matri-

ces T (r)
(
D(r)

)−1
and

(
D(r)

)−1
can be presented using matrix polynomials and

rational functions. This observation greatly improves the computational com-
plexity of the algorithm as it preserved the sparsity properties of the coefficient
matrix. Otherwise the matrices D(r) and T (r) could fill up quickly. Assuming
T (0) = I allows the use of the partial fraction expansion technique [13] and leads
to

T (r)
(
D(r)

)−1

= 2−r
2r∑
j=1

(−1)j−1 sin

(
2j − 1

2r+1
π

)
(D − θ(j, r)In2 )

−1
, (5)



268 M. Myllykoski, T. Rossi, and J. Toivanen

and (
D(r)

)−1

= 2−r
2r∑
j=1

(D − θ(j, r)In2 )
−1
, (6)

where

θ(j, r) = 2 cos

(
2j − 1

2r+1
π

)
. (7)

These sum-formulations imply that each reduction and back substitution step
can be carried out by first forming a large set of sub-problems, then solving these
sub-problems (in parallel) and finally constructing the final result by computing
collective sums over the solutions. This is the first point where some additional
parallelism can be achieved and this level of parallelism is usually sufficient for
contemporary multi-core CPUs.

The above described cyclic reduction formulas are well-defined (i.e.
(
D(r)

)−1

exists for each r = 1, 2, . . . , k1 − 1) if D−1 exists and the coefficient matrix is
strictly diagonally dominant by rows [23]. In addition, the method has been
shown to be numerically stable if the smallest eigenvalue of the matrix D is at
least 2 [22]. All of these conditions are fulfilled in the case of the problem (1).

The arithmetical complexity of this method is O(n1n2 log n1). If the diag-
onal block D is block tridiagonal as discussed in the introduction, then this
method can be applied recursively. In this case, the arithmetical complexity is
O(n1n2n3 log(n1) log(n2)).

Remark 1. The above formulated partial fraction method can be actually con-
sidered to be a special case of the radix-2 PSCR method in the sense that both
methods generate exactly the same sub-problems [22].

2.2 Radix-4 Block Cyclic Reduction

The formulation of the radix-4 BCR method is slightly more complicated. One
approach is to start from the radix-4 PSCR method and explicitly calculate all
eigenvalues and eigenvector components associated with the partial solutions.
The radix-4 PSCR method can be applied to a problem with a coefficient matrix
of the form

A1 ⊗M2 +M1 ⊗A2 + c(M1 ⊗M2), (8)

where A1,M1 ∈ Rn1×n1 are tridiagonal, A2,M2 ∈ Rn2×n2 , c ∈ R and ⊗ denotes
the matrix Kronecker (tensor) product. If A ∈ Rn×n and B ∈ Rm×m, then
A⊗ B = {Ai,jB}ni,j=1 ∈ Rnm×nm. The coefficient matrix in the system (1) can
be expressed as

A⊗ In2 + In1 ⊗ (D − 2In2), (9)

where A = tridiag{−1, 2,−1} ∈ R
n1×n1 .
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The radix-4 PSCR method includes an initialization stage comprising general-
ized eigenvalue problems. Let n1 = 4k− 1 for some positive integer k. When the
coefficient matrix is of the form (9), the generalized eigenvalue problems reduce
to

Ã(r)w
(r)
i = λ

(r)
i w

(r)
i , i = 1, 2, . . . ,mr, (10)

where r = 0, 1, . . . , k−1,mr = 4r+1−1 and Ã(r) = tridiag{−1, 2,−1} ∈ Rmr×mr .
With the assumptions mentioned above, the radix-4 PSCR solution process

goes as follows: Let f (0) = f . First, for r = 1, 2, . . . , k − 1, a sequence of vectors
is generated by using the formula

f
(r)
i = f

(r−1)
4i +

mr−1∑
j=1

(w
(r−1)
j )mr−1v

(r)
i,j +

mr−1∑
j=1

(w
(r−1)
j )1v

(r)
i+1,j , (11)

where i = 1, 2, . . . , 4k−r − 1 and the vector v
(r)
i,j can be solved from

(
D + (λ

(r−1)
j − 2)In2

)
v
(r)
i,j =

3∑
s=1

(w
(r−1)
j )s4r−1f

(r−1)
(i−1)4+s. (12)

Then, for r = k − 1, k − 2, . . . , 0, a second sequence of vectors is generated by
using the formula

u
(r)
4d+i =

mr∑
j=1

(w
(r)
j )i4ry

(r)
d,j , i = 1, 2, 3,

u
(r)
4d+4 = u

(r+1)
d+1 ,

(13)

where d = 0, 1, . . . , 4k−r − 1 and the vector y
(r)
d,j can be solved from

(
D + (λ

(r)
j − 2)In2

)
y
(r)
d,j =

3∑
s=1

(w
(r)
j )s4rf

(r)
4d+s+

(w
(r)
j )1u

(r+1)
d + (w

(r)
j )mru

(r+1)
d+1 .

(14)

In addition, u
(r+1)
0 = u

(r+1)
k−r−1 = 0. Finally, u = u(0).

It is well-known that the matrix Ã(r) has the following eigenvalues and eigen-
vectors

λ
(r)
i = 2− 2 cos

(
iπ

4r+1

)
and (w

(r)
i )j =

√
2

4r+1
sin

(
ijπ

4r+1

)
, (15)

where i, j = 1, 2, . . . ,mr. Now,

(w
(r)
i )1 =

√
2−2r−1 sin

(
iπ/4r+1

)
= (−1)i−1(w

(r)
i )mr ,

(w
(r)
i )1·4r =

√
2−2r−1 sin (iπ/4) = (−1)i−1(w

(r)
i )3·4r ,

(w
(r)
i )2·4r =

√
2−2r−1 sin (iπ/2) .

(16)
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It is easy to see that (w
(r)
j )2·4r = 0 when j ∈ 2N and (w

(r)
j )1·4r = (w

(r)
j )3·4r = 0

when j ∈ 4N. For this reason, about one-quarter of the sub-problems required
to compute the partial solutions are non-contributing and can be ignored.

Clearly each radix-4 BCR reduction and back substitution step is more com-
putationally demanding than the corresponding radix-2 BCR step. However, the
radix-2 BCR method generates a total of

N2
count(n) = (n+ 1)(log2(n+ 1)− 1) + 1 (17)

sub-problems and the radix-4 BCR method generates a total of

N4
count(n) = (n+ 1)

(
3

4
log2(n+ 1)− 1

)
+ 1 (18)

sub-problems. Thus the total number of sub-problems is reduced asymptotically
by the factor

lim
n→∞

N2
count(n)

N4
count(n)

=
4

3
. (19)

In the case of three-dimensional problems, the ratio is even better

lim
n→∞

(
N2

count(n)

N4
count(n)

)2

=
16

9
. (20)

Remark 2. The above described method can be also derived by combining two
radix-2 BCR reduction steps (3) into a single radix-4 BCR reduction step (11).
Applying the partial fraction technique yields exactly the same sub-problems.
The same procedure can be applied to the back substitution stage.

This simplified formulation can be only applied to problems with n1 = 4k − 1.
However, this limitation can be easily relaxed in the following manner: Let n1 =

2k̂ − 1 for some integer k̂ ≥ 2. The indexes in the reduction formula (11) are

modified in such a way that r = 1, 2, . . . , �k̂/2� − 1 and i = 1, 2, . . . , 2k−2r.
Similarly, the indexes in the back substitution formula (13) are modified in such

a way that r = �k̂/2� − 1, �k̂/2� − 2, . . . , 0 and d = 0, 1, . . . , 2k−2r−2. If k̂ /∈ 2N,
then it is necessary to perform one radix-2 BCR back substitution step at the
radix-2 level r = k̂ − 1 in order to solve the block row u2k̂−1 .

The numerical experiments indicate that this method is numerically stable in
the case of the Poisson problem (1). The arithmetical complexity of this method
is O(n1n2 logn1). If the diagonal block D is block tridiagonal as discussed in
the introduction, then this method can be applied recursively. In this case, the
arithmetical complexity is O(n1n2n3 log(n1) log(n2)).



Fast Poisson Solver for Graphics Processing Units 271

2.3 Simplified Scalar Cyclic Reduction

In the case of the problem (1), all tridiagonal sub-problems generated by the
methods described above are of the form⎡⎢⎢⎢⎢⎣

d −1

−1 d
. . .

. . .
. . . −1
−1 d

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
v1

v2
...
vn

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
g1

g2
...
gn

⎤⎥⎥⎥⎥⎦ , (21)

where d ∈ ]2, 10[, v1, . . . , vn, g1, . . . , gn ∈ R and n = 2k − 1 for some positive
integer k. This system can be solved with the following cyclic reduction formulas
analogous to (3) and (4): Let t(0) = 1, d(0) = d and g(0) = g. Now the reduced
systems are defined, for each reduction step r = 1, 2, . . . , k − 1, as

t(r) =
(
t(r−1)

)2

/ d(r−1),

d(r) = d(r−1) − 2
(
t(r−1)

)2

/ d(r−1),

g
(r)
i = g

(r−1)
2i +

(
t(r−1)/ d(r−1)

)(
g
(r−1)
2i−1 + g

(r−1)
2i+1

)
.

(22)

The solution of each reduced system, r = k − 1, k − 2, . . . , 0, is produced recur-
sively during the back substitution stage of the algorithm by using the formula

v
(r)
i =

⎧⎨⎩
(
g
(r)
i + t(r)

(
v
(r+1)
(i−1)/2 + v

(r+1)
(i−1)/2+1

))
/ d(r), when i /∈ 2N,

v
(r+1)
i/2 , when i ∈ 2N,

(23)

where i = 1, 2, . . . , 2k−r − 1 and v
(r+1)
0 = v

(r+1)

2k−r−1 = 0. Finally, v = v(0). The
arithmetical complexity of this method is O(n).

3 Implementation

3.1 GPU Hardware

The GPU implementations are written using the OpenCL [24] framework and
the OpenCL terminology is used throughout the paper. The architecture of a
GPU is very different compared to a CPU. The main difference is that while a
contemporary high-end consumer-level CPUmay contain up to 8 cores, a modern
high-end GPU contains thousands of processing elements. This means that the
GPU requires a very fine-grained parallelism.

Another important difference is the memory architecture. A computing ori-
ented GPU may include a few gigabytes of global memory (Video RAM, VRAM)
which can be used to store the bulk of data. In addition, the processing elements
are divided into groups called the compute units and the processing elements
belonging to the same compute unit share a fast memory area called the local
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memory. The effective use of this small memory area, together with a good un-
derstanding of the other underlying hardware limitations, is often the key to
achieving good performance.

The GPU-side code execution begins when a special kind of subroutine called
the kernel is launched. Every work-item (thread) starts from the same location
in the code but each work-item is given a unique index number which makes
branching possible. The work-items are divided into work groups which are then
assigned to the compute units. The work-items which belong to the same work
group can share a portion of the local memory.

3.2 Overall Implementation

The BCR implementations consist mostly of scalar-vector multiplications and
vector-vector additions which can be implemented trivially, for example, by map-
ping each row-wise operation to one work-item. The large vector summations,
especially during the last few reduction steps and first back substitution steps,
require some additional attention. The kernels performing these summations
divide the large summations into several sub-sums in order to better distribute
the workload among the processing elements. The implementation employs three
kernels per step approach: the first kernel generates the right-hand side vectors
for the sub-problems, the second kernel solves the sub-problems and the third
kernel computes the collective sums.

The implementation incorporates a simple parameter optimizer. The main
application for this parametrization is to choose the optimal work group size
for each kernel. Also, the kernels responsible for computing the vector sums are
parametrized. The parametrization is used to choose the optimal size for each
sub-sum. In addition, the parametrization is used to specify how much local
memory can be used to solve a single tridiagonal sub-problem and how double
precision numbers are stored into the local memory.

3.3 Previous Work on Tridiagonal System Solvers on a GPU

The GPU hardware presents many challenges to the tridiagonal system solver
implementation. First, a work group can only contain a limited number work-
items and the work groups cannot communicate with each other. These two
limitations complicate the tasks of solving large systems. Secondly, the global
memory is quite slow for scattered memory access and therefore work-items with
successive index numbers should only access memory locations which are close
to each other. In addition, the local memory is often divided into banks which
may be subject to only one memory request at a time.

The idea of using the cyclic reduction for solving tridiagonal systems on a
GPU first appeared in [3]. The cyclic reduction, the parallel cyclic reduction
[25], the recursive doubling [26], and hybrid algorithms were compared with
each other in [5]. All considered implementations utilize the local memory and
hold the data in-place. The paper also suggested the possibility of reducing the
system size by using the cyclic reduction and the global memory in order to fit
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the reduced system into the local memory. The cyclic reduction and the local
memory were also used in [6]. The paper introduced a clever permutation pattern
which reduces the number of bank conflicts.

The idea of hybrid algorithms was taken a step further in [27]. The implemen-
tation considered consist several phases. The system is first split into multiple
sub-systems using the parallel cyclic reduction and the global memory. Then, the
sub-systems are solved in the local memory using the parallel cyclic reduction
and the Thomas method. The optimal switching points between different stages
are chosen automatically with the help of auto-tuning algorithm.

The idea of using both the global and local memory in the context of the cyclic
reduction and the recursive doubling was also studied in [8]. The cyclic reduction
implementation stores the right-hand side vector into the global memory and
divides the system into sections. Each section is then processed separately in the
local memory and then the intermediate result are merged back into the global
memory. Additional work was also done in [4, 7, 28, 29].

3.4 Tridiagonal System Solver Implementation

When the coefficient matrix is a symmetric Toeplitz matrix like in (21), using
the simplified cyclic reduction method is probably the most suitable algorithm
for solving the tridiagonal sub-problems. The tridiagonal system solver consists
of three stages and the right-hand side vector is replaced by the solution vector.
One tridiagonal system is mapped to one work group and the whole solution
process is performed as a single kernel launch. The implementation can be eas-
ily extended to more generalized tridiagonal systems and to cases where one
tridiagonal systems is mapped to multiple work groups.

First Stage. The first stage is performed only when when the system is too
large to fit into the allocated local memory. It uses the global memory to store
the right-hand side vector and the local memory to share odd numbered rows
between work-items. The right-hand side vector is divided into sections which
are the same size as the used work group. Then all sections are processed in pairs
as follows: first every work-item computes one row, and then all odd numbered
rows are stored into the first section, and computed rows are stored into the
second section. At the next reduction step, the same procedure is repeated using
the second section from each pair. This permutation pattern is reversed during
the back substitution stage. Fig. 1 illustrates this process. This implementation
differs from the one presented in [8].

The idea behind this segmentation and permutation pattern is to divide the
right-hand side vector into independent parts which can be processed separately.
In this case, these sections are processed sequentially and therefore the imple-
mentation is capable of solving systems that are too large to fit into the allocated
local memory. In a more general implementation, these section can be processed
in parallel using multiple work groups. The second benefit is that the rows which
belong to the same reduced system are stored close to each other in the global
memory, thus allowing a more coherent global memory access pattern.
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Fig. 1. The permutation pattern during the first stage of the tridiagonal system solver.
The work group size is four. The numbers correspond to the row indexes. The row
indexes highlighted with dotted rectangles are shared between the work-items using
the local memory.

Second Stage. The second stage is only performed when the number of re-
maining even numbered rows is greater than the used work group size. It uses a
similar segmentation and permutation approach as the first stage, but the rows
are processed by four sections at a time and every work-item is responsible for
computing two rows. The idea is that the rows belonging to these four parts
are permuted before the beginning of the reduction process in such a way that
all odd numbered rows are stored into the first and third section, and all even
numbered rows are stored into the second and fourth section. This permutation
pattern resembles the one presented in [6]. After the reduction step is performed,
the rows are permuted in such a way that all rows, which are going to be odd
numbered during the next reduction step, are stored into the second section and
all rows, which are going to be even numbered during the next reduction step,
are stored into the fourth section. This permutation pattern is reversed during
the back substitution stage. Fig. 2 illustrates this process.

The biggest advantage of this approach is that the odd and even numbered
rows are located in separate sections and stored in a condensed form, thus allow-
ing a more effective local memory access pattern when the next reduction step
begins. Of course, this access pattern can still lead to bank conflicts especially
when double precision arithmetic is used, as was also noted in [6]. The most
straightforward solution would be to split the words and store upper and lower
bits separately but this approach was actually found to be slower. The second
advantage is that the remaining right-hand side vector rows are once again di-
vided into independent parts which can be processed separately and therefore the
implementation is capable of solving systems with the number of even numbered
rows higher than the used work group size.
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Fig. 2. The permutation pattern during the second stage of the tridiagonal system
solver. The work group size is four. The numbers correspond to the row indexes.

Third Stage. The last stage uses a similar row permutations as the second
stage. The system is preprocessed in such a way that all even numbered rows
are stored to the beginning of the memory buffer, followed by all odd numbered
rows. Every work item computes at most one row. After the reduction step is
performed, the rows are permuted in such a way that all rows, which are going to
be even numbered during the next reduction step, are stored into the beginning
of the memory buffer, followed by all rows, which are going to be odd numbered
during the next reduction step. This final stage seems to be identical with the
algorithm used in [6].

4 Numerical Results

The GPU tests are carried out using Nvidia GeForce GTX580 GPU with 512
processing elements (cuda cores). The CPU tests are carried out using Intel Core
i7-870 2.93 GHz processor with 4 cores (8 threads). The CPU implementations
are written using standard C and OpenMP framework. The CPU implementa-
tions utilize the simplified cyclic reduction, which is in this case faster than the
Thomas method. All test are performed using double precision floating point
arithmetic.

Fig. 3 shows results for the two-dimensional Poisson problem. Expected-line
shows the expected run time difference based on (17) and (18). However, it does
not take into account the memory usage and other differences. The CPU results
seem to show quite constant relative run time difference between the methods.
The GPU results show a much more complicated pattern. The higher than ex-
pected run time difference in the case of the small problems can be explained by
the fact that the radix-4 BCR method has more parallel and less serial compu-
tation. Thus the radix-4 BCR method is better capable of taking advantage of
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GPU’s parallel computing resources while the radix-2 BCR methods leave some
of the processing elements partially unutilized.

While the radix-4 BCR method increased the amount of parallel computation,
it also made it more difficult to achieve high memory throughput because the
process of forming the right-hand side vectors for the sub-problems became more
complicated. This is the most probable reason for the sudden drop in the per-
formance when the problem size exceeds 10232. Fig. 4 shows the results for the
three-dimensional Poisson problem. CPU and GPU results seem to correspond

Fig. 3. Run time comparison between the radix-2 and radix-4 BCR methods, two-
dimensional case, n1 = n2 = n

Fig. 4. Run time comparison between the radix-2 BCR and radix-4 BCR methods,
three-dimensional case, n1 = n2 = n3 = n
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to the expectations. The sawtooth pattern is due to the modifications discussed
in section 2.2.

Fig. 5 shows the relative run time differences between the radix-4 BCR CPU
implementation and the radix-4 BCR GPU implementation. The GPU imple-
mentation is up to 6-fold faster when the transfer time between RAM and VRAM
is ignored. The results for the three-dimensional GPU implementation are more
modest but the GPU implementation is still up to 3-fold faster for the biggest
problem.

Fig. 5. Radix-4 BCR run time comparison between Intel Core i7 quad-core CPU and
Nvidia GeForce GTX580 GPU, with and without initial RAM to VRAM transfer (I/O),
n1 = n2 = n3 = n

5 Conclusions

This paper covered the implementation of two block cyclic reduction methods
for a GPU. Special attention was given to the tridiagonal system solver. A few
new ideas were introduced to improve the efficiency of the tridiagonal solver on
GPUs. According to the numerical results, the block cyclic reduction algorithm
seems to offer a sufficient amount of fine-grained parallelism when combined
with the cyclic reduction method. The observed speed differences between the
radix-2 and radix-4 methods suggests that the radix-4 version is indeed better
able to take advantage of GPU’s parallel computing resources.
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Abstract. This paper introduces a parallel version of the machine
learning based feature selection algorithm known as greedy regularized
least-squares (RLS). The aim of such machine learning methods is to
develop accurate predictive models on complex datasets. Greedy RLS
is an efficient implementation of the greedy forward feature selection
procedure using regularized least-squares, capable of efficiently select-
ing the most predictive features from large datasets. It has previously
been shown, through the use of matrix algebra shortcuts, to perform
feature selection in only a fraction of the time required by traditional
implementations. In this paper, the algorithm is adapted to allow for
efficient parallel-based feature selection in order to scale the method to
run on modern clusters. To demonstrate its effectiveness in practice, we
implemented it on a sample genome-wide association study, as well as a
number of other high-dimensional datasets, scaling the method to up to
128 cores.

1 Introduction

With the rapid growth in the amount of information stored in databases, it
has become necessary to develop methods that allow for intelligent data anal-
ysis and mining of meaningful patterns from large-scale complex datasets. In
data intensive areas of science and engineering, such as biology, medicine, image
recognition, natural language processing and signal processing, methods from
the field known as machine learning [1] are being increasingly used to automat-
ically derive predictive models from data. Machine learning is a commonly used
method in which explicit programming of the models is not necessary, rather
the learner is able to make predictions on new data based on prior seen observa-
tions from a training set. Classification and regression are the most commonly
considered tasks in supervised machine learning. In classification, the aim is to
predict which class of possible outcomes an example belongs to, such as the case
of whether or not an individual has a particular disease, while in regression the
goal is to predict a real valued outcome for each subject, such as the blood pres-
sure of an individual. These predictions are based on variables describing the
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characteristics of the data points, commonly referred to as features. Due to both
the loss of predictive power that can be attributed to irrelevant features, and the
interpretability of the models, one of the fundamental tasks that is addressed
in machine learning is feature selection [2]. Its aim is to find a minimal subset
of the features, capable of describing the data which allows the development of
compact and accurate predictive models.

Previously, a feature selection method known as greedy RLS has been pro-
posed by some of the present authors [3,4]. The method implements a greedy for-
ward selection search, where at each search step the feature that most improves
the cross-validation performance of an RLS trained classifier, when added to the
already selected feature set, is selected. Through the use of matrix algebra based
shortcuts first introduced in [3, 4], the greedy RLS training algorithm allows
orders of magnitude reductions in computational costs compared to straightfor-
ward implementations of this same search procedure for other similar learning
algorithms. In this work, we speed up greedy RLS further by parallelizing it
through the use of the Message Passing Interface (MPI). The parallelization
achieves a highly efficient speedup with respect to the size of the dataset, the
number of selected features, and the number of cores used, allowing the use of
the algorithm on much larger problem sizes than what has been previously feasi-
ble. As datasets continue to grow, such advanced algorithms will be a necessary
component of future analyses.

To demonstrate parallel greedy RLS’s ability to work both efficiently and
accurately on high-dimensional datasets, we ran a series of tests on various large
scale simulated datasets. These were generated to represent the dimensionality
of those which are commonly encountered in genome profiling applications such
as those originating from genome-wide association studies (GWAS) or whole-
genome next generation sequencing (NGS) platforms. Further, to demonstrate
its predictive power in real world studies, the algorithm was implemented on a
GWAS aimed at identifying the single-nucleotide polymorphisms (SNPs) that are
associated with the prediction of Type 1 Diabetes. As these studies often contain
hundreds of thousands to millions of SNPs and several thousand examples, they
are a prime example of the need to select a subset of the features that, when
their aggregate effect is accounted for, allow making accurate predictions of an
individual’s disease status [5]. Using all of the in a model can have the adverse
effect of both forcing the inclusion of non-relevant features along with limiting the
interpretability of those features that are relevant with respect to the dependent
variable being predicted.

2 Methods

2.1 Preliminaries

In this paper, we restrict our consideration to the binary classification problem.
We assume that there is access to a training set of m examples, each having
n real-valued features, as well as a class label denoting whether the example
belongs to the positive or to the negative class.
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We use the following notation. Let Rn and Rm×n denote the sets of real-
valued column vectors of length,m andm×n-matrices, respectively. Bold capital
letters are used to denote matrices, bold lower case letters denote vectors, and
calligraphic capital letters denote sets. By Mi,:, M:,j , and Mi,j , we refer to the
ith row, jth column, and (i, j)th entry of the matrix M ∈ Rm×n, respectively.
Similarly, for index sets R ⊆ {1, . . . ,m} and L ⊆ {1, . . . , n}, we denote the
submatrices of M having their rows indexed by R, the columns by L, and the
rows by R and columns by L as MR,:, M:,L, and MR,L, respectively. By vi we
refer to the ith entry of the vector v. Let N = {1, 2, . . . , n} denote the index set
of the features.

Running greedy RLS produces a set S, consisting of the indices of selected
features and a prediction function f(x) = wTxS , where w is the |S|-dimensional
vector representation of the function, x denotes the data point for which the
prediction is to be made, and xS is its projection to a feature vector whose
entries are indexed by S, where S ∈ N . The learned parameters corresponding
to the selected features are stored in the vector w.

We assume that we are provided a set {(xi, yi)}mi=1 of m training examples,
where xi are n-dimensional feature vectors and yi are real valued labels, with
yi ∈ {−1, 1} being the standard encoding for binary classification problems. By
X ∈ Rm×n we denote a data matrix containing the feature vectors as rows, and
by y we denote the m-dimensional vector containing all the training set labels.
The RLS prediction function, for a fixed set of feature indices S, is obtained by
solving the following minimization problem [6]:

w∗ = argmin
w∈R|S|

⎧⎨⎩
m∑
j=1

(
wTxj

S − yj
)2

+ λ‖w‖2
⎫⎬⎭ , (1)

where the first term measures the sum of squared errors made by w on the
training data and the norm of w acts as a measure of model complexity, and
λ > 0 is a regularization parameter controlling the trade-off between the two
terms.

Solving (1) with respect to w, we get

w = (X:,S)Ta, (2)

where
a = Gy

is a vector consisting of the so-called dual variables of w,

G = (X:,S(X:,S)T + λI)−1, (3)

and I is the identity matrix of size m×m. The symbols a and G are used in the
description of the greedy RLS algorithm below.

Greedy RLS [3, 4] performs a greedy forward selection for RLS, in which one
feature is added at a time into the set of selected features S until the size of the
set has reached the desired number of selected features k. During each iteration,
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every feature that has not yet been added into the set of selected features will be
tested for addition. As a selection criterion, the method uses the leave-one-out
cross-validation (LOOCV) [7,8] error for RLS, trained with the currently selected
features, S, and the new feature to be tested. For computing the LOOCV, we
use the classical result (see e.g [8]) indicating that the leave-one-out prediction
for the jth training example can be computed from:

yj −
aj
dj
, (4)

where yj is the label of the jth training example, aj is the jth entry of a, and dj
is the jth diagonal element of G. This is a constant time operation given that the
dual variables a and the diagonal elements of G have already been computed.

Greedy RLS implements the feature updates and LOOCV computations us-
ing matrix algebra based computational shortcuts and caching of the previously
computed results. Because of these, the time and space complexities of greedy
RLS are only O(kmn) and O(mn), respectively, where k is the number of se-
lected features, m is the number of training examples, and n is the total num-
ber of features. These complexities represent a significant improvement over the
traditional approach, in which the prediction function requires training from
scratch during each iteration of the selection process and the LOOCV, resulting
in O(min{k3m2n, k2m3n}) time complexity. Still, for massive data sets, such as
those encountered in whole genome next-generation sequencing, even the linear
complexities of greedy RLS can be too expensive, demanding new approaches:
such as the need for efficient parallelization.

2.2 Algorithm Description

Next, we describe the parallel greedy RLS algorithm. In Algorithm 1 we present
detailed pseudocode of the method. Further, due to the technically complex na-
ture of the algorithm caused by the heavy use of matrix algebra based shortcuts,
we describe the high-level structure of the computations in Table 1.

In the beginning, the feature indices are divided among the cores in approxi-
mately equal portions. The index set Np denotes the feature indices assigned for
the pth core. Based on the supplied indices, each core loads from the disk the
corresponding portion of X, denoted as X:,Np . This set contains one vector of
length m for each feature in Np, with the entries of the vector corresponding to
the ith feature being the values for this feature in the m training examples. The
cache matrix C:,Np is initialized to λ−1X:,Np , since G = λ−1I when no features
have been selected yet. These caches are necessary for speeding up the forthcom-
ing computations in the feature selection process. Further, two additional cache
vectors a = Gy and d = diag(G), where diag(G) denotes a vector that consists
of the diagonal entries of G, are initialized for each processor. After the initial-
ization, Algorithm 1 performs k iterations, selecting on each iteration greedily
one additional feature. The selection is based on computing the LOOCV error
with the short-cut (see Equation 4) for the temporarily updated set of features
S ∪{i}, which requires the vectors a and d to be updated to take account of the
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Algorithm 1 Parallel greedy RLS

1: Initialize Np ⊂ N � Subset of global feature index set N = {1, . . . , n}
2: Initialize X:,Np � Load data through MPI File I/O
3: Initialize C:,Np = λ−1X:,Np � Local cache for speeding up computations
4: a ← λ−1y � Local cache vector
5: d ← λ−11 � Local cache vector
6: if rank=0 then
7: S ← ∅ � Global set of selected features.

8: Sp ← ∅ � Set of locally selected features.
9: while |S| < k do

10: ep ← ∞
11: bp ← 0
12: for i ∈ Np \ Sp do
13: u ← C:,i(1 + XT

:,iC:,i)
−1

14: ã ← a− u(XT
:,ia)

15: d̃ ← d− u�C:,i

16: p ← y − (1 d̃) � ã
17: ei ← (p− y)T(p− y) � Squared LOOCV error for the ith feature
18: if ei < e then
19: ep ← ei
20: bp ← i

21: if rank=0 then
22: Gather from all processes ep, bp
23: q ← argmini ei
24: Broadcast process index q to all processes
25: S ← S ∪ {bq}
26: if rank=q then
27: Sp ← Sp ∪ {bp}
28: Broadcast X:,bq and C:,bq to all processes

29: u ← C:,bq (1 + XT
:,bqC:,bq)−1

30: a ← a− u(XT
:,bqa)

31: d ← d− u�C:,bq

32: for i ∈ Np do
33: C:,i ← C:,i − u(XT

:,bqC:,i)

34: for i ∈ Sp do
35: wi ← aTX:,i

36: if rank=0 then
37: Gather wS
38: return S ,wS
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Table 1. Structure of Algorithm 1

Lines Meaning of the operations

1-8 Loading data matrix and label vector from disk, initializations
9-33 The outer loop selects k features
12-20 The inner loop tests one remaining candidate feature at a time
13-16 LOOCV predictions are computed for a model that is based on the

already selected features and the currently tested candidate. The pre-
dictions are stored in p

17 Squared error computed between predictions p and true labels y
18-20 The feature index corresponding to lowest error is stored
21-28 Communication in order to determine the selected feature, and to

share information needed to update the cache matrices
29-33 Cache matrices and vectors are updated in order to prepare for next

round of selection
34-35 Each core computes its portion of the model w
37 The master gathers the coefficients of the model
38 Program returns selected features and the corresponding model

extra feature i. For this purpose, the algorithm computes the temporary vectors
ã and d̃ that correspond to the updated feature set. Given that a, d, X:,i, C:,i

are stored in local memory, the temporary vectors can be computed in linear
time due to the well-known inversion identity often referred to as the Woodbury
formula (see [3, 4] for technical details).

The evaluation of feature candidates is performed in a distributed manner in
the individual cores as described in Algorithm 1. Each core stores the index of the
feature with the lowest LOOCV error among the ones assigned to it. The indices
and the errors corresponding to the best features identified by the individual
cores are gathered by the master process that checks, on line 23 of Algorithm 1,
which of the cores found the best feature to be added. The index of the core is
then broadcast to every core and the core in question, in turn, broadcasts the
information required for updating the cache memories. This information consists
of two vectors of length m. After receiving the information about the selected
feature, each core executes Algorithm 1, lines 29-33, that performs the cache
updates which enable the fast computation of the selection criterion during the
subsequent rounds. The cache update operations employ the same Woodbury
identity as the temporary updates in the LOOCV computations. In contrast to
updating only a and d, here the the cache matrix C also has to be updated.
However, since the matrix is updated in linear time, the overall time complexity
is the same as that of the LOOCV separately for each feature index.

In the detailed descriptions, the operations � and � denote the element-wise
multiplication and division of two vectors, respectively. The correctness of the
algorithm is a direct consequence of the results proven in our previous work [3,4]
and we refer the readers to these papers for further details.
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2.3 Discussion about Parallelization

The parallelization of greedy RLS is based on an MPI implementation, that
may be considered the current de facto standard for parallelizing algorithms
in distributed memory environments. The parallelization uses a master-slave
paradigm in which the master determines how to navigate through the search
space along with handling accounting. All cores including the master evaluate
a static subset of the feature set. The features are distributed based on block-
column distribution of X. There is a sequential order amongst the feature indices
considered among the cores, and the load is balanced so that all cores have
approximately the same sized dataset (see Figure 1).

Efficient parallelization requires careful consideration of how to divide the
data and computations between the cores. A high-level flow-chart description of
the parallelization is presented in Figure 2. In order to evaluate new features, the
individual cores need the information about the set of already selected features.
In addition to speed up the selection process the cores also take advantage of
the relevant portions of the cached temporary results computed by the other
cores. This information needs to be communicated between the cores every time
a new feature has been selected. The communication of the cached results, in
turn, guarantees the linear speedup of the algorithm with respect to the number
of cores. This makes parallelization of greedy RLS substantially more compli-
cated compared to traditional filter type of feature selection methods based on
univariate statistical tests, that can be parallelized simply by computing the
statistic of interest independently at each core on different feature subsets. In
this parallel implementation the master processor determines the global optimal
feature at each iteration through communication with the cores. The master core
is also allocated a subset of the data, and performs the same computations as
the slave processes. This helps to improve efficiency, especially in runs where
the number of cores being used is low. While the same parallelism could have
been also achieved with domain decomposition by replacing lines 21−24 with an
MPI Allreduce command, it was found through initial empirical tests that this
alternative approach did not lead to significant differences in runtime results.

While the parallel algorithm can be shown to be efficient for selecting large
numbers of features from high dimensionality datasets, it has some obvious lim-
itations. As each core is allocated a portion of the complete feature set, the al-
gorithm will not be useful in situations where the number of features is smaller
than the number of cores used as this would lead to many processing units being
left with no calculations to be done. Moreover, at each iteration a bottleneck oc-
curs in which processors can not progress to searching for the next feature, until
all cores have completed their current selection and a global optimal feature has
been selected. Further it has been previously established that feature selection
methods can be prone to overfitting when m� n, so it is important to validate
the models on independent data [4].
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Fig. 1. The distribution of the dataset amongst the p processes. The data is split using
block-column distribution.

3 Results

3.1 Scalability

The greedy RLS algorithm is expected to scale approximately linearly with re-
spect to the number of features, examples and how many features are selected,
an essential aspect to allowing the algorithm to be applied to large scale prob-
lems. To examine the scaling, efficiency and speedup of the method, a number
of experiments were run to test the performance in various scenarios. These in-
cluded varying the number of cores, adjusting the total number of features and
the number of examples along with testing with selecting different numbers of
features. While the algorithm can be expected to be highly scalable, there is
a computational bottleneck to the parallelization, notably that after each core
selects the optimal feature the data must be compared to the selected features
from all other cores before they can move on to analyzing the next feature to
select. Therefore, the parallel version is limited by the slowest core. We ran
the experiments on Finland’s IT Center for Computer Science’s Vuori machine
which is an HP CP4000 BL ProLiant supercluster with a theoretical peak of 34
Tflops/s and 304 compute nodes.

The tests run on the simulated data contained either 100,000, 500,000,
1,000,000 or 2,000,000 features, 1,000, 5,000 or 10,000 training examples and
selected either 250, 500 or 1,000 variants. The sizes of the experiments were
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Fig. 2. Flow-chart of the master-slave setup of parallel greedy RLS
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Fig. 3. Plots of the runtimes, speedup and efficiency measures for parallel greedy RLS.
The different rows of the plot represent scaling the dimensionality of the dataset and
selecting differing numbers of features. Rows ’A’, ’B’ and ’C’ represent scaling the
feature set in the dimensions of the total number of features, the number of selected
features and the number of examples, respectively. In the plot legend the specifications
of each experiment are listed as # features/# examples-# selected. For example the
line with the reference ’500k/1k-500’ means that the dataset contained 500,000 features,
1,000 examples and 500 features were selected.
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selected to simulate dimensionalities that are a similar scale of those commonly
used in GWAS. Each experiment was run with either 1, 2, 4, 8, 16, 32, 64 or
128 cores. Performing an analysis of these varying sized datasets, implemented
on differing numbers of cores allows for verification of the algorithms scalability.
The comparison for the speedup and efficiency were made against a sequential
version of the algorithm. From the results seen in Figure 3, it can be observed
that regardless of the number of data points, dimensionality of the dataset, or
the number of selected features, doubling the number of cores roughly halves
the required runtime. Thus, it is clear that the implementation scales well when
increasing the number of cores.

A drop-off begins to become noticeable when using a higher number of cores.
However, the performance decreases to a lesser scale on larger datasets implying
that at this point the communication and startup costs are starting to use a
significant portion of the running times. The largest drop-offs in both speedup
and efficiency are noticed on the smaller datasets, in which the runtimes are
minimal, being under one minute for the fastest runs. This indicates that using
a large number of cores on small datasets, is inefficient and a waste of computing
resources and these types of experiments should be done primarily on larger data
studies.

Further tests of the algorithms capability of running on real data was car-
ried out on the Wellcome Trust Case Control Consortium’s Type 1 Diabetes
combined with the UK National Blood Service’s control GWAS cohort [9]. This
allows us to examine the algorithms ability to make accurate predictions in a real
world scenario where we can both quantitatively and qualitatively look at the
results. An initial quality control filter was implemented to remove unsuitable
features and examples [10]. The resulting dataset consisted of 405,508 features
and 3,421 examples. To incorporate all possible data, a 3-fold external cross-
validation was implemented, in which 2/3 of the dataset was used as a training
set and the remaining 1/3 was used as an independent validation set. This is re-
peated until each 1/3 of the dataset has been used as the test fold once. Within
each fold, the greedy RLS algorithm implemented an internal LOOCV when
selecting the features in each external fold.

To gauge the ability for the algorithm to make accurate predictions, we used
a scoring metric known as the area under the receiver operating characteristic
curve (AUC). The AUC can be defined as the probability of ranking a randomly
chosen positive instance higher than a randomly chosen negative one. Unlike
many other performance measures, such as accuracy, the AUC is invariant to
the relative class distributions. As defined in [11], given m+ cases, m− controls,
ŷ+j and ŷ−k are predictions in which the individual is classified as a positive or
negative class respectively and H is a transformation based on the Heaviside
step function (5), the AUC can be defined by (6).

H(x) =

⎧⎨⎩
0 : x < 0
0.5 : x = 0
1 : x > 0

(5)
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Fig. 4. AUC of the top fifty selected features when greedy RLS is averaged over the
three test folds of the external cross-validation. The peak performance, 0.873, occurs
after 14 features have been selected.

AUC =
1

m+m−

m+∑
j=1

m−∑
k=1

H(ŷ+j − ŷ−k ) (6)

The resulting scores over the external folds were then averaged to come up
with an overall score for the model. As this score is an average, it should be
interpreted as the potential of the algorithm to achieve a particular level of
predictive performance rather than a final feature subset. The maximal AUC
score of 0.873 was obtained after 14 features had been selected (see Figure 4).

3.2 Selected Features

The drawback of external-CV is that it does not readily allow the user to deter-
mine the set of selected features, since each round is likely to lead to a different
set of selected features. Therefore, in order to select the final set of features, we
ran the algorithm over the entire dataset. Then using the features selected over
the complete cohort, it is possible to evaluate the model’s suitability through
qualitative analysis to see which features have been previously identified in sim-
ilar studies. As well as these established features, it can be expected that a
number of previously unidentified features would be selected. These features
are significant in that they may be involved in epistasis interactions with the
established variants.

Numerous studies have been conducted on Type 1 Diabetes GWAS datasets,
allowing us to compare the results of our feature selection with other studies
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Table 2. Final feature subset when selecting the top 14 features from the entire dataset.
The number of features to select was determined by the point at which the average
test AUC over the three folds of the external cross-validation peaked. The Reported
column represents if the variant or its associated/nearest gene has been reported to
have a possible association with T1D or is located in the MHC region. The base-pair
locations are based off of the SNP positions in the GRCh37.p5 assembly. The reported
SNPs are mapped to the closest gene within 20,000 base-pairs using dbSNP.

SNP Gene Reported Chr. Location

rs3957146 MTCO3P1 � 6 32681530
rs377763 NOTCH4 � 6 32199144
rs9270986 HLA-DRB1 � 6 32574060
rs6679677 RSBN1 � 1 114303808
rs492899 SKIV2L � 6 31933518
rs2894254 C6ORF10 � 6 32345689
rs3130284 AGPAT1 � 6 32140487
rs9272346 HLA-DQA1 � 6 32604372
rs9275418 MTCO3P1 � 6 32670244
rs17116117 HTR3B 11 113801591
rs17116145 HTR3B 11 113804326
rs2240063 CCHCR1 � 6 31114745
rs4892855 X 2442667
rs16894932 OR10C1 � 6 29415075

focusing on similar data sets. Even though the algorithm selected the top fifty
features for each of the three nested-CV folds, we only evaluated the selected
SNPs that were selected before the average optima in the AUC values were
achieved. The SNPs were mapped to the closest located gene, with a threshold
of 20,000 base-pairs using dbSNP [12]. Since the optimal AUC was reached after
14 features had been selected, we chose to only evaluate the features selected
to this point. Of these features, many could be linked to the onset of Type 1
Diabetes in other studies giving a positive indication that our implementation is
capable of identifying meaningful variants (see Table 2). Additionally, numerous
selected SNPs are located in the MHC region, an area known to have a strong
relation to the onset of Type 1 Diabetes [13]. This is an expected result as our
method looks for sets of SNPs which are able to optimize the performance of
a given model and in these sets we expect there to be both features that have
been previously indicated to be causal SNPs along with those which remain to
be identified as associated to the disease.

4 Conclusion

In this work, we have proposed a highly efficient parallelization of the greedy RLS
feature selection algorithm. We show that the parallelization preserves the linear
time complexity of the original serial algorithm and achieves a nearly inverse
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scaling with respect to the number of cores. We present a detailed description
of the algorithm and a thorough experimental evaluation on real-world data. It
was demonstrated that the algorithm was able to provide efficiently meaningful
results in the WTCCC’s Type 1 Diabetes GWAS. The results could be validated
by qualitatively analyzing the selected variants, many of which had been noted in
previous publications to be associated with the disease. The results demonstrate
the potential of the proposed algorithm in solving large scale learning problems.
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Abstract. A parallel program based on the Message Passing Interface (MPI)
commonly uses point-to-point communication for updating data between pro-
cesses, and its scalability is ultimately limited by communication costs. To min-
imize these costs we have developed a library that reduces network congestion,
and thus improves performance, by optimizing the placement of processes onto
nodes allocated to the parallel job. Our approach is useful on production ma-
chines, as irregular communication patterns can at run-time be optimally placed
on non-contiguous node allocations. It is also portable as it supports multiple
architectures: Cray XT, IBM BlueGene/P and regular SMP clusters. We demon-
strate on a Cray XT5m and an Infiniband cluster that good placement of processes
doubles the total bandwidth compared to random placement and, furthermore, by
up to a factor of 1.4 compared to to the original placement. It is not only im-
portant to place processes well on individual nodes, minimizing the number of
link traversals on the Cray XT5m provides up to 20 % of additional performance.
The scalability of a real-world application, Vlasiator, is also investigated and the
scalability is shown to improve by up to 35 %. For communication limited appli-
cations the approach provides an avenue to improve performance, and is useful
even with dynamic load balancing as the placement is optimized at run-time.

Introduction

In high performance computing good performance and scalability is of great impor-
tance to maximize scientific output. In order to achieve good parallel efficiency on a
distributed memory computer it is important to maximize the fraction of total time a
program spends on computing. In addition to computing time, parallel applications also
spend time in transferring data and waiting in synchronization points, which does not
directly help to advance the simulation. For a given implementation of a parallel algo-
rithm based on domain decomposition, synchronization and communication costs can
be minimized through load balancing. Load balancing with widely used libraries such
as Zoltan [1] does no take into account the actual network topology of the machine,
and thus processes handling neighboring subdomains can be far away from each other
on the actual hardware. This can lead to higher communication and synchronization
cost due to network contention as multiple messages have to cross the same network
links, and due to higher latencies as messages have to hop over several network links.
Optimizing the placement of subdomains to the compute units of a machine with a
particular network topology has been studied extensively over the years, both based
on physical optimization algorithms for mapping subdomains onto compute units, as

P. Manninen and P. Öster (Eds.): PARA 2012, LNCS 7782, pp. 297–308, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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well as in heuristic approaches. The problem itself is NP-hard [2], but to realize perfor-
mance improvements only nearly optimal solutions are required. Bhanot et al. [3] intro-
duced a off-line simulated annealing approach for optimizing placement on IBM Blue
Gene/L supercomputers. More recently Bhatele et. al [4] developed a set of heuristics
for mapping communication graphs onto Cray XT and IBM Blue Gene machines. The
heuristic approach is not easily generalized; applications often exhibit irregular commu-
nication patterns and are allocated irregular computational sets of nodes. The MPIPP
tool [5] is able to both discover the topology at run-time through ping-pong tests, as
well as optimize the mapping problem using a K-way graph partitioning algorithm. In
another recent set of publications Mercier and Jeannot [6,7] introduce the well perform-
ing TreeMatch algorithm for optimizing placement on multi-node NUMA architectures,
and achieved good results when optimizing for data volume. The main limitation in this
work is that the physical topology of the network is considered flat. Subramoni et. al
designed [8] a scalable network topology detection service for InfiniBand networks,
and a topology aware MPI library that takes advantage of this information.

Vlasiator [9] is a new simulation code where good scalability is a key requirement
for simulating space plasma, both in local setups and on a global scale where space-
weather, namely the interaction between the highly varying solar wind and Earth’s mag-
netosphere, is simulated. This system is of great interest as near-Earth space provides a
extremely rich environment for studying a wide range of plasma phenomena unreach-
able in laboratories. By combining simulation results with measurements from satel-
lites and ground-based instruments, new fundamental insights may be reached. There
are also practical interests, as events such as solar flares and coronal mass ejections may
cause space storms disturbing the operation of satellites, GPS signals, and even electric
grids and other long conductors on earth through geomagnetically induced currents.

To investigate the impact of process mapping and to improve the scalability of Vlasi-
ator, we have developed a library that is able to optimize the placement of subdomains
obtained from a partitioning algorithm onto compute nodes connected by a network.
The hypothesis is that one can improve performance of parallel applications by improv-
ing the placement of processes in real-world supercomputers. To support this library
has to be adaptable; both regular and irregular point-to-point communication patterns
in applications should be described and mapped to irregular resource allocations. It also
has to be portable; network topologies describing different machines should be auto-
matically discovered. Finally, the optimization cost has to be reasonable so that it can
be done repeatedly while the simulation is running and the load balancing changes. The
other hypothesis is that one can gain additional speedup by also utilizing information on
the actual network topology, but improvements are also seen by optimizing for compact
placement on nodes.

Here we present the approach we have developed to tackle these challenges. We
benchmark our library using a simple test case with nearest neighbor communication
on two contemporary supercomputers. We also apply the approach to Vlasiator.

Optimizing the Topology Mapping

The approach taken here is geared towards minimizing communication time for an ap-
plication where the majority of the communication is sparse, and each process only
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exchanges data with a few other processes. This situation occurs quite frequently, e.g.,
in applications where the solution of a numerical model at a certain location in a prob-
lem domain only requires local information to be solved. Such problems are typically
parallelized using a domain decomposition approach, where each process solves the
problem on a subdomain of the total problem domain. At each iteration the required
data along the subdomain boundary is exchanged with the processes of the neighbor-
ing subdomains. If the processes of neighboring subdomains are distant on the actual
machine network topology, the latency and bandwidth may degrade compared with the
situation where they are on the same node, or on nodes close on the network topol-
ogy. The domain is split into subdomains such that the computational load is equally
divided using a load balancing scheme. These schemes do not take into account the net-
work topology of the machine, and thus an imbalance in communication performance
may still remain, even if the computational load is perfectly balanced. In problems with
a static and regular domain decomposition it may be possible to place processes close
on the network, but when the problem is irregular and dynamic, optimal placement
requires a more involved scheme, such as the one described here.

The communication pattern of the application is described by a directed graph, where
each vertex corresponds to a subdomain of the problem, and each directed edge corre-
sponds to a send operation that transfers boundary data to a neighboring subdomain.
Typically the edge weight wc(uc, vc) is the amount of data sent from the tail vertex uc to
the head vertex vc. This communication graph is specified by the user in the application;
each process adds its own relevant send operations and their weights.

The network topology of the machine is described by a complete graph. Each vertex
corresponds to a compute unit, and each edge weight wn(un, vn) describes the cost of
sending data between the compute units un and vn. This network topology is automat-
ically discovered by the library; we have support for Cray XT and IBM BlueGene/P
where the core location on the torus is known (torus-topology) and clusters where we
only know which cores are on the same node (node-topology). The node coordinate on
the Cray XT torus can be read using an undocumented system API [4]. For Cray XT
and IBM BlueGene/P the weight of an edge between two processes on the same node is
zero, and the weight between two processes on different nodes is the square root of the
rectilinear distance of the two nodes. This is a heuristic choice that proved to give better
results than a pure hop-byte metric [4] that is implied by having the weight being equal
to the rectilinear distance. To model clusters we set the weight of inter-node edges to
zero and intra-node edges to one, as we have no specific information on the network
topology of the machine. This means that placement is optimized to minimize commu-
nication between nodes. Explicitly storing each weight would be unfeasible at scale as
the storage requirement would scale as the square of the number of processes; instead
we recompute the weights when needed. Earlier work has succeeded in measuring the
network topology through ping-pong tests [5], or by directly discovering the InfiniBand
topology [8]. In this work ping-pong tests were also briefly attempted, but on the fat-
tree InfiniBand network and the Cray XT torus network used here, the measurement
were dominated by noise and were not useful for constructing the network topology.

A mapping vn = M(vc) of the communication graph onto the network topology
graph describes on which core (network graph vertex), each subdomain (application
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communication vertex) is located. The cost of one communication edge is obtained by
multiplying the weight of the communication edge with the network edge weight be-
tween the two processes to which the subdomains map. The total cost E of the mapping
is the total cost of all communication edges averaged over all communication vertices,

E =
1
|Vc|

∑

{ucvc}∈Ec

wc(uc, vc)wn(M(uc)M(vc)), (1)

where Vc is the set of communication vertices and Ec is the set of communication edges.
To optimize the mapping we use a standard simulated annealing algorithm. In this

stochastic optimization scheme the mapping is iteratively modified by doing trial steps,
which are accepted with a probability given by the Metropolis-Hastings acceptance
probability function,

p(Ei, Ei+1, Ti) = exp

(
−Ei+1 − Ei

Ti

)
, (2)

where Ei+1 is the cost of the mapping after the trial step, Ei is the cost of the current
mapping, and Ti is a scaling factor corresponding to a temperature. If the trial step is
rejected, the state is not modified. If it is accepted, the state of the trial step becomes
the new state. The trial steps randomly pick two subdomains, and swap the processes
onto which they are mapped. The cooling schedule defines how Ti depends on the time
step i. In general, the optimization starts by randomizing the mapping, followed by an
anneal starting from a high temperature where a large fraction of all steps are accepted,
down to a low temperature with few accepted steps.

To get a good coverage of the phase space of the optimization problem we parallelize
the algorithm so that each process independently optimizes the mapping using different
cooling schedules. First the initial temperatures of each process is automatically tuned
to achieve a desired acceptance rate, ranging from 0.1 on process 0, up to 0.5 on the
last process. Then the cooling proceeds by decreasing the temperature every M steps
by a process dependent factor selected randomly from the range of 0.975 to 0.995, until
the temperature has been reduced 1000 times. We elected to scale M linearly with the
number of processes N, so that the total number of states sampled in the optimization is
proportional to N2 indicating a good coverage of phase space. This also implies that the
optimization time scales as O(N). When testing various cooling schedules a value of
M = 4N was found to provide a good match between performance and quality for the
cases studied here. At lower values the mapping had a higher cost, while slower anneals
provided only marginal improvement.

Implementation

The library supports C++ applications, and comes in the form of a set of header files
describing three kinds of classes: a communication graph describing the send opera-
tions of the application, a network graph describing the machine and a mapping class
that can optimize the placement of communication vertices onto network vertices. The
machine, and its queuing system does not need to provide any special support for our
approach. The actual migration of the work has to be done by the application, based on
the optimized mapping.
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The communication graph is described by a graph class, and the vertices and edges
and their weights are set by the application. First each process adds a vertex correspond-
ing to its rank using the addVertex function in the graph, then each process adds its
communication vertices (send operations) by setting receiving processes and the cor-
responding communication weights through the addEdge function. Finally the actual
graph is constructed using the collective commitChanges call, after which all processes
will have a complete copy of the communication graph. For example, if each process has
two neighbors to which it sends data then one could initialize the communication graph
for all processes in the MPI_COMM_WORLD communicator using the following piece of
code.

Graph g(MPI_COMM_WORLD);

g.addVertex(rank);

g.addEdge(rank,neighbor1,weight1);

g.addEdge(rank,neighbor2,weight2);

g.commitChanges();

For each supported architecture there is a network graph class derived from the graph
class. The constructor of the class will create a graph with a vertex for each compute
unit allocated to the job, and will index these by the rank of the process located on the
compute unit. As for the communication graph, each process will construct a complete
copy of the whole network graph. For general clusters where only on-node placement
is optimized the nodes are identified using MPI_Get_processor_name, and the graph
describing the network is constructed as follows:

NodeNetwork t(MPI_COMM_WORLD);

On a Cray XT machine system libraries are used to discover the position of each process
on the network, but the actual torus size has to be given by the user. For example, to
initialize a torus with a size of 1 × 12 × 16 the following piece of code is used:

CrayXtTorus t(1,12,16,MPI_COMM_WORLD);

The mapping class is used to optimize the placement, and its constructor takes as argu-
ments the communication graph, the network graph and the communicator for which
the graphs are defined. The mapping is then optimized using a call to the optimization
function. After optimizing the mapping, one can read to which network vertex (i.e. rank)
the subdomain on a rank should be transferred using the getNetworkVertex function.
The actual exchange of subdomains has to be handled by the application. The following
shows an example of optimizing the mapping:

Mapping<Graph,CrayXtTorus> m(g,t,MPI_COMM_WORLD);

m.simulatedAnnealingOptimizer();

destinationRank=m.getNetworkVertex(rank);

Results

We have tested the approach on two machines: Curie and Meteo. Curie is a Bull Bullx
InfiniBand cluster based in France at Commissariat à l’énergie atomique et aux énergies
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alternatives (CEA). On the fat-node partition of Curie that was used for this work there
are four eight-core processors per node, connected with a quad data rate InfiniBand
network with a fat tree topology. Meteo is a Cray XT5m machine based in Finland at
the Finnish Meteorological Institute. The SeaStar2 network is a 2D torus spanning 2
cabinets, and each node comprises two six-core processors.

On Curie we used the node-topology to model edge weights. This enables a opti-
mized placement of simulation subdomains on nodes, minimizing network traffic. On
a machine such as Curie, with a large number (32) of cores per node the network is
potentially a significant bottleneck. As we have no in-depth knowledge of the network,
we were not able to model the network itself in more detail. On Meteo we used both
the same node-topology that minimize traffic sent from the node, as well as the torus-
topology model that also reduce the number of hops that messages traverse over the
network as subdomains exchanging data are placed closer to each other on the network.

Results from two tests are presented here: a benchmark showing the effective band-
width and a real-world application Vlasiator for simulating space plasma.

Bandwidth Test

The first test is a benchmark corresponding to the communication needs of a stencil
operation on a regular three-dimensional Cartesian grid with periodic boundary con-
ditions. We construct a grid using the DCCRG [10] library1, so that each process is
allocated exactly one cell with a constant amount of data per cell. This removes po-
tential performance artifacts by as it provides perfect load balancing, and enables us
to send point-to-point data between two processes in one message from a contiguous
block of memory. In the communication phase each process sends the cell data to its
26 nearest neighbors, and also receive their cell data in return. To measure the perfor-
mance of the data exchange we measure the total bandwidth achieved in this operation.
The performance is measured for three mappings: 1) The default one, where the subdo-
mains (cells) are placed according to their index, so that columns of cells in the grid are
placed on the same nodes. 2) Optimized placement where the total mapping cost has
been minimized. 3) Randomized placement of subdomains.

In Figure 1 we have plotted the bandwidth as a function of the message (cell) size for
a case with 1024 and 2048 cores on Curie. The benefit from proper placement is clear;
the optimized placement provides significantly better throughput. The default place-
ment has 20-50 % better bandwidth than the random placement. The optimized node
placement further increases performance by 20 % for messages with a few kilobytes,
and by 40 % for larger messages of several megabytes in size. Compared to random
placement performance is close to 100 % better, both for smaller messages of a up to a
kilobyte as well as for large messages with several megabytes of data. This suggests that
the optimized placement affects both latency and bandwidth sensitive communication
patterns.

The performance increase is readily understandable as a decrease in the total net-
work traffic. For randomized mapping most cells that exchange data will be placed on
different nodes, and almost all messages have to traverse the network. In our tests each

1 http://gitorious.org/dccrg

http://gitorious.org/dccrg
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Fig. 1. Performance achieved using different mappings as a function of the size of each message
on Curie, a quad data rate InfiniBand cluster with a fat tree topology. The total bandwidth is
plotted for a) 1024 cores and b) 2048 cores. The speedup one can achieve by optimizing for the
node-topology compared to random and default placement is also plotted for c) 1024 cores and
d) 2048 cores.

process sent on average more than 25 out of a maximum of 26 messages over the net-
work. The default placement is already better than the randomized one, as the column
of cells assigned to a node is contiguous reducing the amount of messages to 21 in our
tests. In the optimized placement the cells assigned to the processes on each node form
a compact cluster, further decreasing the amount of data transferred over the network
to on average 13.8 messages per process. The efficient on-node shared-memory MPI is
thus able to handle nearly half of the messages, while the other half goes over the net-
work. This corresponds closely to the doubling of bandwidth going from randomized
placement to node-optimized placement.

Figure 2 shows the results on Meteo for 480 and 960 cores. The torus-topology
optimized mapping shows up to 120 % better bandwidth than the random mapping and
on the order of 30 % better bandwidth than the default mapping. If we only optimize
for node placement the results are slightly worse, the added knowledge we have of the
network gives us up to 20 % of additional performance.

Again the underlying reason for the performance increase is the reduced network
traffic. In the default case on average 24 messages are sent over the network, showing
that for the smaller nodes on Meteo the processes have neighbors on the same node only
in one dimension of the grid. The randomized case again has close to the maximum



304 S. von Alfthan, I. Honkonen, and M. Palmroth

 0

 5

 10

 15

 20

 25

 30

 1  10  100  1000  10000 100000 1e+06  1e+07

B
an

dw
id

th
 (

G
B

yt
es

/s
)

Message size (Bytes)

a)

Default
Randomized

Torus-optimized
Node-optimized

 0

 10

 20

 30

 40

 50

 60

 1  10  100  1000  10000 100000 1e+06  1e+07

B
an

dw
id

th
 (

G
B

yt
es

/s
)

Message size (Bytes)

b)

Default
Randomized

Torus-optimized
Node-optimized

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1  10  100  1000  10000 100000 1e+06  1e+07

S
pe

ed
up

Message size (Bytes)

c)

Default
Node-optimized

Randomized
 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1  10  100  1000  10000 100000 1e+06  1e+07

S
pe

ed
up

Message size (Bytes)

d)

Default
Node-optimized

Randomized

Fig. 2. Performance achieved using different mappings as a function of the size of each message
on Meteo, a Cray XT5m machine with a SeaStar2 2D-torus network. The total bandwidth is
plotted for a) 480 cores and b) 960 cores. The speedup achieved by optimizing for the torus-
topology compared to random placement, default placement and placement optimized for the
node-topology is plotted for c) 480 cores and d) 960 cores.

amount of messages sent over the network, with close to 25.7 messages being sent per
process. As for the optimized case, only 18 cells on average need to be transmitted. This
is higher than for Curie due to the fact that on Curie we can fit 32 cells (processes) per
node, while on Meteo we can only fit 12 leading to a higher surface to volume ratio of
the cluster of cells on each node.

Application Tests with Vlasiator

Vlasiator is based on the hybrid-Vlasov description, where ions are modeled as a 6-
dimensional distribution function f (r, v, t) in ordinary and velocity space, while elec-
trons are modeled as a charge neutralizing massless fluid. The distribution function
obeys the Vlasov equation,

∂

∂t
f (r, v, t) + v · ∇r f (r, v, t) + a · ∇v f (r, v, t) = 0, (3)

where r and v are the ordinary space and velocity space coordinates, acceleration
a is given by the Lorentz force coupling the ion propagation to the electromagnetic
fields, and f (r, v, t) is the six-dimensional phase space density of ions with mass m and
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charge q. The distribution function is propagated forward in time with a finite volume
method (FVM) method [11,12]. In the hybrid-Vlasov model electrons are not given
a full Vlasov treatment, as that would be computationally too demanding for global
simulations. Instead we couple the propagation of the ion distribution function to a
field solver [13] for Maxwell’s equation including Ohm’s law, making self-consistent
simulations possible. The ions couple to the field propagation through Ohm’s law that
includes the ion charge density and the bulk velocity from the zeroth and first moments
of the velocity distribution.

We use DCCRG grid to construct a three-dimensional Cartesian mesh in the ordinary
space, which is parallelized using a domain decomposition scheme with load balancing
using the recursive coordinate bisection algorithm in the Zoltan [1] library. Each cell in
ordinary space contains variables describing the electromagnetic field on its edges and
faces, as well as a three-dimensional velocity mesh describing the full six-dimensional
phase-space. In total the amount of data per cell is on the order of 1 MB, and a typical
message size when sending data is 500 KB. Thus Vlasiator’s main communication load
is in the large-message range of the results from the bandwidth tests, where the benefit
from the scheme was significant.

In Figure 3 the strong scalability of Vlasiator on Meteo is compared for two system
sizes: The first has 27×27×1 cells in ordinary space, and the other has 54×54×1 cells.
In the tests with Vlasiator we compared the default placement, with the one obtained
by optimizing for torus-topology. The benefit from the placement optimization is most
pronounced for larger core counts. For the large system we get at 1536 cores up to 35 %
better performance through topology optimization. Contrary to the bandwidth bench-
mark, this test not only contains MPI communication, but also a significant portion of
computation. At low process counts the compute time dominates, and improvements to
MPI communication have little influence on the total performance. At higher process
counts the MPI communication becomes dominant, as the amount of cells per process
decreases. At low process count there is also a greater number of inner cells that can
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Fig. 3. The strong scalability of Vlasiator is shown in a) for two system sizes, using default place-
ment as well as optimized placement for torus-topology. The speedup is computed relative to the
performance on two nodes with 24 cores in total. In b) the correlation between the improvement
in the cost of the optimized mapping and the improvement in the performance is plotted for the
same two simulations.
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be computed during communication, enabling one to better hide communication costs.
Finally it is also evident from Figure 3 that the improvement in the cost closely corre-
lates with the improvement in performance. Similar linear correlation also holds for the
bandwidth tests.

Discussion

We have described the problem of minimizing MPI communication time of domain de-
composed programs by optimizing the placement of subdomains on the physical hard-
ware. This is done by mapping a graph representing the subdomains and their com-
munication, to a graph representing cores and the network connecting them. The total
cost of communicating with a certain mapping is minimized using simulated annealing,
and thus irregular communication graphs can be mapped to irregular network topology
graphs. This is important as that enables the approach to be used on production ma-
chines with multiple users, where the nodes allocated to users are not always close to
each other on the network.

The optimization procedure does not guarantee that the global minimum is found;
the final state will most likely be a good local minimum. The slower the cooling sched-
ule is, the better minima are in general found as the algorithm is able to sample a greater
portion of phase space. For optimizing the placement of subdomains on a network this
is in general not a problem; as long as a local minimum with close to optimal cost is
found the performance will increase. The time required to optimize the mapping was on
1000 cores on the order of 15 s, which is still reasonable if done infrequently. Slower
cooling schedules only improved the cost marginally showing that close to optimal
mappings are obtained. It should also be noted that the cooling schedule is most likely
not optimal, and optimization time could be reduced by tuning it. As the time required
to optimize the mapping scales linearly with the number of processes the mapping op-
timization would at petascale level (100 000 cores) already take almost half an hour
for parallel applications utlizing only MPI, indicating that in the present form this tech-
nique is only useful for medium scale. However, the optimization problem should be
scalable to higher core counts when optimizing a hybrid OpenMP-MPI program due to
two reasons: the number of processes is smaller and each process could parallelize the
optimization algorithm using threads. In modern supercomputers with tens of cores per
node, this should enable the present approach to be viable at tens of thousands of cores.

On the two machines where we tested the approach we observed up to 40 % in-
crease in total bandwidth compared to the default placement, and up to 100 % increase
compared to randomized placement. This was true both for large and small messages,
suggesting both improved bandwidth and latency. We also showed that the bandwidth
was closely related to the amount of network traffic. Optimized placement of ranks on
nodes through static placement rules is a common optimization technique, but it is not
possible to do this if the program uses dynamic load balancing. This work shows how it
is possible to achieve the same benefit even in this case. These results are very similar
to the ones achieved by Subramoni et al. [8], with a similar 3D stencil benchmark they
also observed up to 40 % increased performance. On the Cray XT5m machine we fur-
thermore show that even a simple model for the cost of sending messages over multiple
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hops on the network boosts performance by up to 20 % over just minimizing the total
amount of inter-node communication. For a hybrid OpenMP-MPI application with one
process per node, the placement is already optimal for the node-topology. Optimizing
for torus-topology can thus provide performance improvements even for these applica-
tions. For the Vlasiator application we achieved up 35 % speedup at higher core-counts
enabling the code to scale further and thus achieve its scientific goals in the field of
space-weather. This can be contrasted with the 15 % speedup achieved by Mercier et
al.[7] for the ZEUS-MP astrophysics code, and the 10-15 % speedup observed for the
MILC code by Subramoni et al [8].
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Numprof: A Performance Analysis Framework

for Numerical Libraries
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Abstract. This paper introduces Numprof, a profiling framework for
performance analysis of numerical libraries. The framework consists of
a profiler and replayer for the BLAS and FFTW3 libraries. The profiler
records library call events with a user configurable amount of detail. The
replayer can be used to execute library calls based on the profiling trace
files generated by the profiler. We explore real-world use cases for the
framework and demonstrate that due to its low overhead it is feasible to
be used for continuous statistical analysis of numerical library calls.

Keywords: numerical libraries, linear algebra, fourier transforms,
profiling.

1 Introduction

Today’s High Performance Computing (HPC) resources are being leveraged for
an increasing array of different applications in a variety of disciplines. However,
there are common numerical methods which which are employed by many of
these applications. They often comprise of the most computationally intensive
sections of programs and thus are central to their overall performance. Spectral
methods involving Fourier Transforms and dense linear algebra are prevalent.
[SA]

Different implementations of these common numerical methods can be found
in various numerical libraries. These are developed by the Open Source Com-
munity such as Netlib BLAS [JD] and FFTW [MF], available from third parties
such as NAG IMSL and system vendors such as Intel MKL.

The performance of these numerical libraries typically varies depending on the
exact routine called, its parameters and underlying architecture. Thus in cases
where multiple implementations of a library are available, such as in the case of
BLAS, the selection of the implementation also plays a major role. [DE] [AS]

The ubiquitous nature of the numerical libraries means that understanding
how they are used and how they perform is fundamental in analyzing the per-
formance of a variety of HPC applications. Due to the variety of parameters
affecting performance, fairly detailed information about each library call should
be recorded. Ideally this type of analysis should have low impact on the overall
runtime of the application and be as simple as possible to implement, ideally
with no changes to the source code and no need for recompilation. This has
served as the motivation to develop the Numprof framework.
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Program

Numprof profiler

Numerical Library

Profile file(s)

Numprof replayer

1) 2) 3)

Fig. 1. Numprof dataflow

2 Numprof

Numprof is a stand-alone C-based performance analysis framework for numerical
libraries that is simple and intuitive to install and use by both end users and
HPC site administrators. The framework consists of two main components, the
profiler and replayer. The basic dataflow is illustrated in Figure 1: The profiler
intercepts calls from the program to the numerical library and gathers data from
the calls (1). At the end of execution, the data is saved to profile output file(s)
(2). The replayer takes a profile file as input and re-executes the sequence of calls
listed in it (3). The replayer can be executed on the same or a different system
and linked with a different implementation of the numerical library. The output
from the replayer is in the same profile file format as the profiler output files.

At the time of writing, Numprof supports the BLAS API and has limited
support for the FFTW3 numerical library API. The framework currently consists
of separate profiling libraries and replayer tools for both libraries. The framework
is designed to be modular and extendable to support new libraries.

2.1 Profiler

The profiler is compatible with any application that is dynamically linked to a
supported numerical library and there is no need to recompile the application.
The processing and memory overhead of the profiler is designed to be as small
as possible and level of profiling detail adjustable by the user according to their
requirements.

The profiling mechanism is illustrated in Figure 2. The profiler library is
loaded using the LD_PRELOAD environment variable which forces the library to
be loaded before any other library. The profiler contains a set of “interposer”
symbols which intercept the calls to the numerical library and redirect them to
the profiler library (1). The library collects data from the call parameters to
an internal data structure (2) and relays the call to the actual numerical library
(3). When the numerical library call returns, the execution time and (optionally)
detailed information about the return data is also recorded (4). Once the program
reaches its end, the collected data is written into a profile file (5).

A similar interposer-based profiling methodology has previously been suc-
cessfully implemented in domain-specific profiling libraries focusing on other
performance-critical areas such as MPI communication [JV] and disk I/O [PR].
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Program
...
dgemm_(’N’,’N’,…);
...

dgemm_

numprof-blas.so
calls[0]={’dgemm’,... };

numprof-blas.out
T 0 1 0.05 dgemm | ’N’, ’N’

dgemm_real

libblas.so...
SUBROUTINE DGEMM(…)
...

1)

2) 4)
3)

5)

Fig. 2. Numprof profiler structure

Currently the library has been tested on x86-64 -based architectures using
the Linux OS. This approach can also be utilized in other architectures such
as Windows and OS X, although the exact implementation mechanisms differ.
[MD]

On Linux, the interposer symbols are created by using the GNU linker’s
--wrap command-line parameter. The wrapper for each routine is in a sepa-
rate, self-contained source file containing all the functions and data structure
associated with the call. This self-containment makes it possible to easily cus-
tomize the library to include a subset of the routines available simply by linking
just their respective files to the profiler library.

Below is a sample of the command to launch an application with the profiles:

NUMPROF_LEVEL=1 NUMPROF_OUTFILE=myrun-blas.prof \

LD_PRELOAD=./numprof-blas.so ./myprogram

The level of detail can be adjusted using the NUMPROF_LEVEL environment vari-
able: The profiler currently has three levels of detail for the profiling records:

1. The amount of calls and accumulated time for each routine. Also basic over-
all resource usage statistics are produced such as memory overhead of the
profiler and time spent in the numerical library calls.

2. Basic data is gathered for each individual call. This includes the timestamp,
call duration, call name and basic call parameters, such as matrix dimensions.

3. Deep analysis of input and output data arrays. Currently the minimum and
maximum values and the fill rate of each array is recorded.

In addition to the summary data, there is also the capability to dump input
and output data of individual calls using the NUMPROF_DUMPMAT environment
variable. The variable can be used to specify a comma-separated list of call
sequence numbers and/or a library routine names to be dumped. For example,
to dump calls 12 and 41 as well as all DGEMM calls:

NUMPROF_DUMPMAT=12,41,dgemm
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The data files are stored in the Matrix Market (MM) [RB] format which makes
them straightforward to postprocess with third party tools.

The detail levels offer a progressively increasing amount of information, but
each level also has higher memory and processing overhead.

Below is an example of a basic level 1 output summary from a GPAW run:

Callname: zaxpy callcount: 18438 time_sec: 11.267141

Callname: dgemm callcount: 3 time_sec: 0.003322

Callname: zgemm callcount: 15087 time_sec: 160.734917

Callname: zher2k callcount: 21 time_sec: 47.707324

Callname: zherk callcount: 5778 time_sec: 33.176687

Total_time: 580.639131 BLAS_time_sec: 252.889391

BLAS_time_pct: 43.55

BLAS_cputime_sec: 252.890000 BLAS_cputime_pct: 43.55

callcount: 39327 Memory_overhead_bytes: 7977840

With detail level ≥ 2, individual calls are traced: The following is an example of
a dgemm call:

T 2 86790 79.367988 1.274598 | dgemm | transa=N transb=N m=4772

n=4772 k=676 alpha=-1.000000 *a=[d_array] lda=5448 *b=[d_array]

ldb=5448 beta=1.000000 *c=[d_array] ldc=5448

The output is split into different fields by using the pipe characters and displayed
on a single line for easy parseability. The first field contains the MPI task number,
an identifier number for the call, time offset for the call (seconds from start of
program execution) and duration of call. The second field contains the function
name. The third field contains the function parameters for the routine. In case
of pointers to arrays, the parameter is replaced by [*_array] notation where *
indicates the datatype (In the example case, dstands for double precision floating
point).

With detail level 3, the contents of each array are analyzed. The data is
appended as a fourth field into the aforementioned trace file (after function
parameters). Here is an example of an output:

a_max: 18.000000 a_min: 2.000000 a_fill: 0.900000

b_max: 36.000000 b_min: 4.000000 b_fill: 0.900000

c_max: 3810.000000 c_min: 570.000000 c_fill: 1.000000

The minimum and maximum values for each array (a,b,c) are displayed as well
as the fill ratio (ratio of non-zero entries to total number of entries).

2.2 Replayer

The replayer tool reads in a Numprof profile file with detail level≥ 2 and executes
the routines in the same sequence as described in the profile file. Currently the
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Replay skeleton file
numprof-replay-skel.c

Profiler skeleton file
numprof-profile-skel.c

C header file
blas.h

Replay generator
gen-numprof-replay.py

Profile generator
gen-numprof-profile.py

Generator
gen-numprof-blas.py

Profiler source files
numprof-blas-dgemm.c
numprof-blas-sgemm.c

...

Replayer source files
numprof-blas-dgemm.c
numprof-blas-sgemm.c

...

12 3

Fig. 3. Numprof generator structure

tool autogenerates dummy arrays for input. However, support for using data
from dumped arrays as input is planned.

2.3 Generators

The Numprof generators are a set of of Python scripts for creating new libraries
based on function prototypes. The generators simplify the process of extending
Numprof to support additional numerical libraries.

The structure of the BLAS generator is illustrated in Figure 3. The script
gen-numprof-blas.py is the main script for starting the generation. It calls
routines in the module files
gen-numprof-profile.py and gen-numprof-replay.py.

These scripts read the function prototypes from the C header file blas.h and
the function template files
numprof-profile-skel.c and numprof-replay-skel.c.

The library generation is fully automatic from a C header file if all the func-
tions parameters consist of basic datatypes. If the parameters or return values
include pointers to arrays, the basic data collection (detail level 1) will still be
generated but more advanced functionality (profile detail level ≥ 2 and replay)
require defining the relationship between the array dimensions and parameters.

3 Use Cases

In this section we explore some of the potential applications of the Numprof
framework.

3.1 Accelerator Capacity Planning

In the last few years computation using graphics processing units (GPUs) has
become an integral part of the HPC ecosystem and Intel’s upcoming Xeon Phi
coprocessor is also gathering considerable interest. Both technologies feature con-
siderably higher theoretical computational performance than traditional CPUs.
However, both the actual achievable optimal performance as well as the port-
ing and optimization effort to reach this performance varies depending on the
application.
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Implementations of FFT and BLAS APIs which use accelerators, such as
CUFFT [CF] and CUBLAS [CB] have been developed. These libraries are con-
sidered as the easiest way to leverage the power of accelerators, provided the ap-
plications use numerical library calls extensively and have sufficiently large data
arrays that the data transfer cost between the host and accelerator is amortized.

The Numprof profiler can be used to identify which applications satisfy this
requirement and to what extent. Based on this information, an estimate can be
made of what kind of minimum baseline application performance increase one
could expect from simply offloading the numerical library calls to the accelera-
tors. Having such “performance guarantee” data could be particularly useful for
HPC site administrators investigating the feasibility of adopting accelerators.

3.2 Benchmarking

Using the Numprof profiler, HPC site administrators can collect information
on the numerical library calls on a systemwide basis. This data can be directly
used by the Numprof replayer to create a numerical library benchmark which
represents the actual usage patterns of the libraries. These benchmarks could
potentially be very practical for system procurements.

3.3 Debugging and Optimization

The Numprof profiler can be used for extracting intermediate results from the
program using the matrix dump functionality. This is much faster and dynamic
than the traditional way of instrumenting the code manually with print com-
mands, for example.

Using single precision numerical library calls offer superior performance to
double precision calls. However, using single precision can be detrimental to the
accuracy of results. The profile data enables the user to analyze the individual
library calls in order to determine the error introduced by using single precision
operations.

The fill rate information makes it possible to quickly identify operations in-
volving very sparse data sets (with many zeroes). For these, replacing the rou-
tines optimized for dense data with sparse algorithms and data storage types
tends to offer superior performance and a smaller memory footprint. The ma-
trix dump capability can be used to extract the matrices to study the sparsity
pattern, which affects the choice of optimal algorithm and storage format.

The FFTW library optimizes execution for various sizes of FFTs on a given
architecture using plans. Before executing a specific type of FFT with specific
dimensions, a planning phase must be executed where the plan is constructed.
The level of optimization can be controlled using environment variables. The
planning step using the higher levels of optimization can be extremely time con-
suming. To save time, the precomputed plans can be saved in a “wisdom” file
and loaded from this file whenever a FFT routine using the same parameters is
executed. With Numprof it is possible to gather data from FFTW call param-
eters. This enables the site administrator to discover if there are any recurring
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FFT routines and parameters. This information could then be used to produce
a wisdom file with highly optimized plans for the most commonly used FFT
routines.

4 Existing Approaches

There are several existing strategies for analyzing numerical libraries, which each
have some limitations:

1. Analyzing the code visually. This is feasible only if the application is very
simple and the source code is available.

2. Instrumenting the code manually. This also requires changes to the source
code and can be time-consuming if there are multiple different callsites to
the library.

3. Using a instrumenting profiling tool such as gprof [SG]. The application
may need to at least be relinked with the profiler flag. The tprof profiler is
a notable exception as no relinking is needed. However it is only available
on the AIX OS.

4. Using the ltrace command. While no code changes are necessary, there is
a slight performance penalty.

As can be observed, each of these approaches have limitations which make them
infeasibile for low-overhead, non-intrusive operation required by the aforemen-
tioned use cases. Furthermore, the automated methods (gprof and ltrace) are
only able to collect the basic information on each callsite but lack the capability
to provide qualitative information such as the fill rate of each matrix. Further-
more, none of the approaches incorporate a similar replay capability for the
profile data that we have implemented.

5 Measurements

5.1 Overhead

Ideally the instrumentation should provide as much information as possible with
little interference with the application being profiled. The following tests were
performed on a dual-socket Intel Xeon E5 (Sandy Bridge) 2.7GHz with CentOS
Linux 6.2.

In Table 1 we compare the overhead caused by the basic profiling overhead
between the ltrace command, Intel Compiler 12.1 profiler and Numprof detail
level 2. The overhead was measured as the average per-call overhead from 1000
successive runs of 100x100 DGEMM. It can be observed that the overhead of
Numprof is roughly half of the overhead of ltrace. The overhead of Intel’s pro-
filer is negligible, but this required the code to be recompiled with the -p flag.
To investigate the impact of the overhead we tested the benchmark using two
different levels of verbosity. The results are illustrated in Figure 4. As can be
observed, the overhead with detail level 2 is negligible. With level 3 the overhead



316 O.-P. Lehto

Table 1. Per-call temporal overhead of instrumentation

Numprof 1.14E-4 s
ltrace 3.1E-4 s
Intel <1E-7 s
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Fig. 4. Numprof profiler structure

increases as the input and output arrays are more thoroughly analyzed (fill rate,
min/max). Still, the relative performance penalty is reasonable for doing explicit
profiling runs.

6 Conclusions

In this paper we have demonstrated that Numprof is a versatile framework for
both profiling numerical libraries and generating benchmarks based on the pro-
files without any need to augment existing code. It can also be readily extended
to support other libraries as well. We also established that the profiler has a
considerably lower per-call overhead than an alternative, non-intrusive library
profiling mechanism: ltrace. Furthermore, Numprof is also set apart by providing
deep analysis of the numerical library calls and facilitates extracting data from
the calls to assist with debugging and optimization.

7 Future Work

Future work includes improving the coverage of Numprof to fully support all the
BLAS and FFTW calls and supporting additional libraries such as MAGMA
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[RN] and LAPACK [EA]. The robustness of the library should be improved and
thoroughly assessed in order to reliably run continuous analysis during produc-
tion workloads. Most importantly memory conservation and thread safety should
be investigated. In order to handle large multidimensional data sets the matrix
dump should be extended to support the HDF5 file format. [KQ] For deeper per-
formance analysis of individual calls, leveraging the performance counters using
PAPI [SB] or a similar framework could also be a potential future development.
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Abstract. We discuss how power management development in multi-
core processors to achieve higher performance using automatic frequency
scaling can cause artifacts when doing performance comparisons and give
pessimistic efficiency estimates for algorithms. Overclocking also causes
underestimates of the theoretical peak performance of the CPU as can be
seen in some cases on the TOP500 list. We show that overclocking capa-
bilities, when available, must be taken into account in thread scheduling
for better overall performance.

1 Introduction

Performance and scalability measurements on new algorithms or standard tests
is typically performed by running a programs with an increasing number of
threads. Scalability and efficiency is then measured using timing routines and
compared with theoretical values.

This method is correct provided the computational capacity is independent of
power consumption, temperature and computational load. This assumption does
not hold when power saving features are enabled, but also with these disabled,
the CPU speed can change.

Current processors are subject to a Thermal Design Power (TDP) specifica-
tion, which specifies its maximum thermal power dissipation. If a processor has
8 cores and only 1 is used, the power consumption and heat production will be
small which allows parts of the processor to automatically increase the frequency
without exceeding the TDP specification. This feature is available in processors
from Intel (Intel Turbo Boost[8]) as well as AMD (AMD Turbo CORE). Similar
features are also available in GPUs such as NVIDIA’s Kepler[9] and some GPUs
from AMD in the Radeon 7000-series with PowerTune technology[2].

Using more cores consumes more power and produces more heat and conse-
quently, there is more room for overclocking when only a few cores are active.
Hence, when performing tests with different number of threads, the CPUs in the
different tests run at different speeds due to automatic overclocking. Therefore
this will give a pessimistic view of parallel efficiency since a gradually slower ma-
chine will be used when increasing the number of threads, unless one explicitly
accounts for the hardware execution rate.

P. Manninen and P. Öster (Eds.): PARA 2012, LNCS 7782, pp. 319–327, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



320 M. Linde

2 Related Work

Intel introduced its Nehalem architecture in 2008, which includes Turbo Boost
features[8]. AMD presented similar features in 2010[1]. Performance evaluations
have been performed on different architectures, e.g. [3] and [4] investigate the
Nehalem architecture. Charles et al. performed extensive performance evaluation
of Turbo Boost features focusing on their potential to increase performance.
Results included an average decrease of execution time of 6% with boost features
active and also increased power consumption up to 16%.

Much attention has also been spent on asymmetric multi-core computing and
power management features such as Dynamic Voltage and Frequency Scaling
(DVFS). Such studies are motivated by the fact that energy efficiency is becom-
ing more important and that features to lower the CPU frequency are common,
not only in laptops but also desktop and server CPUs.

This differs from our perspective since we focus on how the increase in per-
formance from automatic overclocking can affect further analysis and give an
incorrect view of computational efficiency, specially since advancements in boost
technology to date allows for frequency increases larger than 50% in some pro-
cessors.

3 Frequency Scaling

The CPU frequency is determined by a multiplier and a base clock frequency.
Lowering the multiplier will reduce the CPU frequency and the power consump-
tion will go down. There is also a dependency between frequency and voltage
so when the CPU frequency is lowered, the voltage can also be lowered, further
decreasing power consumption.

Unused parts of the CPU still dissipate energy, but using a technique called
Power Gating, these parts can be turned off, leaving more energy available for
other parts. This is the principle behind Intel’s and AMD’s automatic overclock-
ing capabilities.

The presence of boost technology can be tested via the cpuid instruction
and if available, the boost multipliers can be read from Model Specific Registers
(MSR). The MSRs lists the highest allowed boost multiplier for different number
of active cores.

Whether frequency boost should be allowed can often be controlled via BIOS
and for some CPUs the boost multipliers are unlocked and can be changed by the
user. When the boost feature is enabled, Intel’s implementation is controlled by
a Power Control Unit (PCU) within the processor. The PCU is a micro controller
that decides the current multiplier from on-chip sensor readings measuring e.g.
temperatures and voltages.

4 Theoretical Scenario

Assume an algorithm A that solves a trivially parallelizable problem in an op-
timal way. It should achieve linear speedup when more processing elements are
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added and 100% efficiency if we also assume that the problem is compute-bound
and no memory effects occur. Under these assumptions, the best serial and the
best parallel implementation are the same. The amount of work, W, to solve the
problem is set arbitrarily to 30360 units in order to produce integer numbers in
the following tables.

The algorithm will be evaluated on two 6-core CPUs with a fixed clock speed
at 2.66GHz. Each thread can perform one work unit per time unit. This gives
the theoretical values presented in Table 1, assuming linear speedup.

Next we will estimate what happens when executing algorithm A on two
Intel Xeon X5650 CPUs with clock speed 2.66GHz. This CPU supports two
threads per core with hyperthreading, but we assume hyperthreading is not
used in this analysis. The CPU supports self-overclocking and the maximum
boost multipliers from the MSRs are listed in Table 2.

Assuming adequate cooling, the CPU temperature should not prevent the
CPU from using boosted frequencies and further assuming that the highest boost
multiplier for each active core is reached, each workload will give a different result
in Table 1, scenario 1, compared to theoretical values.

If the overclocking is not assumed to be active all the time, different scenarios
can occur and two more are presented in Table 1, scenario 2, where no boost was
available when running with one thread and then available for later runs. While
this scenario is unlikely, it will show an efficiency larger than 100% when many
threads are used. The opposite, having full boost when using one thread and no
boost otherwise is presented as scenario 3 and will show the most pessimistic
view on efficiency. In the three scenarios, threads are distributed evenly on the
CPUs.

Table 1. Theoretical results for three different scenarios for a trivially parallelizable
problem executed on Intel Xeon X5650 CPUs. Scenario 1, full boost all the time.
Scenario 2, no boost for 1 thread, full boost otherwise. Scenario 3, full boost on one
thread and no boost otherwise. Boost being used is indicated with numbers in red.
Efficiency is calculated per scenario.

Theoretical Scenario 1 Scenario 2 Scenario 3
#cores Time Time Eff. (%) Time Eff. (%) Time Eff. (%)

1 30360 26400 100 30360 100 26400 100
2 15180 13200 100 13200 115 15180 87
4 7590 6600 100 6600 115 7590 87
6 5060 4600 96 4600 110 5060 87
8 3795 3450 96 3450 110 3795 87

10 3036 2760 96 2760 110 3036 87
12 2530 2300 96 2300 110 2530 87
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Table 2. Turbo boost multipliers for a hexa-core Intel Xeon X5650 CPU listed as 2.66
GHz (20×133MHz) and a quad-core Intel Core i7 950 listed as 3.06GHz (23×133MHz)

Intel Xeon X5650 Intel Core i7 950
# Active cores Mult. Speedup Freq. Mult. Speedup Freq.

1 23 15% 3.06 GHz 25 8.7% 3.33 GHz
2 23 15% 3.06 GHz 24 4.3% 3.19 GHz
3 22 10% 2.92 GHz 24 4.3% 3.19 GHz
4 22 10% 2.92 GHz 24 4.3% 3.19 GHz
5 22 10% 2.92 GHz - - -
6 22 10% 2.92 GHz - - -

5 Experiments

Theory indicates that artifacts related to non-linear speedup can be easily ob-
served and thus standard efficiency calculations can produce non-intuitive re-
sults. Two artificial and two linear algebra test cases will be performed on two
different Intel CPU models to see which artifacts occur in practice. Time is
the common measurement when comparing different results, but to be able to
do valid comparisons, the CPU operating frequency is also needed in order to
determine if overclocking was used and to what extent.

Using hardware performance counters, as described in [8], the actual frequency
can be calculated and the multiplier that was in use determined. There are also
many overclocking tools that provide information about the CPU frequency,
available instruction sets and active operating frequency. On Linux, the perf
framework is recommended and has been used for some of the measurements.

The artificial tests are executed on all cores. Both tests are designed to put as
high load on the CPU as possible. The first one is called cpuburn and runs an
endless loop of floating point and integer instructions in an attempt to maximize
heat production. The second one is the more recent stresscpu2 which comes
from the Gromacs molecular dynamics package[7] and contains hand coded as-
sembly kernels from the inner molecular dynamics simulation loop.

The linear algebra test cases are matrix-matrix multiply using OpenBLAS
which is based upon the highly optimized GotoBLAS2[5,6]. OpenBLAS supports
threading, but for fine-grained control on thread placement on a dual socket node
with SMP support, we decided not to use the built-in threading and thread
placement, but instead launch several single threaded processes, each locked
to a different physical core. With this method, the workload is increased with
number of running processes, but the runtime for each process should remain the
same.

The second linear algebra test case is The High-Performance Linpack (HPL)
benchmark[10], which is the software used to create TOP500 lists. This bench-
mark solves a dense linear system via Gaussian elimination with partial
pivoting.
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6 Results

The artificial test cases are used to find out what happens under full load, if
the CPU temperature reaches a steady-state and what frequency that is used.
Figure 1 and 2 show that stresscpu2 puts a higher load on the system with
higher temperature compared to cpuburn and in Figure 1 the frequency is also
lower. Important to note is that overclocking is active on both CPUs.
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Fig. 1. Temperature and frequency measurements for two different test suites. The
grid-lines in the frequency plot corresponds to the base multiplier and possible boost
multipliers.

Table 3 shows the results from the matrix-matrix multiplication test. The
workload is increased with number of cores and the runtime is expected to be
the same regardless of the number of active cores. Due to the scaled workload,
the efficiency is calculated as E = pT1

Tp
/p = T1/Tp.

Finally, the results from the HPL benchmark are illustrated in Table 4. The
benchmark is designed to run in an MPI environment and we have been execut-
ing it on a single node, which should make it easier to achieve good performance.
The performance from the test is parameter dependent and many tests where
executed with different block and matrix sizes and the best results are listed.
The result from the test is not the actual performance, but rather that overclock-
ing was active when the benchmark was performed. The frequencies measured
in practice exceeded the theoretical values used for standard computation of
peak performance and hence using the base frequency will not give a value that
represents the maximum theoretical peak performance.
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Fig. 2. Temperature and frequency measurements for two different test suites

Table 3. Execution time and average frequency for the first CPU core when all active
cores compute the same matrix-matrix multiply workload with OpenBLAS

Intel Xeon X5650 (2.66 GHz)
# Active cores 1 2 3 4 5 6

Runtime (s) 212.23 213.17 222.12 221.84 222.61 229.51
Frequency (GHz) 3.057 3.049 2.928 2.927 2.926 2.855
Active multiplier 22.98 22.92 22.02 22.01 22.01 21.47

Efficiency (%) 100 99.55 95.55 95.66 95.33 92.47
Rate adj. efficiency 100 99.82 99.76 99.91 99.60 99.01

Intel Core i7 950 (3.06 GHz)
# Active cores 1 2 3 4

Runtime (s) 202.11 202.44 202.75 203.81
Frequency (GHz) 3.208 3.208 3.208 3.208
Active multiplier 24.12 24.12 24.12 24.12

Efficiency 100 99.84 99.68 99.17

Table 4. HPL benchmark results. The numbers for theoretical peak performance does
not take boost into account.

CPU HPL result Theoretical peak Frequency Multiplier
Intel Xeon X5650 54.89 Gflop/s 63.98 Gflop/s 2.798 GHz 21.04
Intel Core i7 950 43.55 Gflop/s 48.96 Gflop/s 3.206 GHz 24.11



Multi-core Scalability Measurements: Issues and Solutions 325

1 2 3 4 5 6

90

95

100

Number of cores

E
ffi

ci
en

cy
(%

)
Intel Xeon X5650

Standard
Adjusted

1 2 3 4

90

95

100

Number of cores

Intel Core i7 950

Standard
Adjusted

Fig. 3. Efficiency of matrix-matrix computation on different CPUs. The adjusted mea-
surements have been scaled with Rs/Rp to account for the frequency. For the Core i7
950 CPU the measured frequency was the same during the computations.

7 Conclusions

One big cost for HPC hardware is power and low energy CPUs are therefore a
viable and good alternative. Using on-demand frequency scaling to save energy
is another way to reduce the energy footprint.

Recent multi-core processors that support underclocking to save energy often
also support automatic overclocking and we have shown that this can affect
performance measurements.

The artifacts that can be observed are CPU dependent. The Intel Core i7 950
ran at the same overclocked speed during all the tests and if the frequency listed
on the chip is used for calculating the theoretical peak performance, the value
is underestimated as the chip in practice performed faster.

The Intel Xeon X5650 behaved differently and when 1-5 cores where active,
the measured frequency was close to the maximum overclocked frequency for
that number of active cores. When all cores were active the lowest overclocked
frequency gave a frequency multiplier of 21 which is a frequency increase with
5% out of a maximum of 10%.

Without turning off the boost feature while performing measurements, linear
speedup will be hard or impossible to achieve on dynamically clocked hardware
and hence efficiency decreases or is underestimated. The classical measurement
of efficiency, E = Ts

p·Tp
, can be adjusted to account for the hardware, such that

E = Ts

p·Tp

Rs

Rp
, where Rp and Rs are the frequencies for the parallel- and serial

runs, respectively. If the hardware does not support overclocking, this factor will
be 1 and the standard measurement is used.

There are processors with higher boosted clock frequencies than the ones
used in these tests, ranging from both desktop processors to more server oriented
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versions. One example from each category from Intel is the Intel Core i7-870s,
which is listed at 2.66GHz, but can reach a 35% higher maximum frequency of
3.6GHz with one active core. The Intel Xeon Processor E3-1260L, which is listed
at 2.4GHz, can reach 3.3GHz, a 37.5% increase.

Achieving higher clock speeds helps performance and this is important to take
into consideration when scheduling threads on multi-socket systems or systems
where resources are shared when not all available resources are being used. One
such architecture is AMD’s Bulldozer where the processor is built from mod-
ules, where each Bulldozer-module is seen as two cores by the operating system.
A module has duplicated integer pipelines but the 256bit wide floating point
pipeline is shared. For this architecture, the boost possibilities are affected by
the number of active modules. Therefore there are situations where it is bet-
ter to use two threads in one module instead of two modules with one thread
each. If the shared resource becomes the bottleneck, which is likely to occur if
both threads use AVX instructions, then it’s better to schedule the threads in
different modules for increased floating point performance. For a multi socket
system, scheduling the threads unevenly between the CPUs can allow for one
of the CPUs to reach a higher boosted frequency while the others remain at
the same speed as long as the memory bus for the most utilized CPU does not
become the bottleneck.

We looked for super-computers among the first 100 computers on the TOP500
list from November 2011, that use Intel Xeon X5650 and do not use GPUs as ac-
celerators. We then checked how the listed theoretical peak performance, Rpeak,
was calculated. Machine number 87 and 88 on the list matched what we searched
for and they both used 2.66GHz × 4 × Ncores as their value for theoretical peak
performance. In theory the CPU can reach 2.92GHz when all cores are active. If
using 2.92GHz instead of 2.66GHz for calculating the peak performance, those
two super-computers reach 72-73% instead of ∼80% of their peak performance.
We have shown that automatic overclocking do occur, also when running the
HPL benchmark, which show that dynamically clocked hardware can not use
the base frequency when calculating maximum theoretical values and should in-
stead use the theoretical maximum boosted frequency when all cores are active.

Our future work includes software tools regarding performance measurements
and analysis and as an example, reading boost related information from MSRs is
both vendor specific and requires the use of privileged instructions. Instead these
values can be measured in a series of test and become accessible with normal
user privileges.
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Abstract. Performance analysis and tuning is an important step in pro-
gramming multicore- and manycore-based parallel architectures. While
there are several tools to help developers analyze application perfor-
mance, no tool provides recommendations about how to tune the code.
The AutoTune project is extending Periscope, an automatic distributed
performance analysis tool developed by Technische Universität München,
with plugins for performance and energy efficiency tuning. The result-
ing Periscope Tuning Framework will be able to tune serial and parallel
codes for multicore and manycore architectures and return tuning rec-
ommendations that can be integrated into the production version of the
code. The whole tuning process – both performance analysis and tuning
– will be performed automatically during a single run of the application.

1 Introduction

The pervasiveness of multi- and many-core processors nowadays makes any com-
puter a parallel system. Most embedded devices, desktop machines, servers and
HPC systems now include multicore processors coupled to accelerators (GPG-
PUs, FPGAs). This recent shift to multi- and many-core architectures hinders
the development of hardware-optimized applications. Programming parallel ar-
chitectures requires careful co-optimization of the following interrelated aspects:

– Energy consumption: Energy reduction has become a major issue on HPC
architectures, given their power costs almost reach the purchase price over
a lifetime. Careful application-specific tuning can help reduce energy con-
sumption without sacrificing an application’s performance.

P. Manninen and P. Öster (Eds.): PARA 2012, LNCS 7782, pp. 328–342, 2013.
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– Inter-process communication: The overall scalability of parallel applications
is significantly influenced by the amount and the speed of communication
required. Reducing the communication volume and exploiting the physical
network topology can lead to great performance boosts.

– Load balancing: Implicit/explicit process synchronization and uneven distri-
bution of work may leave a process idle waiting for others to finish. The com-
puting power within all parallel processes must be exploited to the fullest,
otherwise program scalability may be limited.

– Data locality: Frequent accesses to shared or distant data creates a consid-
erable overhead. Reducing the contention for synchronization resources and
ensuring data locality can yield significant performance improvements.

– Memory access: Even the best arithmetically-optimized codes can stall a
processor core due to latency in memory access. Careful optimization of
memory access patterns can make the most of CPU caches and memory
bandwidth on GPGPUs.

– Single core performance: To achieve good overall performance each core’s
compute capabilities need to be optimally exploited. By providing access to
the implementation details of a targeted platform, application optimizations
can be specialized accordingly.

Application tuning addressing these areas is an important step in program de-
velopment. Developers analyze an application’s performance to identify code
regions that can be improved. They then perform different code transformations
and experiment with setting parameters of the execution environment in order
to find better solutions. This search is guided by experience and by the output of
performance analyses. After the best set of optimizations is found for the given
– and supposedly representative – input data set, a verification step with other
input data sets and process configurations is executed.

The research community and vendors of parallel architectures developed a
number of performance analysis tools to support and partially automate the
first step of tuning process, i.e. application analysis. However, none of the current
tools supports the developer in the subsequent step of tuning, i.e. application
optimization. The most sophisticated tools can automatically identify the root
cause of a performance bottleneck but do not provide developers with hints
about how to tune the code.

Therefore, the AutoTune project’s goal is to close the gap in the tuning process
and simplify the development of efficient parallel programs on a wide range of
architectures. To achieve this objective, we aim to develop the Periscope Tuning
Framework (PTF), the first framework to combine and automate both analysis
and optimization into a single tool. AutoTune’s PTF will:

– Identify tuning variants based on codified expert knowledge;
– Evaluate the variants online (i.e. within the execution of the same applica-

tion), reducing the overall search time for a tuned version; and
– Produce a report on how to improve the code, which can be manually or

automatically applied.
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This project focuses on automatic tuning for multicore- and manycore-based
parallel systems, ranging from parallel desktop systems with accelerators, to
petascale and future exascale HPC architectures. The next sections show how
AutoTune addresses the automatic analysis and tuning of parallel applications.

2 Related Work

The complexity of today’s parallel architectures has a significant impact on ap-
plication performance. In order to avoid wasting energy and money due to low
utilization of processors, developers have been investing significant time in tuning
their codes. However, tuning implies searching for the best combination of code
transformations and parameter settings of the execution environment, which can
be fairly complicated. Thus, much research has been dedicated to the areas of
performance analysis and auto-tuning.

The explored techniques can be grouped into the following categories:

– Self-tuning libraries for linear algebra and signal processing like ATLAS,
FFTW, OSKI and SPIRAL [3,4,5,6];

– Tools that automatically analyze alternative compiler optimizations and
search for their optimal combination [7,8,9,10,11];

– Auto-tuners that search a space of application-level parameters that are
believed to impact the performance of an application [12,13]; and

– Frameworks that try to combine ideas from all the other groups [14,15].

Performance analysis and tuning are currently supported via separate tools.
AutoTune aims to bridge this gap and integrate support for both steps in a
single tuning framework.

3 Approach: The Periscope Tuning Framework (PTF)

AutoTune is developing the Periscope Tuning Framework (PTF) as an extension
to Periscope [2]. It follows Periscope’s main principles, i.e. the use of formalized
expert knowledge and strategies, automatic execution, online search based on
program phases, and distributed processing. Periscope is being extended by a
number of tuning plugins, each of which performs the tuning according to a
certain code aspect [1].

PTF’s tuning process begins by pre-processing the source files. It takes codes
written in C/C++ or Fortran using MPI and/or OpenMP and performs in-
strumentation and static analysis to generate a SIR file (Standard Intermediate
Representation). Extensions to support HMPP and OpenCL codes and parallel
patterns are under development. The tuning is then started via the frontend
either interactively or in a batch job.

Periscope’s analysis strategy becomes part of a higher-level tuning strategy,
which controls PTF’s sequence of analysis and optimization steps. The analysis
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guides the selection of a tuning plugin and the actions it performs. After the plu-
gin execution ends, the tuning strategy may restart the same or another analysis
strategy to continue with further tuning. All plugins – each with its own tuning
strategy, which may employ expert knowledge or machine learning – combine
with Periscope’s analysis strategies to perform a multi-aspect application tuning.

A tuning plugin is controlled by a plugin strategy meant to guide the search
for a tuned version. This strategy often performs several iterations of selection
and transformation of tuning parameters and experimental evaluation. Plugins
try to tune the code by changing the values of certain tuning parameters, which
are the features that influence the performance of a code region.

Code regions are often influenced not by one but by several tuning parameters
– the tuning space. The plugin experimentally assesses a code region for a code
variant, which is the set of values assigned to region’s tuning space. Before ex-
perimenting, however, the plugin restricts the search space based on the output
both of the previous analyses and of each plugin executed. The reduced search
space, called variant space, defines the remaining code variants to be evaluated
experimentally.

In the tuning process, the plugin’s search strategy explores the variant space
to optimize certain tuning objectives. A tuning objective is a function that takes
a code region and a variant and outputs a real value, generally a performance
measurement (e.g. runtime, energy consumed). The plugin executes a tuning
scenario, evaluating one or more tuning objectives for a specific code region and
variant.

Once the tuning process is finished, PTF generates a tuning report to doc-
ument the recommended tuning actions. These tuning actions, i.e. the changes
performed to tune the code, can be integrated either manually or automatically
into the application for production runs.

The concrete output of the AutoTune project is the Periscope Tuning Frame-
work and its tuning plugins for:

– High-level parallel patterns for GPGPUs;
– Hybrid manycore HMPP codelets;
– Energy consumption via CPU frequency;
– MPI runtime; and
– Compiler flag selection.

The framework follows an extensible architecture so that additional plugins can
expand its functionalities. The effectiveness, efficiency and software quality of
PTF will be demonstrated with real-world multi- and many-core applications.

3.1 General Design of a Tuning Plugin

PTF’s high-level flow is controlled by the frontend; for auto-tuning, a predefined
sequence of operations is enforced. However, the frontend allows loadable plugins
to specify what is done in certain steps of the execution and to determine how
many iterations are required for certain loops.
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Fig. 1. Simplified work flow of a tuning plugin

The predefined sequence has to cover all possible scenarios given the program-
ming models and parallel patterns supported for tuning, besides any preparation
steps required by the system (software and hardware) where the tool is running.
As a consequence, the full state machine is relatively complex. For illustration
purposes, a simplified version of PTF’s flow is presented in Figure 1.

All steps are involved in the creation and processing of the scenarios to be
experimented. Scenarios are stored in pools accessible by all plugins as well as
the frontend. These pools are:

– Created Scenario Pool (CSP): Scenarios created by a search algorithm;
– Prepared Scenario Pool (PSP): Scenarios already prepared for execution;
– Experiment Scenario Pool (ESP): Scenarios selected for the next experiment;
– Finished Scenario Pool (FSP): Scenarios executed.

All steps in a plugin’s workflow relate to the Tuning Plugin Interface (TPI). All
methods in this interface must be implemented by all plugins; PTF checks their
conformance at loading time. The TPI’s major methods are the following:

Initialize: This method is called when the frontend instantiates the plugin.
The plugin’s internal data structures, tuning space and search algorithms
are initialized and the tuning parameters are established.

Create Scenarios: From the defined variant space, the plugin generates the
scenarios using a search algorithm and inserts them into the CSP, so the
frontend can access them. The plugin combines the region, a variant, and
the objectives (e.g. execution time and energy consumption) to generate the
scenarios, using either a generic search algorithm (like exhaustive search)
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or its own search algorithm. The search algorithm may go through multi-
ple rounds of scenario generation. Selecting new scenarios to be generated
may depend on the objective values for the previous scenarios. Before the
frontend calls the final method to process the results, it checks if the search
algorithm needs to generate additional scenarios. If so, the frontend triggers
an additional iteration of creation, preparation and execution of scenarios.

Prepare Scenarios: In this method, scenarios are selected from the CSP, pre-
pared and moved into the PSP. Before experiments can be executed, some
scenarios require preparation, which typically covers tuning actions that can-
not execute at runtime – e.g. recompiling with a certain set of compiler flags
or generating special source code for the scenario’s variant. Only the plugin
can decide which scenarios can be simultaneously prepared. For example,
scenarios requesting conflicting compiler flags for a same file cannot be pre-
pared together. If no preparation is needed, this method simply moves all
created scenarios from the CSP to the PSP.
After the execution of an experiment, the frontend checks if the CSP is
empty. If it is not, the frontend calls the Prepare Scenarios method again.

Define Experiments: Once generated and prepared, the scenarios need to be
assembled into an experiment. An experiment goes through at least one
execution of the application’s phase region. Multiple scenarios can be run in
a single experiment assigned either to a single process (if they affect different
regions) or to different processes; only the plugin can decide whether this is
possible or not. For example, two scenarios for the same program region of
an MPI application can only be executed in a single experiment if assigned
to different processes. The plugin decides upon the assignment of scenarios
to processes/threads in this method. A subset of the prepared scenarios is
selected for the next experiment and moved from the PSP to the ESP. Once
the experiment is defined, the frontend transfers the control to the Scenario
Execution Engine (SEE), which triggers the experiment.

Get Restart Info: During the experiment execution, the SEE first checks with
the plugin whether a restart of the application is necessary to implement the
tuning actions. For example, the scenarios generated by the MPI tuning
plugin explore certain parameters of the MPI runtime environment that can
only be set before launching the application. This method returns true if an
application restart is needed to execute the experiment. It also permits to re-
turn parameters to the application launch command, e.g. MPI configuration
parameters to be set upon application launch as required by the scenario.
After the potential restart of the application, the SEE runs the experiment
by releasing the application to execute a phase region. The SEE takes care of
the execution in case multiple phases are required to gather all the measure-
ments for the objectives, and even restarts the application if it terminates
before gathering all measurements. At the end, the SEE moves the executed
scenarios from the ESP to the FSP and returns the objectives to the plugin.

Process Results: The frontend calls this method if the CSP is empty and the
search algorithm is finished. Here the plugin analyzes the objectives and
acquired properties – implemented as standard Periscope properties – and
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either commands that there are extra steps necessary for tuning; or indicates
that the tool is finished, selects the best scenario and generates the tuning
advices for the user.

The individual steps and methods may be repeated if scenarios still remain in
the scenario pools.

As introduced here, the tuning control flow is dictated by the frontend. While
the general flow is predetermined, the specific combination of valid execution
paths is determined by the plugin based on its internal logic and the search
algorithms used.

The specific implementation of our tuning plugins based on the TPI follows
in separate sections.

3.2 Tuning of High-Level Patterns for GPGPU

Tuning Objective. We investigate tuning of high-level patterns for single-
node heterogeneous manycore architectures comprising CPUs and GPUs. Our
focus is on pipeline patterns, which are expressed in C/C++ programs with
pragma-annotated while-loops, where pipeline stages correspond to functions for
which different implementation variants may exist. The associated programming
framework has been developed in the EU project PEPPHER [16] and comprises
a component framework, a transformation system, a coordination layer and a
heterogeneous runtime system.

The following example gives an impression of a high-level image processing
pipeline for face detection, where the computational stages are based on OpenCV
library routines [17]. For the functions of the middle stage, different implemen-
tation variants – one for CPUs and one for GPUs – are provided. Annotations
enable the user to specify a stage replication factor, which results in the gener-
ation of multiple stage invocations processing different data packets in parallel.
This may be advantageous if a stage executes for much longer than its prede-
cessor stage. Moreover, the size of the buffers that are automatically generated
by the framework to pass data between stages may be specified. Merging stages
can be achieved by enclosing two or more function calls within a stage pragma.

#pragma pph pipeline with buffer (PRIORITY, N*2)

while (inputstream >> file) {

readImage(file, image);

#pragma pph stage replicate(N)

{

resizeAndColorConvert(image);

detectFace(image, outimage);

}

writeFaceDetectedImage(file, outimage);

}

Such a high-level code is transformed into a representation that utilizes a co-
ordination layer and the StarPU [18] heterogeneous runtime system to exploit
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pipeline parallelism across stages. The coordination layer and runtime system
decide when to schedule a stage for execution and which implementation variant
to execute on which execution unit of the targeted heterogeneous architecture.

The goal of tuning pipeline patterns is to maximize the throughput by effi-
ciently exploiting all CPU cores and GPUs of a specific targeted architecture.

Tuning Parameters and Tuning Actions. The main tuning parameters for
pipeline patterns comprise stage replication factors and buffer sizes. Moreover,
the tuning of the underlying coordination and runtime layers, including imple-
mentation variant selection, runtime scheduling policy and resource allocation
strategy will be investigated.

To support these tuning parameters, the PTF monitor and the coordination
layer provide extensions to measure the time spent executing the stages, pro-
cessing the buffers and executing the overall pipeline. Tuning actions vary these
tuning parameters aiming to maximize the pipeline throughput.

To restrict the variant space, a range is specified per tuning parameter. More-
over, the tuning plugin may take into account the historical execution data and
static information about the concrete runtime environment (e.g. number of CPU
cores, number of GPUs).

3.3 Tuning of HMPP Codelets

Tuning Objective. The objective is to tune the performance of a codelet
computation in an application using the CAPS Workbench. The plugin targets
many-core accelerators like GPGPUs. The performance is evaluated by analyzing
the execution time of the codelet.

A codelet is a computational unit of a HMPP program [20]. It is typically im-
plemented as a C function or a Fortran subroutine annotated with OpenHMPP
directives [19]. The CAPS compiler automatically translates codelets into a
hardware-specific language such as CUDA or OpenCL. Therefore, the execu-
tion of a codelet from the CPU perspective is considered atomic (no identified
intermediate state or data).

As a portable programming standard, HMPP provides a way to access a varied
set of hybrid accelerators; the CAPS compiler can currently generate code for
NVIDIA and AMD GPUs and Intel Xeon Phi coprocessors. In spite of this, we
restrict the plugin to Linux host systems; the plugin will come with a prototype
of the CAPS Workbench different from the mainstream release version.

Tuning Parameters and Tuning Actions. This plugin has to manage a wide
set of parameters that depend on the targeted architecture. Thus, this plugin
allows the user to define the HMPP tuning experience via the plugin API. This
API is currently accessed via OpenHMPP directives to the HMPP compiler, al-
though more specific and autonomous auto-tuning methods – e.g. a user-friendly
graphical interface for a specific domain or architecture, or automatic tools for
a particular machine or application domain – may come in the future.
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The tuning object is the HMPP codelet. Relative to a codelet, there are two
kinds of tuning parameters to consider:

– Static codelet tuning parameters: operations, transformations or algorithms
used to implement a codelet. Examples are the unrolling factor, the HMPP
grid size and loop permutations.

– Dynamic codelet tuning parameters: variable or callback available at run-
time, which are generally target-specific.

The variant space will be initially searched using either exhaustive or random
search. Further search algorithms may be added in the future.

In this first implementation, the plugin looks for the tuning regions, the tuning
parameters and the search space in the code, as they should be statically defined
by the user. The information about the tuning parameters is extracted at com-
pilation time into an extended SIR file. PTF starts after the HMPP compilation
and no more compilation steps are necessary.

The scenarios executed by this plugin also specify the hardware requirements
for a valid execution – the type and number of accelerators needed and if the
scenario requires hardware exclusivity – since the CAPS Workbench can cope
with various models of accelerators but the tuning is hardware-specific.

This plugin also extends the monitoring infrastructure provided by Periscope
to deal with hardware accelerators. The HMPP profiling interface (PHMPP [21])
is tailored to extract the exact execution time of a codelet; for NVIDIA GPUs,
its implementation is partially based on the NVIDIA CUPTI [22].

3.4 Tuning of Energy Consumption via CPU Frequency

Tuning Objective. The main tuning objective is to minimize the energy con-
sumption of an application. The code may belong to any application field; how-
ever, emphasis is given to scientific fields where codes are usually arithmetic-
operation-intensive. On the hardware side we can change frequency policies and
read the RAPL counters (Running Average Power Limit [23]). We specifically
target the IBM System x iDataPlex thin-node islands on LRZ’s SuperMUC ma-
chine, whose nodes contain two processors in a shared-memory fashion.

The power consumption can only be measured per package according to
the RAPL counter: PP0 ENERGY:PACKAGE0, PP0 ENERGY:PACKAGE1,
PACKAGE ENERGY:PACKAGE0, PACKAGE ENERGY:PACKAGE1. Each
package also includes un-core elements such as the last level cache, Integrated
IO, QPI and Memory controllers.

Tuning Parameters and Tuning Actions. We define two different tuning
parameters: the available governors/policies and the frequencies to be used. Once
an application is tuned for performance, its energy- and time-related costs can
be optimized.

Regarding the first tuning parameter, there are five governors: Performance,
Powersave, Ondemand, Conservative and Userspace. We discarded the Perfor-
mance and the Powersave governors from our search space since they are special
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cases of the Userspace governor. Thus, we define the tuning parameter as an
indexed vector of the three governors Ondemand, Conservative and Userspace.

Regarding the second tuning parameter, the Sandy Bridge-EP Intel Xeon
E5-2680 supports, among others, the following frequencies: 2.7, 2.4, 2.2, 2, 1.8,
1.6, 1.4 and 1.2 GHz. We leave the turbo mode frequency1 outside the range of
explored frequencies.

Ideally, measurements are captured for all combinations of the available tun-
ing parameters to select the best performing set per governor. However, trying
all three governors each with all possible frequencies per region may be too time
consuming (24 frequencies per region). Our experience shows that the range of
frequencies describes a soft parabolic-like shape to the energy consumed. There-
fore, we perform a ternary search per governor, akin to the bisection method.
First, we run three experiments: the highest (f2), the lowest (f0) and the median
frequency (f1). The two neighboring frequencies that resulted in the lowest en-
ergy consumption define the upcoming search interval, and the search continues
until the best performing frequency is found.

3.5 Tuning of MPI Runtime

Tuning Objective. Using Periscope’s standard MPI analysis, this plugin im-
plements a combined tuning strategy to determine the values of multiple tuning
parameters: a set of MPI environment variables and variants of MPI communi-
cation functions.

There are many environment variables associated with specific implementa-
tions of the MPI library. In particular, the IBM MPI library on SuperMUC
offers more than 50 configurable parameters. Changes to some of these parame-
ters could significantly affect the time an application spends in communication.
The plugin assumes that the inputs are SPMD applications, so the same opti-
mization is applied to all processes.

The MPI variables that relate to the communication buffer/protocol and to
the application mapping have potential for tuning. Tuning the former vari-
ables could be effective on applications with clustered communications, while
tuning the latter variables could be particularly effective on applications that
exchange messages of a uniform size. The initial tuning objective is to find a
proper combination of values for the pair of variables (MP BUFFER MEM,
MP EAGER LIMIT). In addition, the tuning strategy consists of systematically
launching the application using different combinations of values for both vari-
ables. Finally, the tuning recommendation consists of the pair of values that led
to the application’s lowest execution time.

Tuning Parameters and Tuning Actions. For this plugin we have two kinds
of tuning parameters: the MPI environment parameters and the code variants
for the MPI communications.
1 In theory, the Sandy Bridge-EP Intel Xeon E5-2680 can reach a turbo frequency

of 3.5GHz; in practice, however, this frequency varies, depending on several factors
such as the CPU load, the quality of thermal solution and the ambient temperature.
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The MPI environment parameters may be set before the application executes.
We propose two tentative pairs of parameters:

– MPI application mapping: adapting tasks per node/core, adapting the affin-
ity of the processes.
• MP TASK PER NODE: Specifies the number of tasks run on each phys-
ical node; and
• MP TASK AFFINITY: Attaches a parallel task to one of the system’s
cpusets.

– MPI communication buffer/protocol: adapting the sending/receiving buffer,
analyzing the message size patterns, adapting the communication protocol
(eager/rendezvous).
• MP BUFFER MEM: Controls the amount of memory for buffering data
from early arrival messages2; and
• MP EAGER LIMIT: Changes the message size threshold that defines
the message passing protocol used (eager or rendezvous).

These parameters can be adjusted using environment variables or mpirun op-
tions, forcing all processes in the SPMD application to use the same options.
The tuning action is to set the values of the MPI parameters and run a new
experiment.

Regarding the code variants for the MPI communications, the user must pro-
vide different versions of the functions within the application (in function main)
and annotate the code with user regions and their attributes:

– Pragma mchoice (multiple choice) indicates that there are many versions of
the same functions. This pragma has an attribute v that indicates how many
versions exist. This attribute is treated as a tuning parameter and exported
to the SIR file.

– Pragma dependency mchoice indicates a condition and a range of variants
to explore when the condition is satisfied. For example, dependency mchoice
v==5, bsize=128-128KB means that for function version 5, the range for
bsize is 128B to 128KB.

The tuning action is to execute the application changing the implementation of
the functions and using different attribute values (if applicable).

3.6 Tuning of Compiler Flag Selection

Tuning Objective. The tuning objective is to reduce the execution time of
the application’s phase region. Besides the choice of algorithm and the way the
high-level source code is written, the most influential factor to the runtime is
the quality of the generated machine code. Compilers apply a large number of

2 Message data sent without knowing if the corresponding receive is posted is said to
be sent eagerly. A message data arriving before its corresponding receive is posted
is called an early arrival and must be buffered at the receiving side.
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code transformations to generate the best code for a given architecture, e.g. loop
interchange, data prefetching, vectorization and software pipelining. Although
the compiler ensures the correctness of the transformations, it is very difficult
to predict the performance impact and select the right sequence of transforma-
tions. Therefore, compilers offer a long list of flags and directives to allow the
programmer to guide the compilation in the optimization phase.

Due to the required background knowledge about compiler transformations,
compiler interactions with the application and hardware, and the large number of
flags, programmers find it difficult to select the best flags and guide the compiler
by inserting directives. Thus, typically only the standard flags -O2 and -O3 are
used to change the approach of the compiler optimization.

Tuning Parameters and Tuning Actions. This plugin’s tuning parameters
are the individual compiler flags. Each parameter can be switched either ON or
OFF, hence the parameters have only two values. The tuning action is to switch
a flag in the program recompilation. All tuning actions for each parameter are
combined in the preparation step.

4 Evaluation

4.1 The Application Repository

The Application Repository is a central workspace composed of representative
and reliable inputs for test cases. It is the main toolbox to be used during the
design, development and integration of the tuning techniques and plugins to
PTF. Each tool is an application – comprised of source code, configuration files
and input data sets – that composes a use case of HPC software and hardware,
specifically selected to match the requirements of our tuning plugins.

The repository applications currently have a dual objective:

– To guide the development of the tuning techniques and plugins; and
– To assess the quality of automatic tuning via the plugins.

The applications will serve as input to the tuning plugins and hence will provide
a global view of the AutoTune behavior on scientific applications. Because of
this, the applications must display the characteristics required by each plugin,
be they MPI, HMPP, OpenCL, OpenACC, pipelining, data distribution or the
master-worker pattern.

We also used the application repository to perform a preliminary validation of
our tuning techniques by manually applying them over the applications. It aimed
to provide first insights into the approach and practical implementation of the
tuning plugins, besides representing proof why investing in plugin development
is a worthy task.

With our manual tuning, our tuning techniques could find code variants that
performed at least 25% better than the worst performing variant. Half of our
techniques excelled and could find variants performing 75% better. All tuning
techniques managed to find optimized code variants, on average 60.43% more
efficient than the least performing variant.
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4.2 The Proof of Concept

We developed a demo plugin to demonstrate and validate the auto-tuning ex-
tensions to Periscope. In this section we describe the plugin itself as well as a
simple Fortran application used for evaluation.

Sample Application and Tuning Objective. The tuning objective of this
plugin is to minimize the execution time of a code region for which several vari-
ants are defined in the program. The region is marked in the Fortran source
file with an AutoTune pragma, which defines a single tuning parameter manip-
ulated through a variable tuning action. Each value of the variable defines a
unique variant.

Tuning Parameters and Tuning Actions. This tuning plugin can process a
single tuning parameter as defined in the program via a directive, as it is shown
below in the sample Fortran application:

do k=1,20

var=k

!$MON USERREGION TP name(Test) variable(var) variants(10)

tstart=MPI_Wtime()

!<user compute code depending on the value of variable ‘var’>

tend=MPI_Wtime()

!$MON END USERREGION

enddo

The code region to be tuned must be surrounded by the directives “USER-
REGION” and “END USERREGION”. The tuning parameter is specified in
the directives using the keyword “TP” followed by (i) the name of the tuning
parameter, (ii) the variable identifier and (iii) the number of variants.

In this code, the value of variable var is initially set to k ; however, since var
is a tuning parameter, the monitor overwrites its value at runtime upon entry
in the tuning region. On the other side, setting var to k allows the code to be
run without PTF.

When instrumenting the application, the Periscope instrumenter parses the
Fortran source file to extract information from the AutoTune pragmas. The
tuning parameters (variable var in our example) are then added to the SIR file,
which the frontend takes as input. The instrumentation also maps between the
name of a tuning parameter and the variable. Whenever the region is entered,
the monitor assigns a value to the variable to trigger the execution of a certain
variant. In our example, PTF sweeps over all variants from 1 to 10.

5 Conclusions and Future Works

This paper presents the Periscope Tuning Framework, currently under devel-
opment in the FP7 project AutoTune. PTF is a framework that allows for the
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easy development of tuning plugins. The tuning plugins explore tuning parame-
ters based on performance information resulting from PTF’s analysis strategies;
different code variants are explored by running experiments that return mea-
surements for each variant.

We implemented a first demonstration prototype of PTF to validate the over-
all design. In the next project cycles, we will develop initial versions of the
outlined tuning plugins and test them on the application repository. Although
the initial versions will be based on exhaustive or random search, we plan to add
intelligence in the form of expert knowledge or model-driven search.

We also intend to design and develop a plugin for MPI programs that display
the Master-Worker pattern. Furthermore, we will conduct a feasibility study and
design a plugin to address I/O bottlenecks, in order to enable its implementation
as a future PTF plugin. Other plugins, such as for OpenMP thread affinity, are
under consideration for development and integration into PTF.

Finally, we plan to investigate combined plugin tuning strategies for inclusion
into PTF. Combined strategies use multiple plugins to perform code tuning,
taking different application aspects into consideration at the same time. We will
especially target the design and analysis of tuning strategies for justified trade-off
between energy tuning and runtime tuning.
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Abstract. Several highly optimized implementations of Finite Differ-
ence schemes are discussed. The combination of vectorization and an in-
terleaved data layout, spatial and temporal loop tiling algorithms, loop
unrolling, and parameter tuning lead to efficient computational kernels in
one to three spatial dimensions, truncation errors of order two to twelve,
and isotropic and compact anisotropic stencils. The kernels are imple-
mented on and tuned for several processor architectures like recent Intel
Sandy Bridge, Ivy Bridge and AMD Bulldozer CPU cores, all with AVX
vector instructions as well as Nvidia Kepler and Fermi and AMD South-
ern and Northern Islands GPU architectures, as well as some older archi-
tectures for comparison. The kernels are either based on a cache aware
spatial loop or on time-slicing to compute several time steps at once.
Furthermore, vector components can either be independent, grouped in
short vectors of SSE, AVX or GPU warp size or in larger virtual vectors
with explicit synchronization. The optimal choice of the algorithm and
its parameters depend both on the Finite Difference stencil and on the
processor architecture.

1 Introduction

Finite Differences are a classical numerical scheme for the solution of differential
equations. However, the stencils on structured grids are also computationally
efficient on current computers, which explains their widespread use in science.

By the introduction of a new vector instruction set for x86 architecture CPUs,
vector length increases from 128 bit SSE to 256 bit AVX vectors, i.e. from 4 to 8
single precision numbers (float), with a road map to even larger vectors. Other
CPUs provide long vectors already (Intel Phi 512 bit, 16 floats). In GPU com-
puting, vector lengths of 16 to 64 floats are common, which can be combined to
virtual vectors of length 256 to 1024 by hardware multi-threading. Automatic
vectorization of loop and array expressions in Fortran style codes has been devel-
oped successfully for classic style vector computers. However, current architec-
ture’s memory, caches or GPU local processor memories do not provide enough
bandwidth anymore. Algorithmic modifications are needed to reduce memory
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traffic, streamline memory access and to feed the vector units by data placed
in registers and memory closer to the processor. Further issues are to provide
enough instruction parallelism for long pipelines and multi-threading.

We make the following contributions: We propose interleaved data layouts of
the Finite Difference grid points especially suited for vector instructions based on
memory aligned vector load and store operations. We develop highly tuned im-
plementations of Finite Difference stencil computations for single CPU cores with
SSE and AVX vector instructions on older and most recent CPU architectures
by Intel and AMD. Furthermore, OpenCL and Nvidia Cuda implementations for
AMD and Nvidia GPUs are presented, again organizing Finite Difference stencil
computations as vector operations and adapting the data layout accordingly. By
an analysis of simple Finite Difference stencils, we obtain efficient implementa-
tion techniques and upper performance limits also applicable to more complex
numerical expressions.

2 Model Problem Finite Difference Stencils

We consider Finite Difference stencil computations on structured grids. The sten-
cils represent discretized versions of constant coefficient second order differential
operators. Both application of the operator within a linear equation solver or
within a time stepping scheme are included. Furthermore, an iterative solver of
Jacobi type can be implemented this way. We consider arbitrary approximation
orders, spatial dimensions of the structured grid, and isotropic and anisotropic
self adjoint operators. Isotropic stencils of order p in one to three dimensions
with constant coefficients cl can be written as

unewi = c0ui +

p/2∑
l=1

cl(ui−l + ui+l)

unewi,j = c0ui,j +

p/2∑
l=1

cl(ui−l,j + ui+l,j + ui,j−l + ui,j+l)

unewi,j,k = c0ui,j,k +

p/2∑
l=1

cl(ui−l,j,k + ui+l,j,k + ui,j−l,k + ui,j+l,k + ui,j,k−l + ui,j,k+l)

and may approximate the isotropic Δ Laplace operator applied to the grid func-
tion u. Anisotropic operators represent linearly distorted versions of the operator,
like the two dimensional version:

unewi,j = c0,0ui,j +
∑p/2

l=1 (cl,0(ui−l,j + ui+l,j) + c0,l(ui,j−l + ui,j+l))

+
∑p/2

l=1 cl,l(ui−l,j−l + ui+l,j+l − ui+l,j−l − ui−l,j+l)

+
∑p/2

l

∑p/2
m=l+1 cl,m(ui−l,j−m + ui−m,j−l + ui+l,j+m + ui+m,j+l

−ui+l,j−m − ui+m,j−l − ui−l,j+m − ui−m,j+l)

The three dimensional anisotropic stencil of the Laplace operator approximation
is a collection of two dimensional stencils along each xi, xj coordinate area. The
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Fig. 1. Schematic 3D 4th order FD stencil, isotropic and anisotropic. Single stencils
(left) and 3 × 3 × 2 block (right).

shape of the three dimensional isotropic and anisotropic stencils are depicted in
Fig. 1.

The number of grid points and arithmetic operations, separated into adds
and subs, multiplications (mul) and alternatively fused multiply-adds (fma) are
summarized in Tab. 1. The number of fma operations equals the number of grid
points, which increases with order and dimension. The number of multiplications
equals the number of coefficients and is at most the number of adds.

Table 1. Finite Difference stencils of order p, number of floating point operations per
grid point

name operator load points total flops add mul fma
1D Dxx 1 + p 1 + 3

2p p 1 + 1
2p 1 + p

2D Dxx + Dyy 1 + 2p 1 + 5
2p 2p 1 + 1

2p 1 + 2p
3D Dxx + Dyy + Dzz 1 + 3p 1 + 7

2p 3p 1 + 1
2p 1 + 3p

anisotropic
2D a11Dxx + 2a12Dxy + a22Dyy (1 + p)2 1 + 13

4 p + 9
8p

2 2p + p2 1 + 5
4p + 1

8p
2 (1 + p)2

3D a11Dxx + 2a12Dxy + 2a13Dxz 1 + 3p + 3p2 1 + 21
4 p + 27

8 p2 3p + 3p2 1 + 9
4p + 3

8p
2 1 + 3p + 3p2

+a22Dyy + 2a23Dyz + a33Dzz

3 Target Processor Architectures

We will implement several Finite Difference algorithms for CPU and GPU (graph-
ics processing unit) architectures. We consider single processor cores of x86 CPUs
by Intel and AMD and GPUs by Nvidia and AMD, see Tab. 2 and 3. We consider
the smallest independent processor unit (core), called ‘streaming multiproces-
sor’ by Nvidia, ‘shader cluster’ on AMD GPUs or ‘module’ for AMD Bulldozer.
Most recent CPUs feature AVX arithmetic vector instructions, that is 256 bit
vectors with 8 single precision (float) or 4-double precision values. Add and mul
operations take two vectors to compute a result vector, fma takes three input
vectors. Previous CPUs offered SSE vectors of half the size. The CPUs have
independent floating point add and mul pipelines, with the exception of AMD
Bulldozer. Hence the number of adds are an upper performance limit for the Fi-
nite Difference implementations, given that data flow between registers, caches
and memory is fast enough.

GPU architectures are based on vectors of length 32 or 64 floats within a
processor. Hardware multi-threading enables the program to combine the vectors
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Table 2. CPU and GPU processors, micro architectures and their single precision
(32 bit float) performance. All numbers of a single processor core.

processor performance cache
clock vector vector flop/s L1 L2 shared

architecture name instructions op/cycle LL
[GHz] [GF] [kB] [kB] [MB]

Intel Ivy Bridge i5-3450 3.1/3.5 AVX add + mul 56 32 256 6
Intel Sandy Bridge i7-2600 3.4/3.8 AVX add + mul 60.8 32 256 6
Intel Core Xeon E5405 2.0 SSE4.1 add + mul 16 32 – 6
AMD Bulldozer FX-8150 3.4/3.9/4.2 AVX, FMA4 fma 67.2 16 2048 8
AMD K10 Opteron 6168 1.9 SSE4 add + mul 15.2 64 512 6
AMD K8 Opteron 865 1.8 SSE3 1/2(add + mul) 7.2 64 – 1
Nvidia Kepler GK110, Tesla K20c 0.705/0.758 32 6 fma 291.1 16 − 48 – 1/8
Nvidia Kepler GK104, GTX 680 1.006/1.059 32 6 fma 406.5 16 − 48 – 1/8
Nvidia Fermi GF108, GT 540M 1.344 32 3/2 fma 129 16 or 48 – 1/8
Nvidia Fermi GF110, GTX 590 1.215 32 1 fma 77.8 16 or 48 – 1/8
Nvidia Fermi GF100, Tesla C2050 1.15 32 1 fma 73.6 16 or 48 – 1/8
Nvidia GT200 GTX 260 1.296 32 1/4 fma 20.7 – – –
AMD South. Isl. GCN, HD 7970 0.925 64 1 fma 118.4 16 – 1/8
AMD North. Isl. VLIW4, HD 6990 0.83 64 1 fma 106.3 8

transparently to larger virtual vectors of sizes 256 to 1024. The GPUs have fma
floating point pipelines. Hence the number of fmas serve as an upper performance
limit, like in the case of Bulldozer CPUs. We have listed the properties of a
single CPU core and a single GPU processor, although usually chips and systems
with different numbers of cores are available. Note that the double precision
performance of the CPUs is half of the single precision in Tab. 2 and the GPU
double precision performance is between 1/24 and one half of single precision.

Table 3. Double precision peak performance of a single GPU core

processor performance
architecture name clock cores vector vector flop/s

[GHz] length fma/cycle [GF]
Nvidia Kepler GK110, Tesla K20c 0.705/0.758 13 32 2 97.0
Nvidia Kepler GK104, GTX 680 1.006/1.059 8 32 1/4 16.9
Nvidia Fermi GF108, GTX 540M 1.344 2 32 1/8 10.8
Nvidia Fermi GF110, GTX 590 1.215 16 32 1/8 9.7
Nvidia Fermi GF100, Tesla C2050 1.15 14 32 1/2 36.8
AMD South. Isl. GCN, HD 7970 0.925 32 64 1/4 29.6
AMD North. Isl. VLIW4, HD 6990 0.83 24 64 1/4 26.6

4 Scalar Cache Aware Algorithms and Data Layout

First of all we will discuss scalar versions of the Finite Difference algorithms
before we turn them into the vectorized algorithms necessary to fully exploit the
target processors. For reasons of simplicity, we ignore boundary conditions close
to the border of the spatial grid and start-up procedures for algorithms with
multiple time steps.

Naive implementations of a Finite Difference stencil will simply take a loop
over all grid points and apply the stencil. Such an algorithm has to load the same
number of values from memory as number of fma operations are performed. This
is a memory bandwidth bound algorithm in a range of about 1 GF. It is up to
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a good cache mechanism to make this efficient. However, even the bandwidth of
the L1 cache does not match the demand of the floating point pipelines.

4.1 Sliding Window Algorithm

The memory hierarchy of main memory RAM, last level (LL) to first level (L1)
caches and processor registers offers different memory capacity at vast differences
of access bandwidth and latency. Only the bandwidth of the register file is able
to fully match the processor floating point pipelines. An improvement of the
naive Finite Difference implementation goes like this: Data re-use is explicitly
organized in register space. A cache aware 1D space loop for p + 1-point wide
Finite Difference stencil (order p in Tab. 1) implementing a single time step may
look like this:

r[0..p-1] = grid[0..p-1]; // load memory
for (int x=0; x<stepx*(p+1); x=x+p+1) {

for (int x0=0; x0<p+1; x0++) { // unroll loop
r[(x0+p)%(p+1)] = grid[x+x0+p]; // load memory
grid[x+x0] = calc (r[(x0)%(p+1)..(x0+p)%(p+1)]); // store memory

}
}

Values r and c are to be placed in registers, routine calc represents the inlined
stencil and grid values u. For reasons of simplicity a single array u is used both
input and output, over writing old values of u with new ones. The x0 loop needs
to be explicitly unrolled, at least for most of the compilers, such that index
expressions for r can be removed. The code for example for a 3-point stencil
(order p = 2) can be expanded to

r0 = grid[0]; r1 = grid[1]; // load memory
for (int x=0; x<stepx*3; x=x+3) {

r2 = grid[x+2]; // load memory
grid[x ] = calc (r0, r1, r2); // store memory
r0 = grid[x+3]; // load memory
grid[x+1] = calc (r1, r2, r0); // store memory
r1 = grid[x+4]; // load memory
grid[x+2] = calc (r2, r0, r1); // store memory

}

by a source-to-source preprocessor. This way copying of registers can be avoided.
Data re-use takes place via registers only. There is one memory load and one
store per grid point, compared to e.g. 1 + p fma operations.

The sliding window algorithm is discussed by [1,2,3,4,5,6,7,8] (often in the
GPU context) and can be generalized to higher dimensions based on the mem-
ory hierarchy: The inner most loop data re-use through the register file can be
complemented by L1 and L2 caches for the surrounding loops. In this case 1+d·p
fma operations have to be compared to one main memory load and one store
per grid point and additional cache loads.

4.2 Time Slicing Algorithm

In case the ratio of arithmetic operations to memory operations is still too small,
several time steps can be aggregated into the time slicing (or time skewing, tem-
poral tiling) algorithm, see [9,10,11,12] and for more recent work [1,5,13,14,15].
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Table 4. Scalar sliding window algorithm for order p Finite Difference stencils. All
memory loads expect for one can be cached.

name register storage load store fma
1D 1 + p 1 1 1 + p
2D isotropic 1 + 2p 1 + p 1 1 + 2p
3D isotropic 1 + 3p 1 + 2p 1 1 + 3p
2D anisotropic (1 + p)2 1 + p 1 (1 + p)2

3D anisotropic 1 + 21
4 p + 27

8 p2 (1 + p)2 1 1 + 21
4 p + 27

8 p2

Initially developed to perform most of the computations in cache rather than
main memory, time slicing with wide slices does most of the computations in
register with memory operations mainly to cache. A one dimensional version of
time slicing with p+ 1 point stencils looks like this:

for (int x=(stepx-1)*s; x>=0; x=x-s) {
r[0..s-1] = grid[x..x+s-1]; // load memory
for (int t=0; t<stept*p; t=t+p) {
r[s..s+p-1] = grid[x+t+s..x+t+s+p-1]; // load cache
r[0..s-1] = calc (r[0..s+p-1]); // unroll
grid[x+t+p..x+t+2*p-1] = r[0..p-1]; // store cache

}
grid[x+(stept+1)*p..x+stept*p+s-1] = r[p..s-1];// store memory

}

A spatial tile of size s is used to compute stept time steps at once. Additional
input data for the inlined Finite Difference stencils calc is loaded from a section
of grid, which is presumably in cache. This algorithm uses grid as input and
output for u and as cached intermediate storage of the stencil halo zones. To
make sure that r is mapped to registers and the number of s difference stencils are
in fact unrolled, some compilers require explicit source code unrolling. Note that
this implementation requires the tile size to be large enough s ≥ p. Furthermore,
an initialization of the time slices next to the border is needed, which is ignored
here, see [8] for a 1D version with separate auxiliary storage.

In two dimensions the loop and storage structure is the similar. The grid
pattern to compute a rectangle of sx×sy points is a rectangle of (sx+p)×(sy+p)
points for the anisotropic stencils. The points to be loaded and stored in each
time step are an old rectangle minus a new one, forming L-shaped domains. If
we assume that data re-use of the innermost x-loop fits into L1 cache and the
y-loop into L2 cache, one leg of the L-domain is mapped to L2 cache and the
remaining rectangle to L1 cache. Some snapshots of a two dimensional scheme
are depicted in Fig. 2.

for (int y=(stepy-1)*sy; y>=0; y=y-sy) {
for (int x=(stepx-1)*sx; x>=0; x=x-sx) {
load rectangle [0..sy-1]*[0..sx-1] at grid[y][x] from memory
for (int t=0; t<stept*p; t=t+p) {

load L-domain [0..sy+p-1]*[0..sx+p-1] minus [0..sy-1]*[0..sx-1]
at grid[y+t][x+t] from caches

calc rectangle [0..sy-1]*[0..sx-1]
store L-domain [0..sy-1]*[0..sx-1] minus [p..sy-1]*[p..sx-1]

at grid[y+t+p][x+t+p] to caches
}
store rectangle [0..sy-p-1]*[p..sx-p-1]

at grid[y+stept*p][x+stept*p] to memory
}

}
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lo a d
s t o re

lo a d
s t o re

Fig. 2. Snapshots of the 2D time slicing algorithm, left to right, initial rectangle and
later L-shaped pattern loads and the consecutive stores. The grid points are organized
in the y-x plane. The time level is color-coded, values are shifted in x- and y-direction
proportional to t. Initial values on the left (blue), results on the right (red).

The storage patterns of the isotropic stencils are rectangles minus rectan-
gles p/2× p/2 at the four corners. In three dimensions cubes and differences of
cubes are mapped to three levels of cache. The memory access pattern change
accordingly.

The computation to memory operation ratio is comparable to the sliding
window algorithm, with the advantage to substitute main memory access by
cache access, at least for large numbers of time steps.

Table 5. Scalar time slice algorithm for order p Finite Difference stencils with tile size
s ≥ p. All memory loads and stores can be cached.

name register storage load / store
1D s + p p / p
2D isotropic (sx + p)(sy + p) − p2 (sx + p)(sy + p) − sxsy − 3

4 p
2

sxsy − (sx − p)(sy − p) − 1
4 p

2

3D isotropic (sx + p)(sy + p)(sz + p) − p3 (sx + p)(sy + p)(sz + p) − sxsysz − 7
8 p

3

sxsysz − (sx − p)(sy − p)(sz − p) − 1
8 p

3

2D anisotropic (sx + p)(sy + p) (sx + p)(sy + p) − sxsy
sxsy − (sx − p)(sy − p)

3D anisotropic ≤ (sx + p)(sy + p)(sz + p) (sx + p)(sy + p)(sz + p) − sxsysz
sxsysz − (sx − p)(sy − p)(sz − p)

5 Vectorization and Data Layout

All processor architectures under consideration are (parallel) vector processors.
For reasons of performance, vector operations have to be used rather than scalar
operations. A naive approach would be to block the innermost loop in the size
of the vector length, exploit instruction level parallelism and use vector load
operations not aligned to the length of a vector. However, unaligned memory
access can imply more memory access if it crosses cache lines. Further, data
re-use in registers is inhibited by this procedure.

An alternative approach would be to emulate unaligned memory access by
loading consecutive aligned vectors and additional vector shift operations. This
is again expensive, partly because arbitrary vector shift instructions are not
available. We will come back to this topic in the next subsections.
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5.1 Vectors of Independent Tasks

One strategy to fully exploit the potential of vector instructions to consider them
as SIMD parallel, independent tasks. Hence each vector component represents
one grid, e.g. one octant of the full domain for vector length 8. Since a single
step of the Finite Differences is fully parallel, a coupling just appears through
the boundary conditions, which is cheap to implement.

The vector load and store operations have to be aligned for performance
reasons. Hence the independent sub-grids have to be interleaved in memory
accordingly. The scalar algorithm is simply vectorized by substitution of the
scalar data type by the vector type and additional boundary procedures.

5.2 Shifted Vectors on CPUs

No changes in memory layout and a more efficient use of vector registers would
be the introduction of vector shift instructions like

vec shift (vec a, vec b, int i) { // vector length n, 0<=i<=n
return [a[i..n-1] b[0..i-1]];

}

A CPU of Ivy Bridge type for example is able to issue one floating point vec-
tor add, one mul and one permute operation per cycle in addition to integer
and memory instructions. Unfortunately, the permute instructions have limited
capabilities only:

The SSE instruction set offers the two vector argument instruction
_mm_shuffle, which is sufficient for double precision, but in single preci-
sion can only be used for groups of two float2 values. The AVX instructions
have a similar _mm256_shuffle instruction operating on each half-vector and
_mm256_permute2f128 to permute both half-vectors. This is again sufficient for
four double values, such that one instruction can be used for shift one and the
other for shift two, and the combination gives shift three. However, we still can
only handle groups of float2 values. Hence, two or four interleaved parts of the
domain are stored in memory in addition to some partial vector shift by one or
two permute instructions.

Note that Intel Phi 512 bit vector instructions lead to flexible permute oper-
ations of groups of float4 _mm512_mask_permute4f128. The IBM Power AltiVec
instructions set is more flexible in vector rotate, but leads to a multi instruction
vector shift implementation.

5.3 Shifted Vectors on GPUs

In the GPU case vector shift can be implemented through Cuda __shared__

memory respectively OpenCL __local memory. In warp synchronous parallel
computing, i.e. short vectors of warp size, length 32 or 64 without explicit syn-
chronization instructions, shared memory has to be marked as volatile.
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Nvidia Kepler (capability ≥ 3.0) offers an additional vector shift for one vector
without sharedmemoryby__shfl_upand__shfl_down instructions.However, an
implementation of a two argument vector shift still requires several instructions.

The hardware multi threading of GPUs allows for larger vector sizes. Vector
shift can be implemented again through shared memory. Explicit synchronization
is needed via Cuda __syncthreads or OpenCL barrier. Now the sliding window
algorithms can be used again with shifted vectors [2].

6 Experiments

For reasons of comparison we perform experiments on a number of different
generations of CPUs and GPUs. Since there are large absolute performance dif-
ferences, in many cases we consider relative performance with respect to the
speed of the add or the fma pipeline, i.e. peak performance of the Finite Differ-
ence stencil. The absolute numbers for single processor cores can be recovered
by the number of operations per second times vector length in Tab. 2 and the
number of operations per stencil in Fig. 1.

6.1 Compiler

The experiments depend on the quality of the code. We have used the compilers
listed in Tab. 6. In most cases the gcc compilers gave superior x86 execution code.
The larger the code and the number of unrolled instructions, the larger was gap
between gcc version 4.7 and other compilers. Inspection of x86 assembly code
generated by the different compilers gave no obvious explanation and we spec-
ulate that the different clock-per-instruction rates are due to the optimization
level of instruction scheduling.

Table 6. List of C/C++ compilers in use. Sample compile time and performance com-
parison for a 3D 4th order example on an Intel Ivy Bridge CPU, compiler optimization
options -O3 -march=native, code with AVX intrinsics.

name version source compile performance
C C++ time [s] [GF]
gcc g++ 4.7.0 FSF 40.907 6.09
gcc g++ 4.6.3 FSF 14.284 6.14
clang clang++ 3.2 llvm 55.899 3.59
icc icpc 13.0.0 Intel 80.858 2.66

Source code loop unrolling and placement of vector elements in variables to
be mapped to registers was done by a custom source-to-source preprocessor. The
codes were written in C++ using SSE, AVX and FMA x86 vector intrinsics (if
applicable), Cuda, and OpenCL respectively. Experiments were run on Linux
Ubuntu 12.04 64-bit for x86 CPUs and Nvidia Cuda 5.0 for Nvidia GPUs. AMD
GPUs were run with AMD APP OpenCL 2.7 on Linux Ubuntu 11.04.



352 G. Zumbusch

6.2 Single Precision on a Single Core

The one dimensional experiments are summarized in the top rows of Figs. 3
and 5. The time slicing algorithm seems to be superior in most of the cases
compared to the sliding window. The amount of required registers grows with
the stencil order, such that the tile size is limited for time slicing, while the
amount of data re-use grows for sliding windows. Hence there will be a turn
over point at high order when sliding window is more efficient. However, this
point is not reached in the 1D experiments. The 1D results show extremely
high relative performance both for CPU and GPU. Some architectures have
difficulties for higher order time slicing due to a shortage of registers compared
to their floating point pipeline length. The detailed analysis in Fig. 4 shows that
vector shift instructions can help reduce the tile sizes and the register pressure
and improve higher order results.

In the 2D case, sliding window becomes superior for higher order stencils on
CPUs and Nvidia GPUs, while time slicing is still better on AMD GPUs and gen-
erally for lower order stencils. Vector shift operations improve efficiency above 2nd
order stencils and the optimal tile sizes are rather small, see Fig. 6. In the 3D case
sliding window is superior to time slicing for all higher order stencils on CPUs and
generally on GPUs. In the 3D case and in the higher order 2D case, large virtual
vectors start to become superior to small warp synchronous vectors on GPUs.

Anisotropic stencils in Fig. 7 introduce substantially more operations with
roughly the same memory traffic. However, the number of intermediate registers
required grows, such that time slicing for higher order or 3D runs out of registers
and almost constant performance sliding window starts to outperform time slic-
ing. The problem of a small register file is much more pronounced in 3D, where
performance always drops with increasing order.

6.3 Double Precision Arithmetic

A summary of the absolute performance in Tab. 7 and Tab. 8 show the per-
formance drop with increasing spatial dimension, which is mainly due to cache
access to fetch halo values in the outer loop directions. Furthermore, the time
slicing seems to be superior for the 1D case, while sliding window is improving
for higher dimensions.

Table 7. Absolute performance numbers of a single core CPU. Numbers of the time
slicing algorithm in single and double precision arithmetic. Colored numbers indicate
the shifted vector version. ∗ marks SSE on AVX enabled CPUs.

processor 1D 2D 3D
architecture name single double single double single double

[GF] [GF] [GF] [GF] [GF] [GF]
Intel Ivy Bridge i5-3450 55.2 27.6 36.9 18.7 20.1 9.4
Intel Sandy Bridge i7-2600 59.6 29.8 40.8 20.4 21.2 10.4
Intel Core Xeon E5405 15.8 7.9 10.8 5.4 7.2 3.2
AMD Bulldozer FX-8150 44.2 22.1 22.7∗ 11.3∗ 13.0 7.2∗

AMD K10 Opteron 6168 15.1 7.5 9.1 4.5 5.9 2.3
AMD K8 Opteron 865 5.8 2.5 4.3 2.1 2.6 0.9



Vectorized Higher Order Finite Difference Kernels 353

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12

1D FD stencil, sliding window

stencil order

e
ff

ic
ie

n
cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12

2D FD stencil, sliding window

stencil order

e
ff

ic
ie

n
cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 4 6 8 10 12

3D FD stencil, sliding window

stencil order

e
ff

ic
ie

n
cy

Intel Ivy Bridge
Intel Sandy Bridge
Intel Core
AMD Bu lldozer
AMD K10
AMD K8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12

1D FD stencil, t im e slicing

stencil order

e
ff

ic
ie

n
cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12

2D FD stencil, t im e slicing

stencil order

e
ff

ic
ie

n
cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 4 6 8 10 12

3D FD stencil, t im e slicing

stencil order

e
ff

ic
ie

n
cy

Fig. 3. Relative performance vs. stencil order of the sliding window and time slicing
algorithms on CPUs
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Fig. 5. Relative performance vs. stencil order of the sliding window and time slicing
algorithms on GPUs
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Fig. 7. 2D and 3D compact anisotropic FD stencil. Relative performance vs. stencil
order of sliding window and time slicing on CPUs.

The CPU double precision numbers are consistently one half of the single
precision. A 64 bit double number requires double the space in vector registers,
caches and memory. The throughput and latency of the floating point pipelines
remains the same in terms of vectors per time.

Double precision on GPUs is different: Cache and memory capacity and the
number of available registers is halved, the throughput changes by a factor of
1/24 to 1/2, see Tab. 2. Slower floating point pipelines relative to the memory
bandwidth results in an increased relative performance for memory bandwidth
bound algorithms. The limited register file however results in smaller tile sizes.
The Nvidia Tesla numbers demonstrate roughly half the double precision than sin-
gle precision, consistent to the floating point performance. Slower double precision
pipelines show higher relative performance. The ratio of single to double precision
with increasing dimensions tends approach the ratio of memory throughput. Note
that the AMD GPUs show even better double precision performance.

6.4 Outlook

The answer to the general question of CPU versus GPU performance mainly de-
pends on metric of comparison, whether it be performance per core, per chip, per
price or per electric power. A single CPU or GPU architecture is available as chips
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Table 8. Absolute performance numbers of a multi-processor GPU chip. Numbers in
single and double precision arithmetic of a time slicing (black) or a sliding window
shifted-vector (grey) algorithm. ∗ marks a shifted vector version of time slicing.

processor 1D 2D 3D
architecture name single double single double single double

[GF] [GF] [GF] [GF] [GF] [GF]
Nvidia Kepler GK110, Tesla K20c 1829 685 355 179 211 123
Nvidia Kepler GK104, GTX 680 1638 98.3 309 75.0 219 60.4
Nvidia Fermi GF100, Tesla C2050 655 302 241 116 196 98.6
Nvidia Fermi GF110, GTX 590 794 114 304 78.5 236 69.4
AMD South. Isl. GCN, HD 7970 1322 699 421 473 145 137
AMD North. Isl. VLIW4, HD 6990 560 403 96.4 79.1∗ 62.7 52.5

of different numbers of cores. These can be further aggregated into shared and dis-
tributed memory systems of several chips. A comparison will have to balance the
number of cores to compare, based on some criterion. So far we compared single
cores, which includes instruction level parallelism and vector instructions.

Memory bandwidth bound algorithms on shared memory systems, especially
on multi-core processors, will not show substantial parallel speed-ups. However,
algorithms on private caches do scale. This is the case at least for one time slicing
algorithm in 1D [8] and we expect it for 2D (L1 and L2 cache) and for the sliding
window algorithm up to 3D. Beyond this, we expect a slow down due to shared
LL cache and main memory. However, also shared LL cache and main memory
usually scale for large numbers of cores. Note that the GPU experiments already
take this into account, as all GPU cores execute the algorithm. Hardware multi-
threading on Intel CPUs and two cores per module on AMD Bulldozer may
accelerate a multi-threaded code, as long as a single thread does not fully load
the floating point pipeline.

So far we neglected the treatment of the boundary nodes. However, in a paral-
lelization based on domain decomposition, expensive inter-processor communica-
tion takes place by exchange of boundary data. Note that the algorithms differ
in the communication pattern, but not in the total amount of data to trans-
fer. The communication would again be more pronounced in higher dimensions
and for higher order stencils, where the ratio of boundary nodes to inner nodes
increases. We refer to [6,14] for multi-core and to [4,7] for distributed memory.

7 Conclusions

We were able to develop efficient vectorized sliding window and time slice im-
plementations of Finite Differences in one, two and three dimensions, orders two
to twelve and isotropic and anisotropic symmetric operators, for CPUs with x86
AVX vector instrinsics and GPUs in Cuda and OpenCL. The optimization tech-
niques include various vectorization strategies, a change of data layout and loop
unrolling. The result showed whether one of the algorithms was able to sustain
high processor performance and to tolerate main memory latency: Time slicing
tends to be superior for smaller Finite Difference stencils and large cache hierar-
chies found on current CPUs, while sliding window was better for larger stencils
and larger register files like on GPUs.
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Interesting generalizations of the model problem include variable coefficient
difference stencils and systems of equations and hierarchies of grids with mesh
refinement and multigrid algorithms [6,11,12,13]. The data access patterns are
more complex and the amount of data per grid point increases.
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Abstract. Osteoporosis is considered as a major health problem in the
world. An understanding of the behavior of human bone under cyclic
load requires numerical simulation of the physics. For that purpose, a
large scale poroleastic solver is developed based on the mixed finite el-
ement method. This approach is free of numerical instabilities yet the
discretization leads to an indefinite system that needs special attention.
In this work, a comparison is made on several preconditioners that work
efficiently in parallel environments.

Keywords: poroelasticity, finite elements, flexible GMRES, optimal
preconditioning.

1 Introduction

Poroelasticity is the science of deformation of porous media filled with fluids.
The foundations of the classical theory of poroelasticity is stated by Biot [5]
at which a porous Hookean solid is coupled with Darcy’s law in conjunction
with continuity to model the fluid passing through the pores of the solid matrix.
Although there exist other methodologies like the mixture theory [6] and also
recently introduced microscopic theory and multiscale approaches [8,9], Biot’s
consolidation has a wide range of application in groundwater flow, biomechanics,
coastal engineering and also in geothermal problems [7]. This work, on the other
hand, is motivated by the disease called osteoporosis.

Osteoporosis is considered a major health problem that affects nearly 200
million people worldwide [17]. 37.5% of them are in Europe, the USA and Japan
which cover only around 11% of the world population. This is mainly because
the life expectancy is higher in developed countries and the disease mostly affects
elderly people and especially women. In fact, according to the WHO, the risk for
an osteoporotic fracture in women above 50 years is about 50%, for men the risk
is about 20%. The European Union recognized this issue and supported a project
called VPHOP to create a framework that aims at detecting possible patients
precociously that potentially might suffer from osteoporosis. In this connection,
a solver called ParFE [3] has been developed to model linear elastic response of
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realistic bone structures to exterior forces. The code is highly adapted to voxel-
based models that have been generated by CT-scans. It is used by researchers
that focus on bone remodeling which investigates the changes on the bone struc-
ture exposed to cyclic load. This adaption, the so called remodeling of the bone
to environmental loading conditions is known as Wolff’s law. Recently, Adachi
et al. [1] analyzed this issue using a formulation that takes wall shear stresses
at the lacuno-canalicular level of trabecular bone into account. Calculations of
these values, on the other hand, require the analysis of bone poroelasticity [10]
hence our aim was to extend ParFE to include poroelastic effects.

There are a couple of approaches to discretize the governing equations of
Biot’s Consolidation. In u-p formulation, specific velocity, f is eliminated from
the equations. Unfortunately, when piecewise linear (so-calledQ1-Q1) basis func-
tions are used with the standard Galerkin approach, oscillatory pressure fields
are observed. To date, various strategies are suggested to stabilize u-p formula-
tion [2], [25], [27]. One of the proposed remedies is to use higher-order approx-
imations for u than for p (Q2-Q1). Even if this pair is stable, second or higher
order basis functions are prohibitive in terms of memory consumption. Further,
in the analysis of bone structures the number of finite elements cannot be re-
duced since the geometry is approximated quite inaccurately anyway. Therefore,
higher order elements do not improve the accuracy. Another approach would be
to use a stability mechanism based on additional terms in the governing equa-
tions. In this scenario, the original form of the equations is not used anymore,
and, additionally, there is a need for tuning of some stability parameter which
is not known beforehand and requires computational experiments.

Instead of pursuing a displacement-pressure formulation, a u-f -p approach is
employed in this study. This approach is free of instabilities and treats f as a
primary variable. It also ensures continuity across element faces [12]. Further-
more, it acts as a stepping stone to more advanced analysis that might include
Stoke’s Flow for instance. On the other hand, this formulation requires storing
more unknowns, i.e. all flux variables, and also a mixed finite element formula-
tion should be used. In this formulation, the continuous problem turns into a
saddle point problem. There are special iterative methods to solve symmetric
indefinite systems, most notably SYMMLQ and MINRES [20]. These methods
can suffer from loss of orthogonality among the Krylov vectors whence often
GMRES [22] is used instead. A Krylov method is only efficient with an appro-
priate preconditioner. There is a variety of preconditioners available for saddle
point problems, see [4] for a survey. Some preconditioners are specially adapted
to problems from geomechanics [14]. In this study, we investigate block-diagonal
and block-triangular preconditioners with a similar structure as the original sys-
tem. We use AMG V-cycles to approximatively solve with the symmetric positive
definite diagonal blocks.

Motivation behind this study is the simulation of bone remodeling which is a
time-dependent phenomena where the changes in the geometry should be taken
into consideration. Here, we focus on the fast and efficient solution of linear
systems arising from the discretization of the problems bearing in mind the
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transient behavior of the governing equations. We envisage this solver to be a
corner stone towards an efficient simulation of bone remodeling.

This article is organized as follows: In the next section, the governing equations
and physical parameters of poroelasticity will be introduced. In Section 3 we
discuss the numerical methods both in terms of the finite element discretization
and the solution of the resulting indefinite linear problem. In section 5, results
of rectangular domains and real bone geometries are discussed with particular
interest on parallel processing. Finally, we summarize our study and make some
suggestions for future work.

2 Mathematical Modeling

In order to model a poroelastic material, a set of three equations are needed.
These are (i) the equilibrium equation which is to model elastic deformation,
(ii) Darcy’s law to model fluid flow, and (iii) mass conservation [26]. For a linear
isotropic material, the equilibrium equation can be stated as

∇·(2με(u(x, t))) +∇(λ∇·u(x, t))− α∇p(x, t) + F (x, t) = 0, (1)

where u is the displacement, ε is the linearized strain tensor,

ε(u) =
1

2

(
∇u + (∇u)T

)
,

p is the pressure, F is the external force, λ and μ are the Lamé parameters, and
α is the Biot–Willis coefficient. The Lamé parameters are related to the Young’s
modulus E and the Poisson ratio ν by

λ =
Eν

(1 + ν)(1 − 2ν)
=

2Gν

(1− ν) , μ =
E

2(1 + ν)
.

The second equation of poroelasticity is Darcy’s law,

f = −k
η
∇p, (2)

that states that the fluid velocity f depends on the gradient of the pressure which
is defined in excess of the hydrostatic pressure. Here, k is the permeability and
η is the dynamic viscosity. Mass conservation can be written as

α
∂

∂t
∇·u+ Sε

∂p

∂t
+∇·f = Sf , (3)

where the specific storage at constant strain Sε is a measure of released fluid
volume per unit pressure in the control volume. Sf is an external source or sink.

The boundary conditions are given by

u(x, t) = uD, on ∂ΩD,

σ(x, t)n(x) = t(x, t), on ∂ΩN ,

f(x, t) · n(x) = 0, on ∂Ω.

(4)
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We approximate the temporal derivatives in (3) by the implicit Euler method
with time-step τ to obtain

α∇·u(x, t) + Sεp(x, t) + τ∇·f(x, t) = τSf + α∇·u(x, t− τ) + Sεp(x, t− τ).

We impose the initial conditions

u(x, 0) = u0, p(x, 0) = p0, x ∈ Ω. (5)

In numerical tests, initial conditions might be assumed to be zero which satisfy
the original set of equations. Or u0 and p0 could be calculated from the loading
like detailed in Section 5.1.

Although the system of equations is closed with (1), (2) and (3) including (4)
and (5), some additional formulae are needed to compute the material properties.
The constrained storage coefficient Sε seems to be one of the parameters the
calculation of which requires special attention. We can use,

Sε =
1

K ′
s

(
1− K

K ′
s

)
+ φ

(
1

Kf
− 1

Kφ

)
(6)

where the porosity, φ, and the bulk moduli of the phases are used. In (6), K ′
s

is the unjacketed bulk modulus, Kf is the fluid bulk modulus, and Kφ is the
unjacketed pore bulk modulus [26]. Material properties tabulated by Wang [26]
are computed with the assumption1 that solid-grain modulus Ks is equal to both
K ′

s and Kφ.

3 Numerical Methods

The governing equations are discretized with the u-f -p formulation using mixed
finite elements. Each of the main variables is treated as a primary variable of
the discrete problem. In this approach, the full set of equations (1), (2) and (3)
is used. To employ the finite element method we need weak formulations of
these equations. The weak formulation of Biot’s model of poroelasticity uses the
displacements u ∈ (H1(Ω))

3, the fluid flux f ∈ H(div;Ω), and the pressure
p ∈ L2(Ω) [18] with the appropriate boundary conditions (4). The equations∫

Ω

[2με(u) :ε(v) + λ∇·u∇·v] dΩ − α
∫
Ω

p∇·v dΩ = 0, (7)∫
Ω

K−1f · g dΩ −
∫
Ω

p∇·g dΩ = 0, (8)

−α
∫
Ω

q∇·u dΩ −
∫
Ω

q∇·f dΩ − Sε
∫
Ω

p qdΩ = −
∫
Ω

Sfq dΩ, (9)

have to hold for all v ∈ (H1(Ω))
3, g ∈ H(div;Ω), and q ∈ L2(Ω) satisfying

homogeneous boundary conditions (4).

1 Conditions that hold for this assumption are given by Detournay and Cheng [11].
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For the finite element discretization we assume that the connected domain Ω
is obtained by a 3-dimensional CT scan and is composed of voxels. In the above
u-f -p formulation, we approximate each of the three displacement components
by piecewise trilinear polynomials (Q1), and the pressure by piecewise constant
polynomials (P0). The flux is approximated by Raviart–Thomas (RT0) elements
that have a continuous normal component across element interfaces [15]. The
tangential components can jump. The displacements are determined by their
values at the element corners, the pressure can be represented by its value at
the element center. The RT0 fluxes have a constant normal component on each
element face. Hence, they can be represented by the normal components at
the center of element faces. In a voxel, there are 24 degrees of freedom for the
displacements, 6 degrees of freedom for the fluxes, and one degree of freedom for
the pressure.

The advantage of this formulation over some other approaches like u-p, is
that the resulting discrete problem is stable and does not need additional terms
to provide a stable numerical solution [12]. Because of the same reason the
original set of governing equations are kept intact. Also, since there is no stability
term, there is no need to perform computational experiments to find a optimized
stability parameter. Even if the total number of unknowns are higher than with
the u-p formulation, fewer nonzeros are generated in the global matrix. This
is more decisive when subblocks of the global stiffness matrix are to be stored.
Additionally, flux values are continuous across element boundaries as stated by
Ferronato et al. [12] which secures mass conservation. Having available the full
set of primary variables, the improvement of the model to Stoke’s flow can be
realized with less difficulty since the fluxes are kept as primary variables. This
approach avoids the calculation of the flux values in post-processing, as well.

The finite element discretization of the u-f -p formulation leads to the 3 × 3
block matrix

A x ≡

⎡⎣Auu O AT
pu

O Aff AT
pf

Apu Apf −App

⎤⎦⎡⎣uf
p

⎤⎦ =

⎡⎣00
b

⎤⎦ . (10)

With appropriate boundary conditions, the diagonal blocks Auu, Aff , and App

are symmetric positive definite, such that the whole 3× 3 block matrix is sym-
metric indefinite. Note that App is diagonal. Also Aff has a simple structure.
Since the RT0 vector basis functions on cubical finite elements have only one
nonzero component, Aff consists of essentially 1-dimensional, i.e. tridiagonal,
pieces.

There are three widely used Krylov space methods for solving the symmetric
indefinite system in (10). While MINRES and SYMMLQ are designed for solving
precisely this type of equationss [20] the generalized minimal residual method,
GMRES, is a solver for general linear system [22]. GMRES can be adapted
to symmetric system such that it generates a symmetric tridiagonal projected
matrix but still performs complete reorthogonalizations [23].

A crucial ingredient for the success of any Krylov space method is the precon-
ditioner. We consider first symmetric positive-definite block-diagonal precondi-
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tioners similar to the one suggested by Lipnikov [18] for mimetic finite difference
methods. Preconditioning A in (10) by the symmetric positive-definite block-
diagonal matrix

M0 :=

⎡⎣Auu

Aff

Spp

⎤⎦ , (11)

with the negative Schur complement

Spp = App +ApfA
−1
ff AT

pf +ApuA
−1
uuA

T
pu, (12)

has just three (multiple) eigenvalues provided that App vanishes [19, Remark 1].
Here, App �= 0. But, since ‖App‖ is small (O(h3Sε)), we argue that M−1

0 A
has three clusters of eigenvalues that make Krylov methods still converge in a
few iteration steps.

Lipnikov [18] suggests two simplifications that make M0 cheaper to implement
without compromising its quality: (i) the matrix Aff is replaced by its diagonal
Dff , and (ii) the exact Schur complement Spp is approximated by

S̃pp = App +ApfD
−1
ff AT

pf , (13)

i.e., the last term in (12) is neglected. This term is O(1) while ApfD
−1
ff AT

pf ≈
ApfA

−1
ff AT

pf , that approximates the Laplacian −∇·∇, behaves like O(h−2). The

approximate Schur complement S̃pp is spectrally equivalent to Spp [4].

While Spp is dense, S̃pp is a finite difference approximation of −α1Δp+ α2p
with α1∼αΔth3 k

η and α2∼h3Sε. Therefore, we suggest to use the preconditioner

M :=

⎡⎣Muu O O
O Dff O
O O Mpp

⎤⎦ , (14)

where Muu and Mpp are multilevel preconditioners (a fixed number of V-cycles)

calculated directly from Auu and S̃pp, respectively.
Instead of a fixed number of V-cycles, we could solve these systems by the

conjugate gradient method, preconditioned by Muu and Mpp.

Remark 1. We could replace the diagonal block Dff in M by Aff . The factor-
ization of Aff does not produce fill-in.

We also consider preconditioners with block-triangular structure,

M1 :=

⎡⎣Auu O AT
pu

O Aff AT
pf

O O Spp

⎤⎦ . (15)

A Krylov space method for solving (10) preconditioned by M−1
1 converges in two

iteration steps [4,19]. As with M0 the diagonal blocks of M1 are approximated
by a fixed number of V-cycles or solved by PCG to high accuracy. The latter
potentially leads to a very small number of iteration steps.
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4 Parallel Implementation

Our code is written in C++ using software from the Trilinos project [16,24]. The
foundation of Trilinos is the Epetra package which allows to define and build par-
allel matrices and vectors. Epetra hides the MPI communication behind sophis-
ticated C++ constructs. GMRES is implemented in the package Belos which is
a templated library of basic Krylov solvers. Belos also provides Krylov subspace
recycling that will be helpful in the time dependent problems. The ML package
provides smoothed aggregation-based algebraic multilevel preconditioners. For
repartitioning of the variables a segregated approach is followed meaning that
the primitive variables are distributed independently. We employed the proce-
dure inherited from ParFE [3] to distribute the nodes (displacements) by means
of ParMETIS [21]. The faces (flow) and elements (pressure) were distributed
individually by calls to the Isorropia package of Trilinos. This may cause some
unnecessary communication when we apply off-diagonal blocks in A or M .

In addition to the connectivity list (element-to-node table) used in the elas-
ticity problem, two additional tables are needed to form the system matrix: an
element-to-face table and an element-neighbor list. Both tables have six columns.
They can be easily created from the initial CT image.

5 Results and Discussion

In this section, results of two sets of problems will be discussed. First, a well-
known benchmark problem is presented which is used to verify the solver. Rect-
angular full domains in 3D are analyzed where the parallel performance of the
solver is investigated. Later, a real life problem will be tested to monitor the
strength of the solver on bone-like structures.

5.1 Full Domains
p(L, 0+)

z

Fig. 1. Loading on the body

There are a number of test problems used in
geomechanics to check the validity of solvers.
Here, we use Terzaghi’s consolidation prob-
lem for which there exist a transient analytical
solution [26]. Mathematically, the problem is
1D but with appropriate boundary conditions,
the loading can be modeled in 3D, as we did
in our analysis. The geometry of the model
is depicted in Fig. 1. The solutions u and p,
respectively, are given by

u(z, t) = cMp0

[
(L − z)− 8Lp0

π2

∞∑
n=0

1

(2n+ 1)2
exp

(
−N2ct

)
cos(Nz)

]
+ u0,

p(z, t) =
4p0
π

∞∑
n=0

1

2n+ 1
exp

(
−N2ct

)
sin(Nz),
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in which L is the length of the column, c is the diffusivity coefficient [11] and

N ≡ (2n+1)π
2L . Ku is the undrained bulk modulus and M is the Biot modulus.

The initial conditions for u and p are given by

w0(z) = −
z

Ku + 4μ
3

pL, p0(z) =
αM

Ku + 4μ
3

pL, (16)

In this test problem, the medium is assumed to be incompressible, hence α is
set to unity. Material properties listed in Table 1 are taken similar to those used
in [12] and the references therein.

Table 1. Material properties for benchmark problems

parameter value parameter value

λ 40.0 MPa k 1.02 × 10−6 mm2

μ 40.0 MPa η 1.0 × 10−9 MPa s

α 1 Sε 1.65 × 10−4 MPa−1

The sizes of the model problems are given in Table 2. As observed from the
table, the number of unknowns scales approximately with factor eight. The mesh
of model b 4 is shown in Fig. 2.

Fig. 2. Mesh b 4

The tests are performed with right-precon-
ditioned FGMRES(100) with an outer toler-
ance of 10−5. The inner tolerances are kept
equal for inner solves except that ofAuu block
where a lower convergence criteria, 10−8, is
pursued for a high accuracy solution. Clearly,
the solver scales well for large problems as
seen from Fig. 3. However, for each of the
three cases, b 32, b 64, and b 128, the block-
diagonal preconditioner is faster. This is coun-
terintuitive despite the fact that the number

Table 2. Test meshes for the first benchmark problem

mesh id elements nodes faces total dof

b 1 30 124 151 553

b 2 240 529 964 2 851

b 4 1 920 3 025 6 736 17 731

b 8 15 360 19 521 49 984 123 907

b 16 122 880 139 009 384 256 924 163

b 32 983 040 1 046 529 3 011 584 7 134 211

b 64 7 864 320 8 116 225 23 842 816 56 055 811

b 128 62 914 560 63 918 081 189 743 104 444 411 904
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Fig. 3. Strong scaling on the test problem (A: block-diagonal, B: block-triangular)

of iterations are increasing with the mesh size and requires more iterations com-
pared to block-triangular preconditioner as given in Table 3. This is a sign that
a simpler implementation of the second preconditioner would suffice. One idea
might be to relax the necessity to get a high accuracy solution for inner block
solves. This is discussed next.

Table 3. Number of outer iterations

preconditioner b 1 b 2 b 4 b 8 b 16 b 32 b 64 b 128

diagonal 58 82 84 86 84 90 92 94

triangular 20 31 33 36 38 39 39 41

Effect of Inner Tolerances. As explained before, the block-triangular pre-
conditioner performs inner PCG solves. For each three block solutions, different
stopping criteria are applied. In our numerical tests, we observed that the success
of this second preconditioner depends solely on the tolerance of the Auu problem
while the effect of the accuracy on Aff and Spp blocks are merely significant.
The performance of the block-triangular variant tested on the b 64 model is
depicted in Fig. 4. Although the number of outer iterations are reduced to a
constant value for lower inner tolerances on Auu, the run-time is shortest for a
stopping criterion of 10−5. The same trend is observed both for 216 and 1296
cores. Since the outer convergence criteria was also set to 10−5, this raises the
question whether the tolerance of the best inner stopping criterion is equal to
the tolerance of the outer iteration. For that purpose, we performed additional
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simulation with varying outer tolerances. The results are given in Fig. 5 for the
b 64 model on 216 cores.

Clearly, 10−5 seems to be a good choice for the inner tolerance of the elas-
ticity block when solution time is considered. The number of outer iterations
tend to stay constant for smaller inner tolerances even for different stopping
criteria for FMGRES. Yet, an inner tolerance of 10−5 is not enough to beat the
block-diagonal preconditioner in run time. This suggests modifications on the
implementation of the inner solves, which is considered next.

Variations on thePreconditioners. Another approachmight be to avoidPCG
and to use the multilevel preconditioner only. Similarly, we can add PCG acceler-
ation on the first preconditioner with a probable sacrifice on run time but with an
iteration count that is less sensitive to problem size. As a result, we test two addi-
tional preconditioner variants. The results for b 32 and b 64 are listed in Tables 4
and 5, respectively. Diagonal-I and Triangular-I are the original preconditioners
introduced before. Diagonal-II is accelerated by PCG (tol=10−5). The same tol-
erance is also used in Triangular-II instead of 10−5 as suggested in previous sec-
tion. Triangular-III uses also the multilevel preconditioner only and that actually
pays off when compared against the block-diagonal preconditioner, Diagonal-I. In
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addition to the absence of inner solves,Aff block is replaced by its diagonal,Dff .
The number of iterations for diagonal-II are fixed, 75 and 73 iterations are re-
quired for b 32 and b 64, respectively meaning that the iteration numbers are
staying constant both in weak and strong scaling. Yet the run-time is prohibitive.
On the other hand, the number of outer iterations for triangular-III shows a slight
increase. Instead of 39 iterations as carried out by the original triangular precon-
ditioner, now 68 and 79 iterations are needed for those twomodel problems. So, for
fast solutions wemust sacrifice on the outer iterations. Depending on the geometry
and material properties, a different set of solution parameters can also be used to
reduce the computational time. For the given geometries, however, we found the
current setting leading to optimal solution times.

Table 4. Comparison of the preconditioners for b 32 – run time (in seconds) and
iteration count

# cores diagonal-I diagonal-II triangular-I triangular-II triangular-III

36 56.0 (79) 301 (75) 177 (39) 158 (48) 57.2 (65)

72 21.4 (79) 147 (75) 89.0 (39) 77.9 (48) 24.9 (67)

144 10.1 (81) 95.2 (75) 43.3 (39) 38.3 (48) 12.3 (68)

216 6.95 (83) 49.7 (75) 30.3 (39) 27.6 (48) 8.43 (69)

Table 5. Comparison of the preconditioners for b 64 – run time (in seconds) and
iteration count

# cores diagonal-I diagonal-II triangular-I triangular-II triangular-III

216 84.0 (91) 497 (73) 298 (39) 249 (45) 93.7 (74)

648 24.2 (91) 183 (73) 111 (39) 92.0 (46) 30.6 (81)

1296 13.3 (95) 103 (73) 61.9 (39) 50.8 (45) 18.0 (84)

5.2 Bone Structures

After testing full domains of various sizes, we performed several computations on
bone samples. A bone sample, c 1, with a voxel size of 0.05mm is taken as the
basic mesh from which larger meshes, c 2, c 4, and c 8, are created by mirroring
in 3D [3]. The problem sizes are listed in Table 6 and the two smallest sample
models are shown in Fig. 6. The bodies are compressed along the z-direction
with a fixed displacement value of 0.032mm, 0.064mm, 0.128mm, 0.256mm.
Pressure and displacement values are kept as zero, initially. Computations are
held on 2, 16, 128, and 1024 cores for the model geometries, respectively.

When we analyze the results on all four problems, we observe that the block-
diagonal preconditioner is still the fastest in solution time. The block-triangular
preconditioner is optimal in terms of the number of outer iterations, 5 and 7 using
inner tolerances of 10−8 and 10−5 in the Auu solves. However, when considering
the time spent on computations to perform a weak-scaling analysis, we see that
the run-time does not stay constant.
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Fig. 6. Meshes c 1 and c 2

Table 6. Test meshes on a bone sample

mesh id elements nodes faces total dof
c 1 17 919 32 413 66 857 182 015

c 2 143 352 255 884 532 656 1 353 660

c 4 1 146 816 2 033 868 4 252 720 11 501 140

c 8 9 174 528 16 218 248 33 987 648 91 816 920

Table 7. Bone samples: Belos time (in seconds) and number of outer iterations

preconditioner c 1 c 2 c 4 c 8

diagonal-I 3.42 (33) 14.8 (68) 21.6 (85) 34.9 (98)

triangular-I 8.67 (5) 22.2 (5) 34.0 (5) 56.1 (5)

triangular-II 6.94 (6) 20.6 (7) 30.3 (7) 50.0 (7)

triangular-III 5.94 (35) 22.1 (71) 33.5 (92) 51.9 (111)

6 Conclusions

In this study, the micro finite element analysis of bone poroelasticity is inves-
tigated. The mixed finite element method is used to discretize the problem us-
ing the u-f -p formulation. Displacement components are modeled with trilinear
voxel elements whereas flux values are discretized with lowest order Raviart–
Thomas elements. The pressure is represented by piecewise constants. The result-
ing saddle point problem is solved with flexible GMRES. Two different types of
preconditioners are introduced, a block-diagonal and a block-triangular. An ap-
proximate Schur complement is calculated on the pressure block which improves
the performance of the solver. Multilevel preconditioners are applied separately
to each diagonal block. Additionally, PCG is employed in the block-triangular
preconditioner to improve the accuracy of the inner solves. The solver is first
tested against benchmark problems and validated in time. Strong scaling tests
are performed and it is observed the solver scales well. In comparison of both
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preconditioners; it is noticed that the triangular variant is optimal in the sense
that the iteration count is independent on the problem size. On the contrary, the
block-diagonal preconditioner, although not optimal, is faster in solution time.
In top of those preconditioners, two additional modifications are performed to
test preconditioners that lay in between blocks diagonal and triangular precon-
ditioners. It is seen that the inner solutions should not be too accurate and
even they can be avoided and replaced my multilevel preconditioners, only. The
computations are repeated for bone samples. At the end, it is observed that the
resulting solver is successful to simulate bone poroelasticity.

Future work on large scale bone poroelasticity includes better distribution of
the unknowns by graph repartitioning. Primary variables should be considered
coupled instead of independent of each other. Future studies will also include the
implementation of bone remodelling where the adaptation of the bone structure
to external loading is considered. In remodelling, the mesh geometry changes.
This affects (i) the problem size and (ii) the connectivity of both nodes and
faces. It will be a big challenge to update the affected data structures efficiently.
Furthermore, in the context of the solver, (iii) the initial data and (iv) the
preconditioner have to be modified to take into account the geometric changes.
The envisaged computational overhead might be alleviated by remodelling only
after some number of time steps. To simplify the geometric representation of the
domain a larger than necessary domain of voxels may be generated. Individual
voxel are turned on or off by varying material properties ranging from 0 to real
values [13].

Finally, the poroelastic solver can be extended to cover nonlinear effects to
examine large deformations and fracture and further, non-isothermal features
can be implemented which is useful to analyze geothermal systems.
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Abstract. This contribution deals with numerical upscaling of the elas-
tic material behaviour, namely of geocomposites, from microscale to
macroscale through finite element analysis. This computationally de-
manding task raises many algorithmic and implementation issues related
to efficient parallel processing. On the solution of the arising bound-
ary value problem, considered with either Dirichlet or Neumann bound-
ary conditions, we discuss various parallelization strategies, and compare
their implementations in the specialized in-house finite element package
GEM and through the general numerical solution framework Trilinos.

Keywords: upscaling in elasticity, large scale linear systems, singu-
lar systems, iterative solvers, aggregation based preconditioners, parallel
computation, Trilinos.

1 Introduction

Processes in materials that allow us to distinguish at least two separate scales
(macroscale and microscale) are investigated in many applications including
biomechanics (see e.g. [1]) and geomechanics (see [9]). The solved problems have
dimensions typical for the macroscale whereas the microscale heterogeneity is not
visible in their discretization by the finite element (FE) method. However the
microscale influences the (material) properties which are used at the macroscale
analysis.

This paper considers the upscaling of elastic behaviour of the material by
means of numerical simulation of laboratory of in-situ testing of the materials,
i.e. by loading material samples possessing the microstructure and observing
their global deformation response.

We particularly investigate the mechanical behaviour of geocomposites arising
from grouting a rock matrix by a polyurethane resin. The properties of specific
coal geocomposites, which are characterized by a very complicated inner struc-
ture, can be achieved by numerical upscaling, which implements stress and strain
driven tests based on microscale FE analysis.

The upscaling uses FE computations on very dense finite element meshes cor-
responding to 3D computer tomography images. The computations then require
solution of large scale systems, which can be in addition ill-conditioned due to
material heterogeneity and the use of pure Neumann boundary conditions in the
case of stress driven tests. This motivates application of efficient iterative solvers
running in parallel computing environments.
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2 Numerical Upscaling

The upscaling in elasticity aims at obtaining macroscale elasticity tensor CM ,
which appears as representation of the macroscale (averaged) stress-strain rela-
tion,

〈σ〉 = CM 〈ε〉 , (1)

where ε and σ are strains and stresses in the microstructure, 〈 · 〉 denotes com-
ponentwise averaging operator. The strains and stresses in the microstructure
are computed by solving the following boundary value problem

−divσ = 0
σ = Cmε

ε = 1
2

(
∇u+ (∇u)T

)
⎫⎬⎭ in Ω + boundary conditions on ∂Ω. (2)

Here Cm = Cm(x) denotes local elasticity tensor in the microstructure, which
can change rapidly (oscillatorily) with x ∈ Ω, where Ω denotes the body of a
sample (a representative volume). The volume forces are zero and the loading is
given by boundary conditions, e.g.

u(x) = ε0 x on ∂Ω, (3)

σ(x) · ν(x) = σ0 · ν(x) on ∂Ω, (4)

Here ν denotes the unit outward normal to the boundary ∂Ω, (3) are pure Dirich-
let boundary conditions with given strain tensor ε0 and (4) are pure Neumann
boundary conditions with given stress tensor σ0. The pure Neumann (traction)
boundary value problem is solvable, if∫

∂Ω

(σ0 · ν(x))v(x) dx = 0 ∀v ∈ V0, (5)

where V0 is the space of all rigid body motions compatible with the boundary
conditions, in our case V0 = {v : v(x) = a + b × x, a, b ∈ R3}. Note that the
compatibility conditions (5) follows directly from the variational formulation of
the elasticity problem and guarantee the existence of its solution, see e.g. [12].
The verification of (5) is straightforward. For the two described types of loading,
we have no specific requirements on Ω. The use of six independent choices of
ε0 or σ0 allows us to determine generally anisotropic elasticity tensors Cε or Cσ,
respectively.

The loading with mixed boundary conditions like

u(x) · ν(x) = 0 on Γ01, u(x) · ν(x) = u0 on Γ02, σt(x) = 0 on Γ01 ∪Γ02, (6)

σ(x) · ν(x) = 0 on Γ1 = ∂Ω \ (Γ01 ∪ Γ02), (7)

where σt denotes tangential stress, allows us to simulate laboratory tests, as a
uniaxial compression/tension. For (6), we assume cubic or cylindrical domain
Ω with bottom and top faces Γ01 and Γ02, respectively. Again the consistency
conditions can be verified.
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The Cε and Cσ provide bounds (in the energetic sense) for macroscopic elastic-
ity tensors CM computed with the use of different boundary loading. Moreover,
Cε − Cσ is positive semidefinite and its norm can be used for assessing the suffi-
ciency of the size of Ω as a representative volume for the heterogeneous material,
see e.g. [15] for more details. These facts motivate solving of the elasticity prob-
lems with both pure Dirichlet and pure Neumann boundary conditions.

Note that one loading with ε0 or σ0 is enough for establishing isotropic
macroscale elasticity tensor CMε = 3KεV +2GεD, where εV and εD denote the
volumetric and deviatoric part of ε, respectively. Obviously, 3K = ‖σV ‖/‖εV ‖
and 2G = ‖σD‖/‖εD‖.

To compute the macroscale elasticity tensor CM , we solve the boundary value
problem (2) with selected boundary conditions by the FE method. Particularly,
we use FE software GEM (see [6]).

The FE mesh is prepared from digital images produced by the industrial X-ray
computer tomography (CT) [9], which allows us noninvasive and nondestructive
data acquisition on the inner microstructure of the domain of interest. The dis-
cretization divides regular rectangular voxel based elements into six tetrahedra
in a way known as the Kuhn’s decomposition and further uses piecewise linear
FE approximation.

Fig. 1. An image taken by X-ray computer tomography in full size (512×512 pixels)
and the investigated geocomposite area only (231×231 pixels)

In our experiments we employed a sample of a coal geocomposite of a cu-
bic shape and 75mm edge. Its microstructure was taken by the X-ray com-
puter tomograph Toshiba, used with the courtesy of the Kumamoto University,
which produced a set of images, see Figure 1, corresponding to parallel cuts
through the sample. The reconstructed voxel grid has 231×231×37 elements
0.3×0.3×2.0mm in size, and each voxel is supposed to be filled by a homoge-
neous material (coal, polyurethane resin, empty volume). The resulting linear
system has then 6 135 936 degrees of freedom.
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3 Parallel Iterative Solvers

The challenge in the modelling sequence is the solution of the arising large FE
systems. The complicated microstructure geometry in 3D leads to systems of mil-
lions of degrees of freedom. The paper [1] reports even the solution of biomedical
problems with over a billion degrees of freedom. Therefore we consider iterative
solution methods like the conjugate gradient or another Krylov type iterations,
see [13].

Moreover, the systems are ill-conditioned due to fine discretization and hetero-
geneity with possible large jumps in the material coefficients. Aiming at efficient
and parallelizable preconditioners, we exploit two-level or multilevel precondi-
tioners with coarse spaces created by aggregation, see e.g. [2], [14], [11], [7].

Finally the systems can be singular as a consequence of the used boundary
conditions like (4) or (6) or presence of finite elements weekly hanged in the void
space of the CT images. The latter phenomena can be easily removed by filling
the voids with very week elastic materials. The former singularity due to non-
trivial but known null space of the FE matrices can be solved by incorporation
of an orthogonal projection to the matrix range into the iterative algorithms,
see e.g. [10].

3.1 GEM Software

For practical computations we enhanced the in-house finite element modelling
package called GEM, which is oriented on problems of geotechnics [6]. It is
based on structured grids, linear tetrahedral finite elements and features several
parallel iterative solvers based on the preconditioned conjugate gradient method,
differing in the implemented problem decomposition technique (displacement
decomposition, domain decomposition).

With one-dimensional domain decomposition (DD), GEM partitions the do-
main in the Z dimension into m subdomains (slices) with a two-layer minimal
overlap, performs corresponding decomposition of vectors and matrices and as-
signs them tom concurrent processes, which pursue the conjugate gradient (CG)
algorithm on the corresponding blocks of data. During the matrix-by-vector mul-
tiplication just local communication with neighbour slices is needed and the
amount of communicated data is fairly small and proportional to the overlapped
region.

Moreover, efficient Schwarz type preconditioners can be constructed. Our ver-
sion of these preconditioners can be characterized by inexact solution of subprob-
lems with the aid of incomplete factorization (one-level preconditioner), and by
algebraic creation of an auxiliary global coarse grid by automatic aggregation of
degrees of freedom (two-level preconditioner).

From the technical point of view, the developed parallel realizations of the
preconditioned CG algorithm in GEM follow the message passing paradigm,
and can be implemented by means of any message passing system. We have
made use of the MPI message passing library, called from Fortran codes. The
design gives rise to one master process and a number of slave processes, one per
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domain partition. As a computationally inexpensive task with just controlling
functions, the master can share its processor with one of the workers.

3.2 Trilinos Framework

An effort to state and compare the efficiency and performance of GEM with
another software oriented to the solution of similar problems encouraged us
to try parallel solvers from Trilinos libraries. We chose Trilinos [16] because
this project aims to develop and implement robust algorithms and enabling
technologies within an object-oriented software design for the solution of large-
scale complex multi-physics engineering and scientific problems.

We implemented new parallel code in C++ using only AztecOO, Belos, IF-
PACK, ML, Epetra and Teuchos from more than 50 software packages included
in Trilinos. The first program was prepared in two weeks, when the implementa-
tion of data interface from Fortran (GEM) to C++ (Trilinos) showed to be the
most time demanding part of work. Comparing with GEM, the code development
was much faster (weeks versus months).

Within the code, we used Epetra primarily for construction and manipula-
tion of distributed data structures like matrices and vectors and Teuchos mainly
for smart pointers and parameter lists. The code can switch between the par-
allel CG solvers from the older AztecOO and newer Belos packages, always in
combination with ILU or ML preconditioners. ILU denotes the one-level addi-
tive Schwarz preconditioner with subproblems solved by incomplete factorization
(equivalent to the DD solver from GEM). ML denotes multi-level preconditioner
with smoothed algebraic aggregations, where the Chebyshev smoother for the
fine level and symmetric Gauss-Seidel smoother for the coarse level are used in
our study.

The Trilinos code works with the same one-dimensional domain decomposition
and appropriate distribution of data among processors as the parallel solvers of
GEM.

3.3 Parallel Incomplete Factorization Preconditioners

Both GEM and Trilinos through its IFPACK library use the same parallel in-
complete factorization strategy, which can be also viewed as a one-level additive
Schwarz technique with subproblems replaced by incomplete factorization. If B
is the preconditioner, then

B−1 =

NumProcs−1∑
k=0

RT
k Ã

−1
k Rk,

where Rk is the restriction operator from the global vector to the overlapping
subdomain Ωk, R

T
k is the corresponding prolongation operator, Ãk is generally

an approximation to the subdomain matrix Ak = RkAR
T
k . The overlap can be

defined by user and we shall apply a minimal nonzero overlap for both the GEM
and Trilinos codes.
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It is assumed that each subdomain is assigned to a different processor and the
matrix storage is a special fixed stencil modification of Compressed Row Storage
format (CRS) in GEM, which moreover stores only one symmetric part of the
matrix. The matrix storage in Trilinos uses CRS. The matrix decomposition pro-
vided by both software packages corresponds to splitting of the one-dimensional
vector of indices.

The incomplete factorization Ãk = LkL
T
k is defined as follows. GEM first ap-

proximates the local elasticity matrix Ak by A0
k, which arises by putting to zero

all elements representing coupling between nodal displacement components in
different space directions. Then Ãk = LkL

T
k is a modified incomplete factoriza-

tion of A0
k characterized by zero-fill with respect to A0

k. The detailed description
of this displacement decomposition-incomplete factorization can be found in [3].

IFPACK offers many choices, see [17], which are a bit difficult to compare.
Using a recommendation provided by the default setting, we construct the ILU
preconditioner as

Teuchos::RCP<Ifpack_Preconditioner> ILU;

Teuchos::ParameterList ILU_List;

Ifpack Factory;

int OverlapLevel = 1;

ILU = Teuchos::rcp( Factory.Create( "ILU", &*A, OverlapLevel ) );

ILU_List.set( "fact: drop tolerance", 1e-9 );

ILU_List.set( "fact: level-of-fill", 1 );

ILU_List.set( "schwarz: combine mode", "Add" );

IFPACK_CHK_ERR( ILU->SetParameters( ILU_List ) );

IFPACK_CHK_ERR( ILU->Initialize() );

IFPACK_CHK_ERR( ILU->Compute() );

It means that the fill can result only from combining entries on the original
matrix positions and moreover small entries under the drop tolerance are ig-
nored. Some experiments with parameter setting were done, but no alternative
outperformed the default setting. Concerning particularly the class of elasticity
stiffness matrices, no recommendation was found in IFPACK documentation.

3.4 Two-Level Schwarz Type Preconditioners

The one-level additive Schwarz preconditioner from the previous section can be
enhanced by a coarse grid correction. GEM basically uses an additive variant of
the Schwarz method, i.e. a preconditioner B such that

B−1 = RT
c Ã

−1
c Rc +

NumProcs−2∑
k=0

RT
k Ã

−1
k Rk.

Here Rc denotes a restriction on a coarse space, which is constructed in GEM
by direct aggregation of 3 × 3 blocks corresponding to the nodes of the fine FE
mesh.

As GEM works with structured meshes, we use a structured (regular) aggre-

gations and a rather aggressive aggregation strategy. The matrix Ãc = RcAR
T
c
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is a Galerkin matrix on the coarse space and it is cheap to construct, because
it preserves the regular grid pattern and is computed only by summing the ma-
trix components. Thus the preprocessing phase is cheap. The coarse grid prob-
lem is solved by inner CG iterations, which use a lower accuracy (in our case
ε = 0.01) and the same displacement decomposition-incomplete factorization
preconditioning technique as described above.

The use of inner iterations results in the fact that B is a variable precon-
ditioner. It frequently does not mind, but we stabilize the outer iterations by
explicit orthogonalization, see [4]. More details concerning the GEM two-level
additive Schwarz preconditioner can be found in [5].

Trilinos through its ML package [18] also provides possibility to construct
a multi-level Schwarz preconditioner of a hybrid type, the smoother involves
one level Schwarz method, the coarse space correction is added multiplicatively.
These two steps provide nonsymmetric preconditioner, which can be used di-
rectly, see [4], or symmetrized by adding a third post-smoothing step. The coarse
space is in ML created by smoothed aggregations, see e.g. [14]. The parameters
used in our experiments, further denoted as ML-DD, are as follows

ML_Epetra::MultiLevelPreconditioner *MLDD = 0;

Teuchos::ParameterList DD_List;

ML_Epetra::SetDefaults( "DD", DD_List );

DD_List.set( "max levels", 10 );

DD_List.set( "aggregation: type", "MIS" ); // default: METIS

DD_List.set( "aggregation: nodes per aggregate", 128 );

if( NullSpaceActivated ) {

DD_List.set( "null space: type", "pre-computed" );

DD_List.set( "null space: dimension", v->NumVectors() );

DD_List.set( "null space: vectors", v->Values() ); }

MLDD = new ML_Epetra::MultiLevelPreconditioner( *A, DD_List, true );

3.5 Multilevel Preconditioners

Trilinos through its ML package [18] allows us also to construct multilevel pre-
conditioners based on smoothed aggregations and different smoothers. We make
use of some default choice characterized by the following parameters for com-
parison of the multi-level techniques.

ML_Epetra::MultiLevelPreconditioner *ML = 0;

Teuchos::ParameterList ML_List;

ML_Epetra::SetDefaults( "SA", ML_List );

ML_List.set("smoother:type(level0)","Chebyshev" );

ML_List.set("smoother:type(level1)","symmetricGauss-Seidel" );

ML_List.set("coarse: max size", 8192 );

if( NullSpaceActivated ) {

ML_List.set( "null space: type", "pre-computed" );

ML_List.set( "null space: dimension", v->NumVectors() );

ML_List.set( "null space: vectors", v->Values() ); }

ML = new ML_Epetra::MultiLevelPreconditioner( *A, ML_List, true );
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3.6 Iterative Solution of Singular Systems

For getting some both-side estimates of the homogenized elasticity tensors, we
are interested in solving singular systems corresponding to FE discretization
of elasticity problems with pure Neumann boundary conditions. Theoretically,
there is no problem to solve the singular and consistent systems by CG and sim-
ilar methods. But practically, because of round-off errors, the solved systems can
be ill-conditioned, due to presence of close to zero eigenvalues, or become slightly
inconsistent. In this case, we can observe bad convergence or even divergence of
iterations, see Figure 2.

A remedy is in use of a projection to the theoretical range R(A), which can be
constructed if we know a basis of the theoretical null space N(A). For elasticity
problems, such basis can be constructed from six rigid body modes {v1, . . . , v6}
and the projection P : Rn → R(A) can be evaluated from the formula

Pv =

6∑
i=1

(v, vi)

(vi, vi)
vi.

With the aid of P we solve the projected system PAPu = Pb, see [10] for details.
In our applications, we can also meet another kind of singularity, correspond-

ing to some weakly hanging elements coming to the FEM discretization from CT
scan of complicated microstructure. This kind of singularity can be effectively
removed by filling the voids with an artificial, very soft material.

4 Numerical Experiments

Our practical numerical experiments were carried out on a Linux workstation
called Hubert, which is based on the TYAN VX50B4985-E barebone and pow-
ered by eight quad-core AMD Opteron 8830/2.5GHz processors (32 cores in
total), 128GB of DDR2 RAM and RAID10 disk subsystem, made up from eight
15 000 RPM SAS drives. On this platform, Trilinos 10.8 and Intel Cluster Studio
XE 2011 (comprising Fortran and C++ compilers and an MPI implementation)
were employed in the experiments.

4.1 A Comparison of the GEM and Trilinos Solvers

The test results of different solvers for the Dirichlet problem are summarized in
Table 1, where one can compare basic solution characteristics (in terms of number
of iterations (#It) and wall-clock computation time (T)). In the case of GEM,
solutions based on one-level additive Schwarz preconditioner combined with an
incomplete factorization (DD) and two-level additive Schwarz preconditioner
with a coarse grid created by aggregates of 6×6×3 original nodes (DD+CG) are
presented. The Trilinos solution is represented by the AztecOO and Belos solvers.
The behaviour of ILU, ML-DD (which are counterparts of DD and DD+CG)
and ML preconditioners was practically the same in those solvers, therefore the
results are shown for one choice only.
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Table 1. Solution of the Dirichlet problem. For various numbers of subdomains (#Sd;
corresponds to the number of processing elements employed), the number of iterations
(#It) and wall-clock computation time (T) are provided. The symbol × means that
the tests crashed due to insufficient operational memory.

GEM Trilinos
DD DD+CG ILU(Aztec) ML-DD(Belos) ML(Belos)

# Sd # It T [s] # It T [s] # It T [s] # It T [s] # It T [s]

1 108 407.8 140 737.5 × 27 482,1
2 111 193.3 69 127.6 187 607.4 20 202.7 26 228,2
4 115 122.9 65 66.1 183 304.1 21 115.8 24 134.3
8 123 71.6 61 39.1 176 195.6 22 66.0 22 79,1

16 144 60.7 61 34.0 152 162.1 25 55.8 20 91,8

In the table, one can observe in general good scalability up to 8 processors,
which is lost with greater number of processors due to the shared memory bot-
tleneck. This happens for all GEM and Trilinos solvers. GEM solution makes
profit from the coarse grid computations involved in the preconditioner, which
shortens the computation (iterations, time) almost to a half. In comparison of
incomplete factorization preconditioners, the number of iterations shows that
the displacement decomposition involved in GEM outperforms the direct ap-
plication of ILU. However there is the issue of tuning the Trilinos parameters.
Similarly, it seems that ML-DD and ML applications are not optimally tuned for
the elasticity problems. In any case, the assembly times, which are not included
in the table, are much higher for ML and the highest for ML-DD.

4.2 Neumann Boundary Conditions

In Figure 2, we can observe the impact of the projections in the modified method.
As one can see on the dependence of the relative accuracy on the number of itera-
tions, projection is crucial for both one-level and two-level domain decomposition
solution.

Now, let us compare the Neumann (with projections) and Dirichlet solutions,
realized in GEM. According to Table 2, the Neumann formulation results in
approximately twice higher iteration counts and computation times.

Table 2. Comparison of the Dirichlet and projected Neumann solution

Dirichlet Neumann
DD DD+CG DD (P) DD+CG (P)

# Sd # It T [s] # It T [s] # It T [s] # It T [s]

1 108 407.8
2 111 193.3 69 127.6 293 541.4 137 256.4
4 115 122.9 65 66.1 302 302.2 124 125.9
8 123 71.6 61 39.1 300 175.3 115 75.7

16 144 60.7 61 34.0 350 148.5 116 73.6
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Fig. 2. Practical impact of the projection (P) on the solution of the Neumann problem
case through one-level and two-level domain decomposition

4.3 Influence of Heterogeneity

Figure 3 illustrates the influence of heterogeneity on the behaviour of our most
efficient solution method, namely on GEM’s domain decomposition solution with
Dirichlet boundary conditions.

Fig. 3. Influence of heterogeneity illustrated on three compositions of the geocompos-
ite sample: coal only (a fully homogeneous case, dashed line), coal and polyurethan
resin (dash-dotted line), coal, polyurethan resin and holes / empty space (the most
heterogeneous case, solid line). The numbers of iterations for GEM solvers: DD (left)
and DD+CG (right).
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The solution with a coarse grid (right) boasts better behaviour than the so-
lution without a coarse grid (left) not only for the lower number of iterations,
but also because its iterations can even decrease with increasing number of sub-
domains, whereas without a coarse grid their number increases. For both solver
alternatives one observes a negative impact of more heterogeneous material com-
positions in terms of increasing number of iterations. Moreover the curves loose
their smoothness.

5 Conclusions

In this paper, we dealt with the micro FEM analysis and upscaling techniques
related to computer tomography and its application in geotechnics. We investi-
gated solvers for numerical upscaling based on a formulation of boundary value
problems either with pure Dirichlet or with pure Neumann conditions, with spe-
cial attention to efficient parallel processing. Moreover, we utilized the Dirichlet
case for a comparison study of two parallel FEM solvers: one in-house, written
from scratch in Fortran and MPI, the other built up from components provided
by the Trilinos framework. Our case study so far recognized a better performance
of the former approach, on the other hand the advantage of the latter was in
the fractional development time. Better performance of Trilinos solvers might
be probably obtained by optimized combination of procedure and parameter se-
lection, but this optimization is very difficult to accomplish only on the basis of
generally available Trilinos documentation.
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Abstract. This paper presents finite difference approximations of two
dimensional in space mathematical model of a bacterial self-organization.
Due to the chemotaxis process some instability of the solution can be de-
veloped in the system, in this paper we show that such instability can
be connected to the ill-posed problem defined by the backward in time
diffusion process. The ADI and splitting type methods are used to con-
struct robust parallel numerical approximations. Domain decomposition
method is applied to distribute subtasks among processors. The scalabil-
ity analysis of the parallel algorithm is done and results of computational
experiments are presented.

Keywords: diffusion-advection-reaction models, splitting schemes,
parallel algorithms, ill-posed.

1 Introduction

Many mathematical problems of biological systems are described by non-sta-
tionary and non-linear diffusion–advection-reaction equations. The dynamics of
their solutions can be very complicated, the interaction of different physical
processes can lead to development of spatial and temporal patterns and insta-
bilities [8]. We consider a two-dimensional mathematical model for simulation
of important self-organization processes in biochemistry applications (see, e.g.
[1,2,9,11]):

∂u

∂t
=

2∑
j=1

[
D
∂2u

∂x2j
− ∂

∂xj

(
χu

(1 + αv)2
∂v

∂xj

)]
+ γru(1− u), (1)

∂v

∂t
=

2∑
j=1

∂2v

∂x2j
+ γ

( up

1 + βup
− v

)
, X ∈ (0, 1)× (0, 1), t > 0,

where u is the dimensionless cell density, v is the dimensionless chemoattrac-
tant concentration, D defines the constant cell diffusion, χ is the chemotactic
coefficient, r denotes the growth rate, α defines the receptor sensitivity, β stand
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for saturating of the signal production, γ defines the ratio of the spatial and
temporal scales, and p ≥ 1. Boundary conditions can vary according to the
biological system, zero-flux and periodical conditions are popular and natural
choices. Here, we use the periodicity conditions.

In the mentioned above papers and books, on the basis of theoretical analysis
and computational simulations it is demonstrated that solutions of chemotaxis
mathematical model can develop complicated spatial-time patterns, which are
observed also in real bioluminescence images. For example, Painter and Hillen
have shown in [9] that the long-time dynamics of the solutions fall into four main
classes: a) homogeneous steady state solutions, b) stationary spatial solutions,
c) stationary-temporal periodic solutions, d) spatio-temporal irregular solutions.

The dynamics of nonlinear systems can be investigated by various mathemat-
ical techniques, an extensive review with many examples and applications can
be found e.g. in [8,9].

It is well-known that the theory of exponential attractors explains important
properties of dynamical systems in infinite-dimensional spaces. Exponential at-
tractors have a very strong stability in approximation. This gives a possibility
to show a global reliability of numerical computations. A review on application
of such results for problem (1) is given in [11].

For any mathematical model it is important to investigate the sensitivity of
the solution with respect to initial data, i.e. to analyze the well-posedness of
the mathematical model. It is well-known that many technological and physi-
cal processes can lead to development of spatial and temporal instabilities in
solutions.

It is shown in [3] that chemotaxis-driven instability can be correlated to the
ill-posed problem defined by the backward in time diffusion process. In gen-
eral, the well-posedness of the model is connected to the important property of
chemotaxis process, that the velocity of advection of u depends on the gradi-
ent of the chemo-attractor. Thus, if the cell density depends monotonically on
the chemo-attractor, then such a dependence leads to anti-diffusion changes of
the cell density. For simplicity of analysis, let us assume that parameter γ is
sufficiently large, but γr ∼ O(1), then due to the fast relaxation we get that

∂u

∂t
=

2∑
j=0

D

[
∂2u

∂x2j
− ∂

∂xj

(
χpup

(1 + αv)2(1 + βup)2
∂u

∂xj

)]
+ γru(1− u). (2)

For specific values of parameters, equation (2) describes a 2D backward in
time parabolic problem and therefore general mathematical model (1) can be
ill-posed.

In order to investigate the long-time dynamics of solutions of mathematical
models similar to (1), the solution should be computed until t = 104 or even
t = 105 in realistic problems. The number of space mesh points also can be close
106 for 2D problems and 108 points for 3D problems (see, [6,9] and references
contained therein). Thus the usage of parallel numerical algorithms is an essential
step in simulation of real-world problems.
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We consider the main steps in construction, analysis and implementation of
efficient parallel numerical algorithms for solution of multidimensional nonlinear
diffusion-advection-reaction type problems. The two-stage approximation strat-
egy is a standard approach for development of sequential numerical schemes
(see, [3,5,6] and references contained therein). First, a Method of Lines (MOL)
approach is used to discretize operators in space on a uniform mesh. Second,
the obtained system of ODEs is discretized by using the combination of ADI
splitting and IMEX (a mixture of implicit and explicit) methods. The discrete
advection operator is approximated by the explicit scheme and diffusion and re-
action operators are solved by using the full-approximation ADI splitting scheme.
The full-approximation is required if we are interested in using this algorithm
to march towards a steady state. The 2D diffusion operators are split in space
coordinates, thus the linear algebra part of the finite difference scheme is reduced
to solving tridiagonal systems of equations. A more simple Locally One Dimen-
sional (LOD) splitting of diffusion operators requires formulation of artificial
boundary conditions, since the intermediate vectors at fractional time steps are
not consistent approximations of the exact solution [6]. The second drawback
of LOD approximations is that the full-approximation property is not valid for
such schemes.

We also mention the Rosenbrock AMF methods which are popular tools for
approximation of (1) type problems [5,6]. But the computational templates of
parallel subproblems obtained after the factorization of Jacobian matrix are the
same as for the ADI splitting algorithms investigated in this paper.

Parallelization of the ADI splitting algorithm is done by using the domain
decomposition method. Here we are interested to investigate the maximal effi-
ciency of the parallel splitting algorithm, therefore the reaction step is also split
from the diffusion operator by using a simple LOD splitting technique. A mod-
ification of the Wang’s factorization algorithm is constructed to solve systems
with tridiagonal matrix obtained after approximation the diffusion operator with
periodical boundary conditions. The scalability analysis of the parallel algorithm
is based on [7,10].

The rest of the paper is organized as follows. In Section 2 we give details of
the numerical techniques which are used for the construction of finite-difference
schemes. Parallel ADI type algorithm is presented in Section 3. The modification
of Wang’s algorithm is presented for solution of linear systems of equations with
tridiagonal matrices and periodic boundary conditions. The scalability of the
parallel algorithm is investigated and the optimal number of processors is defined
by using the complexity estimates of the parallel algorithm. Results of numerical
experiments are presented in Section 4.

2 Numerical Technique

In this section we present numerical techniques which are used to approximate
solutions of system (1). In general we follow papers [5,6].
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2.1 The Method of Lines: Discretization in Space

At the first step we approximate the spatial derivatives in the PDEs (1) by
applying robust and accurate approximations targeted for special physical pro-
cesses described by differential equations. We cover the computational domain
ω := (0, 1)2 by an equi-spaced grid ωh with J computational cells in each direc-
tion, the width of the cell is denoted by h := 1/J . On the semidiscrete domain
ωh× [0, T ] we define functions Uij(t) = U(x1i, x2j , t), Vij(t) = V (x1i, x2j , t), ij =
0, . . . , N − 1, here Uij , Vij approximate exact solutions u(x1, x2, t), v(x1, x2, t)
on the discrete grid ωh at time moment t.

Using the finite volume approach, we approximate the diffusion and reaction
terms by the following finite difference equations:

ADk
(U) = D∂x̄k

∂xk
Uij , k = 1, 2, ARU = γrUij(1− Uij), (x1i, x2j) ∈ ωh,

ÃD1 (V ) = ∂x̄1∂x1Vij − γVij , ÃD2(V ) = ∂x̄2∂x2Vij

ÃRU = γ
Up
ij

1 + βUp
ij

, (x1i, x2j) ∈ ωh.

For chemotaxis term we consider the upwind-based discrete 1D fluxes, e.g., for
x2 coordinate [3,6]:

FT (U, a, 2) = ai,j+ 1
2

[
Uij + ψ(θij)

(
Ui,j+1 − Uij

)]
, ai,j+ 1

2
≥ 0,

FT (U, a, 2, j +
1

2
) = ai,j+ 1

2

[
Ui,j+1 + ψ(1/θi,j+1)

(
Uij−Ui,j+1

)]
, ai,j+ 1

2
< 0,

with the Koren limiter function. Here the discrete spatial approximation of the
velocity is computed by

ai,j+ 1
2
(t) = − χ(

1 + α(Vij + Vi,j+1)/2
)2 ∂x2Vij .

We denote the discrete advection operator as

AT (U, V ) =
1

h

(
FT (U, a, 1, i+ 1/2)− FT (U, a, 1, i− 1/2)

)
+

1

h

(
FT (U, a, 2, j + 1/2)− FT (U, a, 2, j − 1/2)

)
.

Then we get a nonlinear ODE system for the evolution of semi-discrete solutions

dU

dt
= AT (U, V ) +AD1(U) +AD2(U) +ARU, (3)

dV

dt
= ÃD1(V ) + ÃD2(V ) + ÃR(U),

here discrete periodical boundary conditions are included into the definition of
discrete diffusion and advection operators.
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2.2 Time Stepping

In order to develop efficient solvers in time for the obtained large ODE systems
we take into account the different nature of the discrete operators defining the
advection and the diffusion-reaction processes.

Let ωτ be a uniform temporal grid

ωτ = {tn : tn = nτ, n = 0, . . . ,M, Mτ = Tf},

here τ is the time step.
Given approximations Un

j , V
n
j at time tn, we compute solutions at tn+1 =

tn + τ by the following IMEX ADI type scheme: AT is a non-stiff term suitable
for explicit time integration

Ũn
ij = U

n
ij + τAT (U

n, V n), (x1i, x2j) ∈ ωh, (4)

ADk
, ÃDk

, AR, ÃR are stiff terms requiring an implicit ADI treatment

U
n+ 1

2

ij = Ũn
ij + τ

(
AD1 (U

n+ 1
2 ) +AD2(U

n) +AR(U
n+ 1

2 )
)
, (5)

Un+1
ij = U

n+ 1
2

ij + τ
(
AD2(U

n+1)−AD2 (U
n)

)
,

V
n+ 1

2

ij = V n
ij + τ

(
ÃD1(V

n+ 1
2 ) + ÃD2(V

n) + ÃR(U
n+1)

)
, (6)

V n+1
ij = V

n+ 1
2

ij + τ
(
ÃD2(V

n+1)− ÃD2(V
n)

)
.

Such a mixture of implicit and explicit methods gives efficient solvers for each
sub-step of the algorithm and due to the full approximation the stationary so-
lution exactly satisfies the finite difference scheme.

The accuracy of the approximation in time can be increased by applying the
symmetrical version of this scheme, for details see [6].

3 Parallel Algorithm

The main aim of this paper is to investigate the efficiency and scalability of paral-
lel numerical algorithms for approximation of problem (1). Thus in order to find
a bound on the parallel efficiency of split type approximations and to measure
the influence of different parts of the full mathematical model, we have increased
the amount of computations which can be done in parallel by modifying the ba-
sic full-approximation scheme (4)–(6). Using the operator splitting method, we
further split operator AD1 + AR by separating diffusion and nonlinear reaction
terms. Note that for the obtained new discrete scheme the requirement of full
approximation of the stationary solution is not satisfied.

Uij
n+ 1

4 = Un
ij + τAT (U

n, V n), (x1i, x2j) ∈ ωh, (7)

Uij
n+m+s

4m = Uij
n+m+s−1

4m +
τ

m
γrU

n+m+s−1
4m

ij

(
1−Un+m+s

4m

ij

)
, s = 1, . . . ,m, (8)
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U
n+ 3

4
ij = U

n+ 1
2

ij + τ
(
AD1(U

n+ 3
4 ) +AD2(U

n+ 1
2 )
)
, (9)

Un+1
ij = U

n+ 3
4

ij + τ
(
AD2(U

n+1)−AD2(U
n+ 1

2 )
)
,

V
n+ 1

2

ij = V n
ij + τ

(
ÃD1(V

n+ 1
2 ) + ÃD2(V

n) + ÃR(U
n+1)

)
, (10)

V n+1
ij = V

n+ 1
2

ij + τ
(
ÃD2(V

n+1)− ÃD2(V
n)

)
.

The reaction problem (8) is split into m ≥ 1 sub-steps in order to resolve a stiff
reaction problem accurately. We note that such an additional split step does not
change the asymptotical efficiency of the parallel algorithm, as it is shown by
results of the scalability analysis.

A parallel version of the proposed algorithm is developed by using the domain
decomposition method. The two-dimensional decomposition of the space mesh
ωh into P = P1 × P2 subdomains is applied. The advection and reaction steps
are resolved by the same sequential algorithms, only data exchange among pro-
cessors is implemented when the stencil of the finite difference scheme leads to
overlapping of local sub-meshes of different processors.

The standard factorization algorithm for solving linear systems of equations
with tridiagonal matrices is fully sequential and should be changed to some par-
allel solver. Here we use the well-known Wang’s algorithm, but the modification
is done in order to adapt this algorithm for periodic boundary conditions.

3.1 Parallel Factorization Algorithm

Let denote by Uj the 1D vector of unknowns, corresponding to 2D vector {Uij},
where one coordinate, e.g. 1 ≤ j ≤ J , is fixed:

Uj =
(
U1j, U2j , . . . , UM1,j

)
,

where M1 = J/P1 is the number of unknowns in x1 direction belonging to each
processor. Thus we solve M1 one dimensional systems with tridiagonal matrix,
where periodic boundary conditions are taken into account in the first and the
last equations:⎧⎪⎪⎨⎪⎪⎩

−a1UJ + c1U1 − b1U2 = f1,

−ajUj−1 + cjUj − bjUj+1 = fj , j = 2, . . . , J − 1,

−aJUJ−1 + cJUJ − bJU1 = fJ .

(11)

Let assume that P2 processes are used to solve this system. We partition the
system into P2 blocks and denote the number of unknowns in each block by
M2 = J/P2. The p-th process updates a block of equations for j = sp, . . . , fp,
where sp = (p− 1)M2 + 1, fp = pM2.

1. First, using the modified forward factorization algorithm, vector Uj is ex-
pressed in the following form

Uj = αjUj+1+γjUsp−1+βj , j = sp, . . . , fp, s1−1 := J, fP +1 := 1, (12)
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where

αsp =
bsp
csp
, γsp =

asp
csp
, βsp =

Fsp

csp
,

αj =
bj

cj − ajαj−1
, γj =

ajγj−1

cj − ajαj−1
, βj =

Fj + ajβj−1

cj − ajαj−1
.

All processes implement the first step in parallel and the complexity of it is
8M1M2 flops. No data communication among processors is required.

2. Second, the block matrix is diagonalized, except the first and last columns
of the block, i.e. vector Uj is expressed in the form

Uj = αjUfp + γjUsp−1 + βj , j = sp, . . . , fp, (13)

where factorization coefficients are recomputed as:

αj = αj+1αj , γj = γj + γj+1αj , βj = βj + βj+1αj , j = fp − 1, . . . , sp.

The computations are implemented from right to left. All processes run the
second step in parallel and the complexity of it is 5M1M2 flops. No data
communication among processors is required.

3. In the third step, all processes p > 1, excluding the first one, send their
first row of the matrix to its neighbour (p − 1), then all processes p < P2,
excluding the last one, modify the last row:

Ufp = αfpUfp+1 + γjpUfp−1 + βfp , p = 1, . . . , P2 − 1. (14)

where

αfp =
αfp+1αfp

1− γfp+1αfp

, γfp =
γfp

1− γfp+1αfp

, βfp =
βfp + βfp+1αfp

1− γfp+1αfp

.

All processes implement the third step in parallel and the complexity of it is
8M1 flops. They exchange between neighbours 3M1 elements. The complex-
ity of data communication is 2

(
α+ 3βM1

)
, where α is the message startup

time, β is the time required to send one element of data.

Now, taking the last equation of each local sub-system and adding to the
new system the first equation of the first process we get a (P2+1)× (P2+1)
tridiagonal system of linear vector equations⎧⎪⎪⎨⎪⎪⎩

U1 = α1Uf1 + γ1UJ + β1,

Ufp = αfpUfp+1 + γfpUfp−1 + βfp , p = 1, . . . , P2 − 1.

UJ = αJU1 + γJUfp−1 + βJ .

(15)

The obtained system of linear equations again depends on periodic bound-
ary conditions. It can be solved sequentially by one process and results dis-
tributed to the remaining processes. We propose to use a two-side factoriza-
tion algorithm: all processes are implementing the factorization algorithm,
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but local subtasks are computed sequentially, the required data is exchanged
among neighbour processes only. Thus we avoid any global data reduction
and distribution operations. A small scale parallelization of the algorithm
is still preserved since the computations are divided among two groups of
processes.

4. In the fourth step, processes are divided into two groups and sequentially
sweep from left to the right transformations of the last row of local system.
E.g., process p > 1 of the left group gets (p−1)-th neighbour’s last equation,
then modifies its own last equation and sends new coefficients to (p+ 1)-th
neighbour. The last equation of the local sub-system is transformed to the
form:

Ufp = αfpUfp+1 + γfpUJ + βfp , p = 2, . . . , P2/2, (16)

Ufp = γfpUfp−1 + αfpUJ + βfp , p = P2/2 + 1, . . . , P2 − 1,

where, e.g. for p ≤ P2/2:

αfp =
αfp

1− γfpαfp−1

, γfp =
γfpγfp−1

1− γfpαfp−1

, βfp =
βfp + βfp−1γfp
1− γfpαfp−1

.

The computational complexity of the fourth step is 4P2M1 flops and the
complexity of data communication is

(
α+ 3βM1

)
P2.

5. In the fifth step, both groups exchange information, and then sequentially
transform the last raw equations into the form:

Ufp = γfpUJ + βfp , p = P2/2, . . . , 1, U1 = γ1UJ + β1, (17)

Ufp = αfpUJ + βfp , p = P2/2 + 1, . . . , P2 − 1,

UJ = αJU1 + βJ ,

where, e.g. for p ≤ P2/2:

γfp = γfp + αfpγfp+1 , βfp = βfp + βfp+1αfp .

The computational complexity of the fifth step is 2P2M1 flops and the com-
plexity of data communication is

(
α+ 2βM1

)
P2.

6. In the sixth step, the first and last processes exchange information on the
first and last equations of the system, compute vectors U1 and UJ and then
all processes of the left and right groups compute sequentially the remaining
vectors Ufp . The computational complexity of the sixth step is P2M1 flops
and the complexity of data communication is

(
α+ βM1

)
P2.

7. In the last step, all processes in parallel compute vectors Uj , j = 1, . . . , J .
The computational complexity of this step is 4M1M2 flops.

We apply the same algorithm for solution of linear systems of the ADI scheme
resolving 1D diffusion process AD1 . Thus the total complexity of the parallel
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factorization algorithm to solve a 2D diffusion problem with periodical boundary
conditions is equal to

TD,P = 34
J2

P
+ 7

(P1

P2
+
P2

P1

)
J + 8

( 1

P1
+

1

P2

)
J

+ α
(
2 + 3(P1 + P2)

)
+ 3β

(
1 + 2

(P1

P2
+
P2

P1

))
J. (18)

Note that the complexity of the sequential factorization algorithm is 28J2 float-
ing point operations, thus the additional costs of the parallel algorithm mainly
depend on data communication costs.

In the case of the Dirichlet or Neumann boundary conditions the complexity of
the sequential factorization algorithm is 16J2 operations, and the complexity of
the parallel algorithm implemented on one processor is TD,1 = 34J2 operations,
thus computational cost is increased more than twice.

3.2 Scalability Analysis

In this section we give the main scalability analysis results.

Nonlinear Reaction Step. Nonlinear reaction discrete equations (8) are solved
by fully data parallel algorithm and no communication costs are required. The
complexity of this part of operator splitting algorithm is

TR,P = CR
J2

P
, (19)

constant CR depends on the number of splitting steps m, required to solve the
stiff reaction equations in an accurate way.

Transport Step. The transport step (7) parallel algorithm is data parallel and
coincides with the sequential explicit algorithm. Additional communication costs
depend on the stencil of the finite difference scheme. For the approximation of
the chemotaxis advection process, values of function U on the cross stencil with
one point radius are used, and values of function V on the cross stencil with
two point radius are required. Thus the total complexity of the advection step
is given by

TA,P = CT
J2

P
+ 4α+ 12β

( J
P1

+
J

P2

)
. (20)

Adding all estimates (18)–(20), we get that the complexity of the parallel ADI
algorithm (4)–(10) is given by

TP = (CR + CT + 68)
J2

P
+ 14

(P2

P1
+
P1

P2

)
J + 16

( J
P1

+
J

P2

)
+ 2α

(
4 + 3(P1 + P2)

)
+ 6β

[
1 + 2

(P1

P2
+
P2

P1
+

1

P1
+

1

P2

)]
J.
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Complexity of the sequential ADI algorithm (4)–(10) is given by

T0 = (CR + CT + 56)J2.

It follows from these estimates that the efficiency of the parallel algorithm is
limited by the solution of reduced tridiagonal systems (15). Let us assume that
P1 = P2 =

√
P , then the asymptotical optimal number of processors is deter-

mined from the equation, which defines the equidistribution of computational
and data communication costs (the worst term of communication cost is of order
cJ for P1 = P2 =

√
P ):

J2

P
= cJ =⇒ P = O(J).

In future work, we plan to solve diffusion sub-problems by using parallel iterative
solvers based on AMG preconditioners, see e.g. [4].

4 Computational Experiments

Computations were performed on Vilkas cluster of computers at Vilnius Ged-
iminas Technical University, consisting of nodes with Intel R©CoreTM processor
i7-860 @ 2.80 GHz and 4 GB DDR3-1600 RAM. Each of the four cores can
complete up to four full instructions simultaneously. Results of computational
experiments are given.

Table 1. Scalability analysis of the parallel algorithm. The speed-up Sp and efficiency
Ep coefficients for two problems of dimension 600 × 600 and 1200 × 1200.

p = 2 p = 4 p = 8 p = 16 p = 32

Sp(600) 1.39 3.22 5.96 10.1 12.5

Ep(600) 0.70 0.81 0.75 0.63 0.39

Sp(1200) 1.32 2.60 5.58 12.0 20.9

Ep(1200) 0.66 0.65 0.70 0.75 0.65

It follows from the presented results, that parallel ADI type algorithms are
efficient in solving real-world biochemistry applications. The modified Wang’s
algorithms efficiently solves systems of linear equations with tridiagonal matri-
ces and periodic boundary conditions. The conclusions of the scalability analysis
about a linear scalability of the parallel algorithm are confirmed in computa-
tional experiments. In the future work we plan to consider an alternative 1D
domain decomposition, when the data is transposed after the solution of the
tridiagonal systems of one direction, such that tridiagonal systems are always
solved sequentially, as is done in 2D FFT codes. We also plan to compare the di-
rect ADI solvers with parallel solvers based on Krylov type iterative algorithms.
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1. Baronas, R., Šimkus, R.: Modelling the bacterial self-organization in circular con-
tainer along the contact line as detected by bioluminescence imaging. Nonl. Anal.
Model. Contr. 16(2), 270–282 (2011)

2. Brenner, M.P., Levitov, L.S., Budrene, E.O.: Physical mechanisms for chemotactic
pattern formaton by bacteria. Biophys. J. 74, 1677–1693 (1998)
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Abstract. We explore a GPU implementation of a Krylov-accelerated
algebraic multigrid (AMG) algorithm with flexible preconditioning. We
demonstrate by means of two benchmarks from an industrial compu-
tational fluid dynamics (CFD) application that the acceleration with
multiple graphics processing units (GPUs) speeds up the solution phase
by a factor of up to 13. In order to achieve good performance for the
whole AMG algorithm, we propose for the setup a substitution of the
double-pairwise aggregation by a simpler aggregation scheme skipping
the calculation of temporary grids and operators. The version with the
revised setup reduces the total computing time on multiple GPUs by
further 30% compared to the GPU implementation with the double-
pairwise aggregation. We observe that the GPU implementation of the
entire Krylov-accelerated AMG runs up to four times faster than the
fastest central processing unit (CPU) implementation.

1 Introduction

When numerical simulations of physical phenomena are considered, the notion
of most engineers and scientists outside the high-performance computing com-
munity is that computers similar to the well-known desktop personal computers
are used. Eventually, some of these computers might be linked by some kind
of network interconnect to local networks or to clusters. In fact, the hardware
architecture the vast majority of simulations in science and engineering runs
on, is the same as that of a modern workstation, i.e. one or several many-core
CPUs that are classified as multiple instruction – multiple data (MIMD) systems
according to Flynn’s taxonomy [1].

Since a couple of years, however, also particular single instruction – multiple
data (SIMD) architectures in the form of graphics processing units (GPUs) have
started to attract the attention of both, users and developers of numerical simu-
lation software. Recent development in both, hardware design and software tools
made it possible to exploit the large computational power of the GPUs for nu-
merical calculations. However, so far not for every single algorithm a dedicated
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efficient GPU implementation is available. It is not unusual that an algorithm is
modified in order to suit the hardware it is implemented on, e.g. the Gauß-Seidel
smoother is in practice only used for serial calculations. The “Gauß-Seidel-like”
smoother that is typically used for parallel calculations based on a domain de-
composition is a hybrid Gauß-Seidel/ω-Jacobi smoother, see Emans [2]. Since
for GPU-implementations, the parallelism of the hybrid Gauß-Seidel/ω-Jacobi
smoother is still not enough, it is usually substituted by a ω-Jacobi smoother,
see e.g. Haase et al. [3], although this algorithm has less favourable smoothing
properties. But due to such substitutions or due to algorithmic adjustments in
other cases it is possible today that compute-intensive parts of many calcula-
tions in science and engineering are executed on GPUs. Nevertheless, it appears
that such GPU-accelerated simulations have not yet gained enough momentum
to be competitive with the conventional CPU-based ones in relevant applica-
tions in science and engineering. Since the reduction of computing times is the
main motivation for the use of GPUs, the improvement of the performance of
GPU-accelerated simulations is a major research topic. We will report on a fast
implementation of an AMG solver for linear systems that has been shown to
be efficient for problems in fluid dynamics, but that can also be used in other
applications.

It is known that Krylov-accelerated (k-cycle) AMG, described by Notay [4],
has a particularly simple and computationally inexpensive setup since it uses
double-pairwise aggregation. It is therefore well suited as linear solver within
the iterative algorithms used in CFD. Compared to other common methods like
Smoothed Aggregation, see Vaněk et al. [5], the inexpensive setup makes this
algorithm also attractive for GPU calculations, since it is particularly difficult
to implement the setup on the GPU efficiently. The absolute run-time of the
setup of the double-pairwise aggregation is small compared to the run-time of
the setup of other AMG algorithms. But it is still large in comparison to the
time spent in the GPU-accelerated solution phase.

In this contribution we show that the attractive run-times of k-cycle algo-
rithms on GPU-accelerated hardware can be even more reduced if the double-
pairwise aggregation is replaced by a simple greedy aggregation algorithm that
we refer to as plain aggregation. The latter method has the advantage that it does
not require the computation of an intermediate and finally discarded grid level,
like the algorithm originally chosen by Notay [4]. With GPU-acceleration, the
additional cost due to the slightly worse convergence of the simpler aggregation
scheme is outweighed by the dramatically reduced run-time of the setup.

2 Aggregation AMG Algorithms

The AMG algorithm is here applied as a preconditioner to the pressure-correction
equation in a finite volume based CFD-code, see Emans [6]. We denote this sys-
tem as

Ax = b (1)
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where A ∈ Rn×n is symmetric and positive definite or semi-definite; b ∈ Rn is
some right-hand side vector, x ∈ Rn is the solution vector, and n is the number
of unknowns. We assume that the matrix is given in Compressed Row Storage
(CRS) format as e.g. described by Falgout et al. [7]. For parallel computations,
a domain decomposition is used to assign a certain set of nodes to each of the
parallel processes. The influences of the values associated with nodes assigned
to neighbouring processes are handled through a buffer layer, i.e. those values
are calculated by the process they are associated with and then exchanged each
time they are needed by a neighbouring process.

Any AMG scheme requires the definition of a grid hierarchy with L levels. The
matrices representing the problem on grid level l are Al ∈ Rnl×nl (l = 1, . . . , L)
with system size nl where nl+1 < nl holds for l = 1, . . . , L − 1 and A1 = A as
well as n1 = n. As it is common practice in algebraic multigrid, the coarse-grid
operators are defined recursively (starting with the finest grid) by

Al+1 = PT
l AlPl (l = 1, . . . , L− 1). (2)

where the prolongation operator Pl has to be determined for each level l while the
restriction operator is defined as PT

l . It is the choice of the coarse-grid selection
scheme that determines the elements of Pl and consequently the entire grid
hierarchy. The definition of the elements of Pl for all levels and the computation
of the operators Al (l = 2, . . . , L) are referred to as the setup phase of AMG.

The prolongation operator Pl maps a vector on the coarse grid xl+1 to a
vector on the fine grid xl:

xl = Plxl+1 (3)

The aggregation methods split the number of nodes on the fine grid into a lower
number of disjoint sets of nodes, the so-called aggregates. The mapping from the
coarse grid to the fine grid is then achieved by simply assigning the coarse-grid
value of the aggregate to all the fine-grid nodes belonging to this aggregate.
This corresponds to a constant interpolation. The prolongation operator of this
scheme has only one non-zero entry in each row with the value one such that the
evaluation of eqn. (2) is greatly simplified to an addition of rows of the fine-grid
operator. In the following we restrict ourselves to this type of methods.

Double-Pairwise Aggregation. The first step of the double-pairwise aggre-
gation that has been used by Notay [4] is the aggregation of the set of nodes
into aggregates of pairs of nodes. For this we use Algorithm 1.

For the pairwise aggregation the output of this algorithm, i.e. the set of aggre-
gates Gi (i = 1, . . . , nl+1), is used to define the prolongation operator Pl. The
calculation of the elements of the coarse-grid matrix Al = PT

l AlPl with eqn.
(2) is implemented as the addition of two rows in two steps: First, the rows are
extracted from the matrix storage structure in a way that the corresponding ele-
ments of the data array are put in a single array and the row pointers in another
array of the same size. Second, the column pointers are replaced by the indices
of the corresponding coarse-grid aggregates; then both arrays are sorted with re-
spect to the new column pointers where matrix elements with the same column
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Algorithm 1 Pairwise aggregation (by Notay [4], simplified version)

Input: Matrix A = (aij) with n rows and columns.
Output: Number of coarse variables nc and aggregates Gi, i = 1, . . . , nc

(such that Gi ∩Gj = ∅ for i �= j).
Initialisation: U = [1, n]

for all i: Si =

{
j ∈ U \ {i} | aij < −0.25max

k∈U
|aik|

}
,

for all i: mi = | {j|i ∈ Sj} |,
nc = 0.

Algorithm: While U �= ∅ do:
1. select i ∈ U with minimal mi; nc = nc + 1.
2. select j ∈ U such that aij = mink∈Uaik

3. if j ∈ Si: Gnc = {i, j}, otherwise Gnc = {i}
4. U = U \Gnc

5. for all k ∈ Gnc : ml = ml − 1 for l ∈ Sk

pointers are added. The parallel version of the method restricts the aggregates
to nodes belonging to the same parallel domain.

The double-pairwise aggregation, see Notay [4], consists of two passes of the
pairwise aggregation Algorithm 1. For the first pass, the input of Algorithm 1 is
Al. Let us denote the prolongation operator resulting from the first pass as Pl1.
With this, an intermediate coarse-grid operator Al+1/2 = PT

l1AlPl1 is obtained
in the described manner. For the second pass, this intermediate coarse-grid op-
erator is the input of Algorithm 1. The resulting prolongation operator Pl2 is
used to obtain the coarse-grid operator with Al+1 = PT

l2Al+1/2Pl2. The final
prolongation operator that is Pl = Pl2Pl1. Since it contains only the information
to which coarse-grid element or aggregate a fine-grid node is assigned, it is suffi-
cient to store it as an array of size nl carrying the index of the coarse-grid node.
The operators Al+1/2, Pl1, and Pl2 are discarded after Al+1 has been calculated.
We refer to the method as within a k-cycle AMG as K-P4.

Plain Aggregation Algorithm. Our plain aggregation algorithm comprises
the following steps:

1. Determine strong connectivity: Edges of the graph of the matrix Al for
which the relation

|aij | > β · max
1≤j≤nl

|aij | (4)

holds, are marked as strong connections. The criterion β depends on the level
of the grid hierarchy l and it is defined according to Vaněk et al. [5] as

β := 0.08

(
1

2

)l−1

(5)

2. Start-up aggregation: All nodes are visited in the arbitrary order of their
numeration. Once a certain node i is visited in this process, a new aggregate
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is built if this node is not yet assigned to another aggregate. Each of the
neighbours of node i that is strongly connected to this node and that is not
yet assigned to another aggregate is grouped into this aggregate as long as
the number of nodes is lower than the maximum allowed aggregate size.

3. Enlarging the decomposition sets:Remaining unassigned nodes are joined
to aggregates containing any node they are strongly connected to as long as
the number of nodes in this aggregate is lower than twice the maximum al-
lowed aggregate size. If there is more than one strongly connected node in
different aggregates, the one with the strongest connection determines the
aggregate this node is joined with.

4. Handling the remnants: Unassigned nodes are grouped into aggregates of
a strongly connected neighbourhood. Twice the maximum allowed aggregate
size is allowed.

This algorithm follows closely the one proposed by Vaněk et al. [5] with the es-
sential difference that we restrict the number of nodes per aggregate which gives
rise to a parameter of this algorithm. In step (3) we allow twice the maximum
number of nodes in order to avoid a large number of single-point aggregates.
Usually only a few such enlarged aggregates are formed. In parallel, only nodes
assigned to the same process are grouped into aggregates.

The aggregates generated in this way are used in a scheme with constant
interpolation, i.e. in a way that all fine-grid nodes assigned to a certain aggregate
receive the value of the coarse-grid node this aggregate forms on the coarse-grid.
The corresponding prolongation operator will have a similarly simple structure as
the one of the described pairwise aggregation method. The coarse-grid operator
is again obtained by adding the rows of the fine-grid matrix that are associated
with the nodes assigned to an aggregate. This is done exactly in the same way
as for the pairwise aggregation. The coarsening scheme that is defined by this
procedure will be only useful, if the maximum number of nodes per aggregate
is kept relatively small. In preliminary experiments we found that if we choose
the maximum number of nodes per aggregate to be 6 we obtain an efficient and
robust algorithm with good convergence properties. We denote this aggregation
scheme in a k-cycle scheme as K-R6.

Smoothed Aggregation. The Smoothed Aggregation algorithm of Vaněk et al.
[5] is derived from this algorithm: It refines the aggregation scheme by applying a
ω-Jacobi smoothing step (along the paths of the graph of the fine-grid matrix) to
the prolongation operator to obtain the final prolongation operator. In this way
the quality of the interpolation is improved, but the structure of the operator
is now similarly complex as the structure of the operators of classical AMG
with the consequence, that the calculation of the coarse-grid operator with eqn.
(2) can be no longer simplified in the described way. For the use as Smoothed
Aggregation scheme, the number of nodes per aggregate is not limited. The
Smoothed Aggregation is then used in a v-cycle scheme and the algorithm is
denoted as V-SA.
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3 Implementation on GPUs

The setup phase is implemented conventionally on the CPU as it has been de-
scribed in Emans [2]. The standard CRS format, see e.g. Falgout et al. [7], is used
for the matrices. After any matrix has been defined or calculated, it is translated
into the Interleaved Compressed Row Storage (ICRS) format on the CPU and
then transferred to GPU memory. The definition of this format is found e.g. in
Haase et al. [3]. The corresponding algorithm devised in the same publication is
used to carry out matrix-vector operations. This applies to the system matrices
on all levels. The particularly simple structure of the restriction and prolongation
operators of the aggregation algorithms K-P4 and K-R6 gives rise to a simplified
version of the ICRS format: Since the value of all non-zero matrix elements is
the same, one, it does not make sense to store these values explicitly. Therefore,
only the number of elements per row, the displacement and the column index
for each element is stored. The fill-in elements (due to the different number of
elements per row) are identified by a negative column index and ignored in the
matrix-vector multiplication kernel.

For an efficient parallel implementation, the concept of overlapping the data
exchange with the internal operations, implemented by means of the asyn-
chronous point-to-point exchange mechanism of MPI, see e.g. Emans [8], needed
to be modified: While the internal work is done on the graphics board by the
GPU, the CPU manages the data exchange by means of the same asynchronous
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the parallel execution on CPU and GPU is marked grey (left), notation (right)
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The solver algorithms described above are integrated into the program FIRE
2011, developed and distributed by AVL GmbH, Graz. The solver part of this
program is coded in FORTRAN 90 and compiled by the HP FORTRAN com-
piler, version 11.1. The used MPI library is Platform MPI, version 7.1. The GPU
related code is written in CUDA and compiled by the Nvidia compiler version
4.0. The linking between the MPI library and the CUDA part is provided by
C-binding.

4 Benchmarks

Problem 1 is a simulation of the unsteady flow of cold air into the cylinder of
a gasoline engine of a car. The cylinder has a diameter of 0.08m. During the
observed time the piston head is moving from its top position downwards and
air at a temperature of 293K flows at a rate of around 1 kg/s into the cylinder.
The mass flow at the boundary is prescribed as a function of time according to
experimental data for this engine. The volume of the computational domain is
initially 0.18l. The mesh consists of around 1.4 · 106 finite volumes 80% of which
are hexagonal.

Problem 2 is a simulation of the steady, internal flow through a water-cooling
jacket of an engine block. Cooling water, i.e. a 50% water/glycol mixture, flows
at a rate of 2.21 kg/s into the geometry through an inlet area of 0.61 · 10−3m2

and leaves it though an outlet area of 0.66 ·10−3m2. The maximum fluid velocity
is 4.3m/s. The volume of the cooling jacket is 1.14l. The turbulence is modelled
by a k-ζ-f model according to Hanjalic et al. [9]. The computational domain is
discretised by an unstructured mesh of about 5 · 106 cells of which around 88%
are hexagonal.

For both problems, the Navier-Stokes equations are solved by the finite-
volume based SIMPLE scheme with collocated variable arrangement, see Patan-
kar and Spalding [10]. We apply our AMG algorithms to the pressure-correction
equation only. This system is symmetric and positive definite and its solution
is usually the most time consuming part of the whole simulation. In the case of
problem 1, the SIMPLE iteration is terminated after 50 iterations, i.e. for this
problem we consider the solution of 50 systems with different matrices and dif-
ferent right-hand sides. For problem 2 three time steps with together 89 SIMPLE
iterations are calculated, i.e. here 89 different systems are solved.

The benchmarks were run on two different computers. Computer 1 is a clus-
ter with four nodes where each node is equipped with two Intel X5650 and four
Nvidia graphics boards of the type Tesla C2070. The network interconnect be-
tween the nodes of computer 1 is a 40 GB/s QDR Infiniband. Computer 2 is
a single machine with two Intel X5650 per node, but it is equipped with four
Nvidia GeForce GTX480 graphics boards instead of the Tesla graphics boards.
The most important specifications of the hardware are compiled in Table 1.
In this section we describe the parallel performance of several calculations. For
the parallelisation, the entire calculation is split into a certain number of tasks
that are, on a conventional CPU, carried out by the same number of processes.
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Table 1. Hardware specification

computer 1 & 2

CPUs Intel X5650
per node 2
cores 2×6
main memory 96 GB
L3-cache 4×6 MB, shared
clock rate 2.67 GHz

memory bus QPI, 26.7 GB/s

computer 1 computer 2

GPUs (Nvidia) Tesla C2070 GeForce GTX480
per node 4 4
multiprocessors 4×14 4×15
L2-cache 768 KB 768 KB
global memory 5375 MB 1535 MB
chip clock rate 585 MHz 700 MHz
memory clock rate 1.49 GHz 1.85 GHz
memory bus 136.8 GB/s 169.2 GB/s

Each task or process corresponds to one sub-domain that results from the do-
main decomposition. For our GPU-accelerated calculations, each of the avail-
able GPUs is associated with one process running on the CPU. In the case of
GPU-accelerated calculations, the term process therefore refers to the number
of sub-domains also.

Problem 1: Different Types of GPUs The average number of iterations in
the left diagram of Figure 5 shows that the number of iterations is increased
by about 10 % if the Gauß-Seidel smoother is replaced by the Jacobi smoother,
which is common practice in AMG on GPU. The substitution of the double-
pairwise aggregation (K-P4-J) by the plain aggregation with six nodes per ag-
gregate (K-R6-J) increases the accumulated number of iterations by about a
similar amount.

The comparison of the average computing time per iteration shows that com-
puter 2 with the GeForce GTX480 graphics boards is around 40% faster than
computer 1 with the Tesla C2070. This is due to the faster memory bus and the

Fig. 2. Problem 1: average number of iterations (left) and average time per iteration
on CPU and different GPUs (right)
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Fig. 3. Computing times for problem 1: CPU calculations (left), GPU calculations
(right), filled symbols: AMG solution, empty symbols: AMG setup

higher chip clock rate of the GeForce GTX480. The execution of the same solu-
tion algorithm on the faster GPU is up to 13 times faster than on one core of the
CPU. The comparison of the computing times for setup phase and solution phase
in Figure 2 shows that for the Smoothed Aggregation AMG (V-SA-G) the setup
is the dominant part. Since on the GPU we speed-up only the solution phase, this
algorithm appears not to be favourable, although the time per iteration is short
due to the v-cycle. The setup of the algorithm with the plain aggregation scheme
(K-R6-J) is significantly faster than that of the double-pairwise aggregation (K-
P4-J). Since the setup becomes dominant in the calculations involving GPUs,
this leads to a significant reduction of the total computing time, too, see Figure
3. Thus, while on the CPU the fastest algorithm employs the double-pairwise
aggregation, the fastest algorithm on the GPU employs the plain aggregation
scheme. The total computing times with computer 2 using the GeForce GTX480
graphics boards is up to four times faster than the fastest calculation on the CPU,
see again Figure 3. Finally, the parallel efficiency

Ep :=
t1
p · tp

(6)

where tp is the run-time with p parallel processes, is presented in the right
diagram of Figure 4. Although the parallel efficiency of the calculations with
GPU acceleration is inferior to that of the CPU calculations, it is within an
acceptable range for practical applications.

Problem 2: Multiple GPUs on Different Nodes. With regard to the in-
crease of the number of iterations due to the use of algorithms better adapted to
the requirements of the GPU, i.e. the replacement of the Gauß-Seidel smoother
by the Jacobi smoother and the replacement of the double-pairwise aggregation
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Fig. 4. Total computing times for problem 1 (left), Parallel efficiency for problem 1
(right)

by the plain aggregation, we observe for problem 2 the same as for problem 1,
see Figure 5. The right diagram in this figure shows that in this case, too, the
cost per iteration of the double-pairwise aggregation and the plain aggregation
scheme are almost identical. It is, however, more important to observe that the
usage of additional nodes with GPUs still accelerates the calculation in a reason-
able manner: Remember that we have four GPUs per node, i.e. the calculation
with 8 and 16 parallel processes runs on two and four nodes, respectively.

The left diagram in Figure 6 shows that the plain aggregation scheme leads
to a significantly faster AMG method than the double-pairwise aggregation. For
the GPU calculations the portion of the computing time spent in the setup

Fig. 5. Cumulative iteration count of various aggregation AMG algorithms (left) and
average time per iteration of various AMG algorithms on CPU and GPU (right)
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Fig. 6. Cumulative computing times: dashed line, empty symbols: AMG setup phase

is larger than for the CPU calculations. The reduction of the total computing
time by substituting the double-pairwise aggregation by the plain aggregation is
therefore for the GPU computations relatively large (30 %) whereas for the CPU
computations it is only around 10 %. In total, i.e. including the setup on the
CPU, the GPU implementation on the Tesla C2070 is around twice as fast as the
fastest conventional implementation. Computations for problem 2 on computer
2 could not be carried out since the memory of the GeForce GTX480 graphics
boards of computer 2 was not sufficient and only one machine with graphics
boards of this type was available.

5 Conclusions

We have presented a parallel k-cycle AMG for GPUs. The conventional double-
pairwise aggregation, implemented on the CPU, contributes significantly to the
total computing time of the k-cycle AMG on GPU-accelerated hardware. It
has been shown that it can be replaced by a more efficient plain aggregation
algorithm. We have tested our implementation on a GPU cluster with four nodes
each one equipped with four Nvidia Tesla C2070 GPUs. On a computer with four
of the faster GeForce GTX480 graphics boards we could show that the entire
AMG algorithm runs up to four times faster than the fastest AMG variant on
the CPU. Although the parallel efficiency is already acceptable, future effort
should be directed to an improved parallel performance.
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Abstract. While the 3D-TV becomes widely available in the market, consum-
ers will face the problem of serious shortage of 3D video content. Since the dif-
ficulty of 3D video capturing and manufacturing, the automatic video conver-
sion from 2D serves as an important solution for producing 3D perception. 
However, 2D-to-3D video conversion is a compute-intensive task and real-time 
processing speed is required in online playing. Nowadays, with the multi-core 
processor becoming the mainstream, 2D-to-3D video conversion can be accele-
rated by fully utilizing the computing power of available multi-core processors. 
In this paper, we take a typical algorithm of automatic 2D-to-3D video conver-
sion as reference and present typical optimization techniques to improve the 
implementation performance. The result shows our optimization can do the 
conversion on an average of 36 frames per second on an Intel Core i7 2.3 GHz 
processor, which meets the real-time processing requirement. We also conduct 
a scalability performance analysis on the multi-core system to identify the caus-
es of bottlenecks, and make suggestion for optimization of this workload on 
large-scale multi-core systems. 

1 Introduction 

3D display devices have been widely available in the electronic market, from large-
screen 3D-TVs, to middle-size desktop 3D monitors, even portable 3D smart phones. 
As of the popularity of 3D displays, consumers start to face a problem of severe 
shortage of 3D video content. The 3D video can be captured with stereo cameras, 
active depth sensing, or produced manually from existing 2D video footages. Howev-
er, 3D video capturing requires professional devices and highly skilled photographers. 
Manual video conversion from 2D to 3D needs a lot of labor work and takes quite 
long producing time. Fortunately, with the advancement of visual analysis techniques, 
the computer is able to automatically do the 2D- to-3D video conversion job in mod-
erate visual quality. Nowadays such solutions have been found in some software  
vendors and 3D-TV manufactures. 

2D-to-3D video conversion is a very time-consuming task since it usually needs 
complex visual analysis and the computational complexity is often proportional to the 
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total number of pixels. Acting as a plug-in function in traditional 2D TV receiver,  
the 3D conversion must be done in real-time during video broadcasting. To pursue 
computing speed, special hardware or high-end graphics card are often used in exist-
ing solutions. For instance, Toshiba places an 8-core Cell processor in their 3D-TV 
for real-time 3D video conversion. Philips builds an FPGA chip in their auto-
stereoscopic 3D monitor for virtual view image generation and sub-pixel interleaving. 
For the desktop PC, GPU can be used to accelerate 3D video processing [1]. 

In this paper we use a typical automatic 2D-to-3D video conversion application as 
reference and optimize its implementation on Intel Core i7 2.3 GHz commodity pro-
cessors. We profile the whole application flow and identify the compute-intensive 
modules. Then both data-level and task-level parallelization are conducted for these 
key modules. After optimization, the implementation can convert high-definition 
(1920x1080 pixels) 2D video to 3D on an average of 36 frames per second, which is 
much faster than the original algorithm and meets the real-time processing require-
ment. Furthermore, to characterize the performance of the optimized application, we 
also conduct a performance analysis and identify the possible causes of bottlenecks. 

The remainder of this paper is organized as follows. Section 2 gives the algorithm 
description of our 2D-to-3D video conversion application and identifies most time-
consuming modules for optimization and parallelization. Section 3 describes the im-
plementation of the algorithm with focus on the SIMD optimization and OpenMP 
parallelization. Section 4 shows our experimental results and performance analysis  
of the optimized 3D conversion implementation. Finally our work is concluded in 
Section 5. 

2 Algorithm Description 

The flowchart of our 2D-to-3D video conversion algorithm is shown in Fig.1. A key 
characteristic here is using different strategy to estimate depth information for static 
image and dynamic image. After the input ordinary 2D video is decoded as individual 
frames, the first step is to do scene classification. If the current image is determined as 
a static scene, the occlusion analysis (OA) module is invoked to generate depth by 
using the inter-object occlusion relationship. If a scene is determined to be dynamic, 
the depth from motion (DfM) module is called to estimate the object depth according 
to its moving speed. When the depth image is calculated, the depth image based ren-
dering (DIBR) module is applied to generate two or multiple images from virtual 
view points. Finally, the multi-view images are fed into the 3D display to produce 
depth perception in human visual system. 

We analyzed the time breakdown of the whole processing flow and identified three 
most time consuming modules marked as thick-line rectangles in Fig.1. The detailed 
optimization and parallelization work on these three modules will be further intro-
duced in the following subsections. 



412 J. Feng et al. 

 

Fig. 1. The flowchart of the 2D-to-3D video conversion system 

2.1 Occlusion Analysis 

To generate the depth information for static images, we utilize occlusion analysis to 
deduce the relative depth between objects. Our knowledge is that non-occluded ob-
jects are usually closer than occluded objects. The more occlusion is found, the farther 
the object is located. We design a method to quantize the occlusion of each pixel and 
assume the depth at the pixel is promotional to its ‘quantity’ of occlusion. In this way, 
we will be able to generate a pseudo depth image for a static picture. In a single 2D 
image, the occlusion relationship is approximated with the accumulated color differ-
ences and the occlusion analysis for each point is shown in Fig.2. First a furthest 
depth boundary is defined at the upper side of the image (the blue line). For each 
point p, its shortest path (the red line) to the furthest depth boundary is calculated, 
taking the accumulated color difference along the path as a total cost. In this way, the 
depth of p can be estimated according to the shortest path with minimum possible 
cost. To speed up this procedure, the cost calculation can be done in an iterative man-
ner by utilizing the 8-neighboring points around p. This is most similar to the calcula-
tion of dynamic programming. The details of occlusion analysis and depth conversion 
can be found in [2]. 

 

Fig. 2. Occlusion analysis for depth calculation [2] 
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2.2 Depth from Motion 

For dynamic scenes, the depth can be estimated by the moving speed of objects. This 
is based on the observation that the faster moving object is generally closer to the 
viewer and vice versa. Fig.3 shows our implementation of the depth generation from 
motion. First the Mean-Shift segmentation [3] is applied so that the input 2D image is 
broken down into small blocks. For each block, motion vectors are calculated and 
their average value is taken as the moving speed of current block. Then, the depth 
information of the block is estimated as a reverse proportional function of its moving 
speed. After the depth of all blocks are calculated, they are connected to form a piece-
wise smoothed depth map. 

 

Fig. 3. Generating depth from motion vector 

2.3 Depth Image Based Rendering (DIBR) 

After the depth map is calculated for current 2D image, the classical DIBR algorithm 
[4] is used to generate virtual view images. As shown in Fig.4, suppose the input 2D 
image is observed at the view point v0, the virtual image from the view point v1 can be 
calculated through image warping. Due to view point change, some area may suffer 
from disocclusion problem as indicated with the red color in Fig.4. This will cause 
holes in synthesized virtual images. To alleviate this effect, a simple solution is using 
Gaussian smoothing to remove sharp edges on the depth map as shown in Fig.4 (c). 
Note that the DIBR algorithm has an appealing feature that the image warping opera-
tion could be done completely independent for each row of pixels. This feature 
creates a great opportunity for the task-level parallelization. 

 

Fig. 4. The DIBR algorithm. (a) Original view point v0; (b) New view point v1; (c) Smoothed 
depth map. 

3 Optimization and Parallelization 

This section considers how to optimize the program’s serial and parallel performance. 
For serial performance optimization, we use SIMD intrinsics [5] to implement the 
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vectorization. When talking about SIMD intrinsics we refer to 128-bit wide 
SSE/SSE2 instructions and now we have AVX (Intel® Advanced Vector Extensions, 
[6]) which is 256-bit wide. In this paper, we use both SSE (SSE2, SSE3, etc) and 
AVX intrinsics to accelerate the serial performance. For the parallel implementation, 
we choose OpenMP [7] for the shared memory system. 

3.1 Serial Performance Optimization 

In this work, we mainly improve the performance of 2D-to-3D video conversion 
through SIMD intrinsics. Using SIMD technology which performs multiple arithmetic 
or logic operations simultaneously can effectively improve the execution efficiency. 
In the 2D-to-3D video conversion, all the 3 hot-spot modules mentioned in the pre-
vious section can exploit the data-level parallelism (DLP). As DIBR is the most time-
consuming module, we use it as an example to describe the optimization details. Simi-
lar optimization techniques can be applied to other modules in this application. 

In the serial DIBR algorithm, the results of 3 dimensions of a pixel are computed at 
one time.  However, exploiting DLP at color space level has limited parallelism. 
Therefore, we reorganize the data structure of the algorithm, i.e., we process four (or 
eight) pixels in single channel simultaneously to utilize the four (or eight) wide SIMD 
capability. This process repeats 3 times to get the results from 3 different channels. 

 

Fig. 5. The flowchart of the serial DIBR 

For example, in the DIBR module, the program needs to perform rendering for 
every pixel in each frame following the procedures below: 1) Calculate the depth 
difference between the current frame and the previous frame; 2) Get the distance of 
offset pixel according to the depth difference; 3) Rendering between minimum thre-
shold and maximum threshold. As shown in Fig.5, the rendering needs to be executed 
for all the pixels in one frame [8]. We conduct the optimization based on the original 
DIBR as follows. 

• Data reconstruction and alignment. We modify this algorithm to process 4 or 8 
pixels at one time, thus the code is executed only h*w/4 or h*w/8 times to complete 
DIBR. We also use the 16-bit alignment for SSE and 32-bit alignment for AVX to 
enhance cache and memory locality.  
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• Branch optimization. As branch mis-prediction can break the CPU execution pipe-
line, it is more favorable to use SIMD instructions to reduce conditional branch op-
erations. It will help improve the overall performance.  

• Changing division into multiplication. Multiply instruction is more cost effective 
than division instruction. It is better to convert division instructions to multiplica-
tion to save time. 

• Taking constant operation out of loop. In the outer loop there are some constant 
operations which are repeatedly calculated till the end. We move the constant op-
eration out of the loop to save time. 

After restructuring the data and using SSE/AVX to SIMDize DIBR, we obtain the 
optimized DIBR implementation. The pseudo-codes of SSE/AVX DIBR are shown in 
Fig.6 and Fig.7, respectively. 
 
/*  depth_this : depth of this pixel 

depth_former : depth of former pixel 
src : frame input for rendering  */ 

for(y = 0; y < h; y++) 

{ 

for (x = 0; x < w/4*4; x += 4) 

{ 

mask = _mm_cmpgt(this,former); 

offest1= _mm_or(_mm_and(mask,this),\ 

_mm_andnot(mask,former)); 

offset2= _mm_or(_mm_andnot(mask,this), 

_mm_and(mask,former)); 

src1 = _mm_cvtps(_mm_or(_mm_and(mask,x),\ 

_mm_andnot(mask,x-1))); 

src2=_mm_cvtps(_mm_or(_mm_andnot(mask,x),\ 

_mm_and(mask,x-1))); 

 

mask = _mm_cmpgt(0,offset1); 

i0 =_mm_or(_mm_and(mask,0),\ 

_mm_andnot(mask,offset1)); 

mask = _mm_cmpgt(w-1,offset2); 

i1=_mm_or(_mm_andnot(mask,w1),\ 

_mm_and(mask,offset2)); 

 

temp0 = _mm_sub(offset2,offset1); 

mask = _mm_cmpeq(temp0,_mm_setzero()); 

t_1 = _mm_div(1,_mm_add(,_mm_and(mask,1))); 

 

//get this_pixel,former_pixel from the offset and src 

 

a = _mm_mul(_mm_sub(_mm_mul(this_pixel[0],\ 

offset2),_mm_mul(former_pixel[0],offset1)),t_1); 

a_1= _mm_mul(_mm_mul(former_pixel[0],\ 

this_pixel[0]),t_1); 

 

b = _mm_mul(_mm_sub(_mm_mul(this_pixel[1],\ 

offset2),_mm_mul(former_pixel[1],offset1)),t_1); 

b_1= _mm_mul(_mm_mul(former_pixel[1],\ 

this_pixel[1]),t_1); 

 

c = _mm_mul(_mm_sub(_mm_mul(this_pixel[2],\ 

offset2),_mm_mul(former_pixel[2],offset1)),t_1); 

c_1= _mm_mul(_mm_mul(former_pixel[2],\ 

this_pixel[2]),t_1); 

    

//get the arr_dstpixel from dst and offset 

 

for (j = 0; j < 4; j++)  

{ 

int temp_j = i1.m128_f32[j]; 

for (i = i0.m128i_i32[j]; i <= temp_j; \ 

i++, arr_dstpixel[j] += 3) 

{ 

arr_dstpixel[j][0] = a.m128_f32[j] + \ 

a_1.m128_f32[j] * i; 

arr_dstpixel[j][1] = b.m128_f32[j] +\ 

                b_1.m128_f32[j] * i; 

arr_dstpixel[j][2] = c.m128_f32[j] +\ 

               c_1.m128_f32[j] * i; 

}}}}

Fig. 6. Pseudo-code of the SSE DIBR 
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for(y = 0; y < h; y++) 

{ 

for (x = 0; x < w/8*8; x += 8) 

{     

#define GT 14   

mask = _mm256_cmp(this,former,GT); 

offset1 = _mm256_or(_mm256_and(mask,this),\ 

_mm256_andnot(mask,former)); 

offset2= _mm256_or(_mm256_andnot(mask,this),

_mm256_and(mask,former)); 

src1 = _mm256_cvtps(_mm256_or(_mm256_and\

(mask,x),_mm256_andnot(mask,x-1))); 

src2 = _mm256_cvtps(_mm256_or(\ 

_mm256_andnot (mask,x),\ 

_mm256_and(mask,x-1))); 

#define EQ 16 

temp0 = _mm256_sub(offset2,offset1); 

mask =_mm256_cmp(temp0,0,EQ); 

t_1=_mm256_div(1,_mm256_add(temp0,\ 

_mm256_and(mask,1))); 

i0= _mm256_cvtps(_mm256_max(0,\ 

_mm256_floor(offset1))); 

i1=_mm256_cvtps(_mm256_min(w-1,\ 

_mm256_floor(offset2))); 

//get this_pixel,former_pixel from the offset and 

src 

a = _m256_mul(_mm256_sub(\ 

_mm256_mul(this_pixel[0],offset2),\ 

_mm256_mul(former_pixel[0],offset1)),t_1); 

 

a_1 = _mm256_mul(former_pixel[0],\ 

this_pixel[0]),t_1); 

 

b = _m256_mul(_mm256_sub(\ 

_mm256_mul(this_pixel[1],offset2),\ 

_mm256_mul(former_pixel[1],offset1)),t_1); 

b_1 = _mm256_mul(former_pixel[1],\ 

this_pixel[1]),t_1); 

 

c = _m256_mul(_mm256_sub(\ 

_mm256_mul(this_pixel[2],offset2),\ 

_mm256_mul(former_pixel[2],offset1)),t_1); 

c_1 = _mm256_mul(former_pixel[2],\ 

this_pixel[2]),t_1); 

 

//get the arr_dstpixel from dst and offset 

 

for (int j = 0; j < 8; j++) 

{ 

temp_j = i1.m256i_i32[j]; 

for (int i = i0.m256i_i32[j]; i <= temp_j; i++, 

dstpixel[j] += 3) 

{ 

dstpixel[j][0] =  a.m256_f32[j] + \ 

a_1.m256_f32[j] * i; 

dstpixel[j][1] =  b.m256_f32[j] + \ 

b_1.m256_f32[j] * i; 

dstpixel[j][2] =  c.m256_f32[j] + \ 

c_1.m256_f32[j] * i; 

}}}} 

 

Fig. 7. Pseudo-code of the AVX DIBR 

3.2 Parallelization 

Data decomposition and Task decomposition methods are two primary decomposition 
methods in parallel program design. The former divides the computation among mul-
tiple threads based on different data segments. The latter operates on a set of tasks 
that can run in parallel. Both types of parallelism can be used in the same program 
and no one method is always better than the other. However, in the 2D-to-3D video 
conversion application, the majority of the work is conducted on 2D images, which 
have abundant data parallelism in the picture-level, row-level, and even pixel-level. 
The selection of data parallelism is a natural choice to make use of the inherent  
parallelism. Further, to meet the real-time processing capability for on-line video 
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applications, it is important to extract the fine-grained parallelism within each image 
instead of exploiting coarse-grained parallelism at frame level. 

We perform a detailed analysis of this application, and reorganize the data struc-
ture and coding flow to facilitate the use of threading models. In the following sec-
tion, we use several examples to demonstrate how to design proper parallel schemes 
for the 2D-to-3D video conversion application. 

DIBR Parallelization. Each row in the frame processed by DIBR is independent of 
each other. So each row can do rendering work in parallel. The pseudo-code is shown 
in Fig.8.A. 

DfM and OA Parallelization. Besides DIBR, DfM and OA are also time-consuming 
which need to be parallelized. Both modules need to calculate the depth map. They 
divide every image into a large number of blocks and build a tree of them according 
to the virtual distance to camera. We calculate depth of every pixel according to its 
belonging block and the tree. So when we get the depth map we can parallelize pixels 
to run independently without disturbing each other. We not only reorganize the data 
in OA, but also identify some computations in the inner loop which can be moved out 
to the outer loop to save computation. Furthermore, we need to remove the branch 
operations like “break” or “goto” statement in the parallel loop, otherwise it will 
cause segmentation fault when directly using OpenMP parallelization. The parallel 
pseudo-codes are shown in Fig.8.B. 

 
#pragma omp parallel 

{ 

#pragma omp for nowait schedule(guided) 

For( y = 0; y < h; y++) 

{ 

for (x = 0; x < w; x++) 

{ 

//render every pixel one by one accroding to 

//image depth 

} 

} 

} 

 
 
 
A. 

//depth from motion  

#pragma omp parallel for schedule(dynamic) 

for (i = 0 ; i < fl->nFeatures ; i++) 

{ 

//optical flow search right feature  

//points and judge the motion 

} 

//occlusion analysis 

#pragma omp parallel 

{ 

#pragma omp for nowait schedule(dynamic) 

for( int i = 0; i < width * height; i++ ) 

{ 

//calculate depth map from known builded tree 

}} 

B. 

Fig. 8. Pseudo-codes of the parallel DIBR, DfM and OA 

3.3 Parallel Performance Optimization 

After serial optimization, we continue to apply some parallel optimization techniques 
to enhance the performance of the parallel 2D-to-3D video conversion implementation. 
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Reducing Load Imbalance. The load imbalance greatly impacts the scalability per-
formance in a parallel application. If one core spends more time than the other cores, 
the unbalanced load becomes a limiting factor for parallel performance. It is important 
to keep all the cores busy by load balancing the tasks and minimizing overhead. In the 
2D-to-3D video conversion application we use several techniques to improve the load 
balance performance. For almost all the modules, we use the dynamic scheduling 
policy to minimize the load imbalance. Particularly, in the DIBR module, we manual-
ly use a “guided” scheduling policy, and the task size is chosen depending on the 
tasks within each parallelization loop. A guided scheduling policy helps to balance the 
size of tasks and scheduling overhead. Because each task is independent from each 
other, we use “nowait” to reduce task synchronization as shown in Fig.9. 

 

……
 

Fig. 9. The distribution of dataset for the 4 threads case 

Reducing Synchronization Overhead. Often threads are not totally independent, 
which forces the program to add synchronization to guarantee the execution order of 
the threads. The frequent synchronization calls and the associated waiting operations 
will degrade the scaling performance on the multi-core processors. Generally the 
synchronization is present in the form of critical section, lock, and barrier in the 
OpenMP implementation. For the 2D-to-3D video conversion application, we also 
have to deal with some synchronization operations. For example, in OA module, it 
needs to calculate the depth map, all the threads push intermediate results to a shared 
matrix, and a critical section is necessary for synchronization. A lock is used every 
time when one thread pushes a value to the matrix, which consumes too much time. 
We replicate the shared matrix into several private matrices. Each thread operates on 
its local matrix to avoid the mutual access to the shared matrix. All the local matrices 
are merged at the end of the parallel region. This mechanism is totally lock-free and 
the synchronization overhead is reduced significantly. 

4 Experimental Results and Performance Analysis 

In this section, we evaluate and analyze the performance of the 2D-to-3D video con-
version application on a 4-core laptop system, with one Intel Core i7-2820QM pro-
cessor running at 2.3 GHz. Each core is equipped with a 32KB L1 data cache, a 32KB 
L1 instruction cache and a 256KB L2 cache. The four cores share an 8MB L3 unified 
cache.  
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We used 6 video clips in our experiments as shown in Table 1. These video clips 
were carefully chosen from different scene categories, including indoor and outdoor, 
fast motion and slow movement, people and animals with different video resolution. 

Table 1. Resolution and video length of the 6 video clips 

Video clips Resolution Video length(s) 
fight.mkv 1200x512 63.035 
indoor.mkv 1136x480 165.842 
mountain.mkv 1280x720 61.120 
seal.mkv 1280x720 59.659 
sport.mkv 720x480 61.028 
avatar.mkv 1920x1080 108.400 

4.1 Time Breakdown 

The computation time breakdown of the serial 2D-to-3D video conversion application 
is shown in Fig.10. From this figure, we can see that DIBR is the most compute-
intensive module occupying ~60% of total computing time in all video clips except 
the sport video clip, in which DfM is the most time consuming one. OA and DfM 
consume almost the same time (~15% of total computing time) in most cases. These 
three key modules make up more than 85% (85~91%) of the whole application 
execution time. 

 

Fig. 10. The computation breakdown of the serial 2D-to-3D video conversion application 

4.2 Performance Improvement 

The conversion speed using frames per second (FPS) for each step of the optimization 
is shown in Fig.11. For each step of the experiment, we collect the computation time 
(excluding video decoding) of each video clip, divided them by the number of frames 
in the video clip and then get an average FPS from all the results.  
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In total, our accelerated 2D-to-3D video conversion runs ~3 times faster than the 
original version (a version of the original algorithm that incorporates all other serial 
optimizations except vectorization) on the 4-core system. The SSE optimization 
makes the program 63% faster than the original version on average. The AVX gains 
an additional 13% speedup over SSE version. Finally, the parallelization improves the 
speed ~60%. Furthermore, according to the conversion time shown in Table 1, we can 
see that after the optimization and parallelization the application can convert the high-
definition (1920x1080 pixels) video clip avatar to 3D video on an average of 36 FPS, 
which is much faster than the original algorithm and meets the real-time processing 
requirement. 

 

Fig. 11. Processing speed (FPS) of the 2D-to-3D video conversion application on a 4-core 
system 

 

Fig. 12. Relative speedup of the optimized 2D-to-3D video conversion application 

4.3 Scalability Performance 

Fig.12 shows the scaling performance of the optimized 2D-to-3D video conversion 
application on the 4-core system. From the figure, we can find that the program scales 
well for 2 and 4 threads. It achieves ~1.5x speedup on two cores and ~1.8x speedup 
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on four cores. The scalability performance is not so good, but quite respectable. 
Considering that we just parallelized ~85% region of the whole application, the large 
serial region (~15%) is one of the bottlenecks of the scaling performance. In addition, 
some inherent serial properties in the application such as tree building in OA and 
DfM also prevent us from obtaining good scalability performance.    

5 Conclusion 

There is a rising demand on new techniques for automatically converting 2D video 
content to stereoscopic 3D video display. In this paper, we optimize and parallelize a 
typical 2D-to-3D video conversion application on multi-core systems. As a result, the 
accelerated program can convert high-definition (1920x1080 pixels) 2D video to 3D 
on an average of 36 FPS on a 4-core laptop. The speed is much faster than the original 
implementation and meets the real-time processing requirement. Besides, we also 
analyze the scalability performance of the optimized application, and find that the 
sequential regions and some inherent serial properties in the program are the main 
limiting factors of the scaling performance of the application. To improve the perfor-
mance on a large-scale multi-core system, we need to further extract parallelisms in 
some small serial regions and improve the parallel method for some key modules for 
much better scaling performance.  

Acknowledgements. Our thanks go to Prof. Qionghai Dai from Tsinghua University 
for collaborating with us on the reference application development and for providing 
some reference code for our optimization and analysis. 
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Abstract. The multi-objective firm expansion problem on competitive
facility location model, and an evolutionary algorithm suitable to solve
multi-objective optimization problems are reviewed in the paper. Several
strategies to parallelize the algorithm utilizing both the distributed and
shared memory parallel programing models are presented. Results of
experimental investigation carried out by solving the competitive facility
location problem using up to 2048 processing units are presented and
discussed.
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1 Introduction

The classical Competitive Facility Location (CFL) problem deals with locating
a new facility in an area where a number of preexisting facilities are competing
with each other for the market share. The goal of solving CFL problem is to
locate new facilities (one or several) on purpose to maximize market share of
them.

The CFL problem was first introduced by Hotelling in 1929 [1] who considered
a competition on a particular segment such as a main street. There are references
in literature i.e. [2–4], describing various CFL models which may vary on different
properties. For instance, the location space may be the plane or a discrete set.
We may want to locate just one or more than one new facility. The competition
may be static (competitors are already in the market and their characteristics are
known), or with foresight (the competitors are not in the market yet but they will
be soon after locating of new facility). In the latter case it is necessary to make
decisions with foresight about this competition, what leads to a Stackelberg-
type [5] model. Furthermore, if the competitors can change their decisions, then
we have a dynamic model, in which the existence of equilibrium situations is
of major concern. Besides these properties very important is the behavior of
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customers when choosing the facility to purchase a service [6]. Knowing the
behavior of customers helps the decision maker to estimate the demand captured
by an existing or prospective facility.

Behavior of the customers has been studied in several disciplines such as geog-
raphy, economics and marketing, however it is hard to describe the mathematical
model correspondent to the behavior of customers in real-life situations. One of
the simplest model of the behavior is based on the assumption that customers
patronize the closest (or cheapest) facility, although this model is quite far from
reality. More realistic model of the behavior of customers has been introduced by
Huff [7, 8] who suggested the assumption that customer’s patronage is divided
among the competing facilities according to an attractiveness of the facility and
the distance between customer’s demand point and the facility.

A lot of research focuses on a location decision for an entering firm assuming
the competing facilities to be known. Even the simplest case of CFL problem
when locating a single facility in continuous space, may lead to a hard global
optimization problem. The CFL problem for locating a single facility using at-
traction functions of gravity type has been studied in [9, 10], and in [11] using
different kinds of attraction functions. The sequential decisions for two firms
which are competing in a leader-follower Stackelberg situation have been con-
sidered in [5, 12].

Like most of real-life optimization problems, CFL problems are often multi-
objective. Besides the main goal – to maximize the market share of new facilities,
additional factors such as costs of maintenance of prospective facility or potential
influence of hazards to the citizens, should be taken into account when locating
new facilities.

In this paper we will focus on firm expansion problem CFL model. Let us
consider two competing firms: A and B which already have preexisting facilities
providing some goods or services in certain area in which demand of customers
is assumed to be known. Let as assume that behavior of customers is based on
the simplest model as they patronize the facility which is the closest. In the
case of choosing between two or more facilities that are equidistant, customers
distribute equally among all of them. Suppose that firm A wants to open a set
consisting of one or several new facilities in order to increase the total demand.
Naturally the expansion of firm A cannot reduce the total market share of the
firm, however it may happen that some of new facilities can attract customers
from the preexisting facilities belonging to the firm A thus involving the effect
of “cannibalism”. Therefore firm A faces multi-objective optimization problem
with the following two objectives:

(1) to maximize total demand captured by new facilities,
(2) while minimizing the effect of cannibalism.

In the next section we will present the main principles of multi-objective opti-
mization. Later we will describe an evolutionary algorithm for multi-objective
optimization and several approaches to parallelize it using distributed memory
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as well as shared memory parallel programming models. Finally the results of
the experimental investigation of performance of the parallel algorithm will be
presented and conclusions will be formulated.

2 Multi-objective Optimization

In general, a Multi-objective Optimization Problem (MOP) with d variables and
m objectives in the objective vector

f1(x), f2(x), . . . , fm(x) (1)

is to find decision vector
x = (x1, x2, . . . xd), (2)

which optimizes the objective vector

F (x) = (f1(x), f2(x), . . . , fm(x)). (3)

Focusing on the problem formulated in previous section, we will consider MOP
with two objectives, one of which is subject to maximize (the total captured
demand), and another – to minimize (the effect of cannibalism). Since there can
be conflicts between the objectives, it can be impossible to find a single solution –
a decision vector which would be the best according to both the objectives – a
decision vector which is the best according to increment of the market share
could be unacceptable according to the effect of cannibalism. Also two decision
vectors, let us call x and y, may be indifferent (denoted by x ∼ y) to each other –
one is better according to the first objective while another – according to the
second. However it may happen that decision vector x is better than decision
vector y according to both the objectives. If so it is said that decision vector
x Pareto-dominates (or simply dominates) decision vector y. The dominance
relation is denoted by x ! y. In general, decision vector x dominates decision
vector y if and only if

(1) decision vector x is not worse than y according to all objectives and
(2) decision vector x is strictly better than y by at least one objective.

Decision vectors which are non-dominated by any other decision vector are called
Pareto-optimal and a set of those vectors – Pareto-set. Determination of this set
is the main goal of multi-objective optimization. Unfortunately, in most cases,
it is difficult or impossible to determine the exact Pareto-set in reasonable time.
Moreover solving most of practical multi-objective optimization problems it is
not necessary to obtain exact Pareto-set, rather the approximation with a reason-
able precision. Therefore an approximation methods may be used, which provide
approximation of exact Pareto-set.

Onewell knownclass of optimizationalgorithms–EvolutionaryAlgorithms (EAs)
are well suited to solve multi-objective optimization problems as they are based
on biological processes which are inherently multi-objective. Multi-Objective EAs
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(MOEAs) canyield awhole set of potential solutions –which are all optimal in some
sense – and give the option to assess the trade-offs between different solutions. Fur-
thermore EAs require little knowledge about the problem being solved and they
are robust and easy implementable. To solve a certain optimization problem, it is
enough to require that one is able to evaluate the objective functions for a given set
of input parameters. Furthermore EAs are inherently parallel what is very impor-
tant in solving facility location problems which require to process a large amount
of data.

3 Non-dominated Sorting Genetic Algorithm

One of the most popular MOEA is Non-dominated Sorting Genetic Algorithm
which was proposed by Srinivas and Deb [13], and was one of the first MOEQ
which have been applied to various problems [14, 15]. An updated version of the
algorithm (NSGA-II) have been proposed by Deb et. al. in [16].

The algorithm begins with an initial parent population P , consisting of N
decision vectors randomly generated over the search space. Then the algorithm
continues with the following process:

(1) A new child population Q is created by applying genetic operators (selection,
crossover and mutation) to the elements of the parent population. Usually a
child population has the same size as the parent population.

(2) Parent and child populations are combined into one 2N -size population

R = P ∪Q. (4)

(3) The derived population R is sorted according to the number of domina-
tors, and reduced to the size of N decision vectors by removing the most
dominated elements. If two or more decision vectors are equally dominated
then crowding distances estimator [16] is used to choose the most promising
decision vector.

(4) Go to the 1st step by using the reduced population as a parent population
P in generation of the child population.

4 Parallel NSGA-II

4.1 Parallel Computing

Parallel computing is a form of computations in which computations are per-
formed utilizing many processing units simultaneously. Parallel computing deals
with the principle that problems requiring a lot of computational recourses can
be often divided into a set of independent subproblems that can be solved using
different computing recourses simultaneously. The performance of parallel algo-
rithm is often evaluated by measuring the speed-up Sp of the algorithm – the
ratio of time T0 required to solve the problem using the best known sequential
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algorithm and time Tp required to solve the problem using parallel algorithm on
p processing units:

Sp =
T0
Tp
. (5)

The ideal speed-up is linear: Sp = p, however, often it is hard or impossible
to achieve due to reasons such as a need of additional time for communication
between processors or existence of parts of the algorithm which cannot be solved
simultaneously. The Amdahl’s law [17] states that the speed-up of a parallel
algorithm cannot be larger than

Smax =
1

α
(6)

independent on the number of processing units used. Here α is the fraction of
the time a sequential algorithm spends on non-parallelizable parts.

There are two general parallel programming models – shared memory and
distributed memory. The main difference is the mechanisms by which parallel
processing units are able to communicate with each other. In shared memory par-
allel programming model processing units communicate by manipulating general
address space accessible by all processing units asynchronously. In a distributed
memory model, parallel processing units exchange data through passing mes-
sages to each other. OpenMP (OMP) and POSIX Threads are two most widely
used shared memory parallel programing interfaces, whereas Message Passing
Interface (MPI) is one of the most widely used for distributed memory parallel
programing.

Naturally parallel algorithms implemented under distributed memory pro-
gramming model are more time consuming for communication between proces-
sors comparing with shared memory parallel programming model. On the other
hand shared memory parallel programing model has more hardware limitations
and requires additional management of access to the memory that enables to
avoid concurrent access to the same memory space.

4.2 Parallelization of NSGA-II Using MPI

The algorithm NSGA-II can be roughly separated into 3 parts:

(1) evaluation of objective functions,
(2) Pareto ranking and genetic operations,
(3) other computations such as non-dominated sorting, memory allocation and

management, etc.

Most of parallel implementations of NSGA-II are based on parallelizing the first
part which is often the most computational recourse consuming part of the
algorithm [18, 19]. However if even 99% of computational recourses are utilized
to evaluate objective functions, the speed-up of the algorithm cannot be larger
than 100 independent on processing units used (see equation (6)).
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Another strategy to parallelize NSGA-II has been proposed in [20]. The parent
population P is distributed among all processors which generates appropriate
subpopulation Qi of child population such as

Q =
⋃
i

Qi, (7)

where i = 1, . . . , p and p denotes the number of processing units. The partial
Pareto ranking is performed while the child subpopulations are being gathered
as illustrated in Figure 1, where dom(P ⊗Q) denotes the procedure of counting
how many dominators each vector from the set P has in the set Q. The strategy
operates on the following main principles [20]:

(1) population P ∪ Q can be Pareto-ranked by performing four operations:
dom(P ⊗ P ), dom(P ⊗Q), dom(Q ⊗ P ), dom(Q ⊗Q);

(2) operation dom(P ⊗ P ) is necessary only in the first generation of NSGA-II.

The parallel algorithm implemented using this strategy will be denoted by
ParNSGA/HR hereinafter.

Fig. 1. Scheme of parallel NSGA-II with partially parallel Pareto ranking performed
following hierarchic fashion
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Although ParNSGA/HR algorithm parallelizes Pareto ranking without addi-
tional cost of communication, non-master processing units may be idle for some
time. On the one hand it could be insignificant performing computations on sev-
eral or several tens processing units, but on the other hand the idle time can be
relatively long using several hundreds or thousands of processing units thus sig-
nificantly affecting the speed-up of the algorithm. For comparison we introduce
another strategy which gives an opportunity to avoid significant idle time, but
increases costs for communication between processing units:

(1) The master processing unit distributes the parent population among the
slaves following the hierarchic fashion.

(2) Each processing unit generates an appropriate part of child population.
(3) The master processing unit gathers subpopulations of the child subpopula-

tions Qi from the slaves, combines into one population Q and distributes it
among the slaves.

(4) Each processing unit evaluates the corresponding subpopulation Qi ⊂ Q by
performing dom(Qi ⊗Q), dom(Qi ⊗ P ) and dom(P ⊗Qi).

(5) The master processing unit gathers all the information about Pareto ranks,
counts the total values of Pareto ranks of each element in P ∪ Q and dis-
tributes them among all slaves.

(6) Now all processing units have the whole set P ∪Q including the information
about Pareto ranks, and can continue with rejecting most dominated decision
vector and proceeding to the next generation (2nd step).

The parallel algorithm implemented under the latter strategy will be denoted
by ParNSGA/DR hereinafter. Scheme of the algorithm is given in Figure 2.

Fig. 2. Scheme of parallel NSGA-II with distributed Pareto ranking
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4.3 Hybrid MPI-OpenMP Algorithm

In order to maintain the same behavior as sequential algorithm has, parallel
algorithm has to initiate data exchange between processing units after every
generation. Thus the main performance bottleneck in parallel algorithm is often
communication latency between processing units. To reduce the communica-
tion cost required for frequent message passing we improved ParNSGA/DR by
utilizing both distributed and shared memory programing models. The derived
hybrid MPI-OpenMP algorithm ParNSGA/MPI-OMP is based on creating pro-
cessing units consisting of a number of shared memory threads which are able to
communicate through shared memory space, as illustrated in the right image in
Figure 3. The communication between processing units are performed utilizing
message passing interface as in ParNSGA/DR, however the number of processing
units is smaller.

As illustrated in Figure 3, data from 16 processing units can be gathered
within 4 steps using ParNSGA/DR (left image) and within 2 steps – using
algorithm ParNSGA/MPI-OMP (right image). In general gathering of data from
p1 processing units can be done in log2 p1 steps using ParNSGA/DR, and within
log2

p1

p2
steps using algorithm ParNSGA/MPI-OMP, where p1 denotes number

of processing units per cluster.

Fig. 3. Scheme of distribution of data using distributed (left) and shared (right) mem-
ory parallel programming models

5 Numerical Experiments

In the first instance the performance of two algorithms ParNSGA/DR and
ParNSGA/HR which utilize distributed memory parallel programming model
has been investigated. The multi-objective competitive facility location prob-
lem has been solved using two different sizes of the population: 256 and 512
decision vectors. It was expected to locate 5 new facilities therefore the number
of variables of the problem has been 10 as each facility has two coordinates.
Later the number of facilities expected to locate has been increased to 25 thus
increasing to 50 variables. 250 generations of the genetic algorithm have been
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performed in each experiment. Depending on population size and the number of
facilities expected to locate, duration of sequential algorithm varies from around
18 minutes (locating 5 facilities using population of 256 decision vectors) to more
than 12 hours (locating 25 facilities using population of 2048 decision vectors).
The number of processing units varies up to the maximum so that the work-
load (generation of child population and evaluation of objective functions) could
be equally divided among all processing units – up to 256 processing units for
population of 256 decision vectors and up to 512 processing units for population
of 512 decision vectors. The results of the investigation are illustrated by two
charts in Figure 4, where the horizontal axis represents the number of processing
units and the vertical axis – the speed-up of the algorithm. Using population of
256 decision vectors, better performance gives algorithm ParNSGA/HR which
utilizes parallelization of Pareto ranking without additional cost for communi-
cation, but forces processors to be idle (left image in Figure 4). When the size
of the population has been increased to 512 decision vectors, the performance
of both algorithms was similar when 256 processing units have been used, how-
ever ParNSGA/DR gives advantage against ParNSGA/HR when 512 processing
units have been used (right image in Figure 4). It could be explained as overmuch
large idle time of processing units using large population in ParNSGA/HR.

Fig. 4. Comparison of performance of parallel algorithms ParNSGA/DR and
ParNSGA/HR using population of 256 (left) and 512 (right) decision vectors

Another experimental investigation has been performed to investigate the
influence of utilization of shared memory parallel programing model to the per-
formance of the algorithm. The same multi-objective optimization problem as
in previous investigation has been solved using algorithms ParNSGA/DR and
ParNSGA/MPI-OMP. Two different populations consisting of 1024 and 2048
decision vectors have been investigated by performing computations on differ-
ent number of processing units which varies up to 1024 and 2048 depending
on the size of the population. Different number of threads per shared memory
processing unit (4 and 16 threads) have been also investigated. Results of the
investigation are illustrated by two charts in Figure 5, where the horizontal axis
represents the number of processing units and the vertical axis – the speed-up
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Fig. 5. Comparison of performance of parallel algorithms ParNSGA/DR and
ParNSGA/MPI-OMP using population of 1024 (left) and 2048 (right) decision
vectors

Fig. 6. Comparison of performance of parallel algorithms ParNSGA/DR and
ParNSGA/MPI-OMP using population of 1024 decision vectors when number of vari-
ables of the problem has been increased to 50

of the algorithm. We can see that utilization of shared memory parallel pro-
graming model gives significant advantages to the performance of the algorithm
when using up to 512 processing units for population of 1024 decision vectors
(left image in Figure 5) and up to 1024 processing units for population of 2048
decision vectors (rigth image in Figure 5). Increasing the number of processing
units to the maximum, the performance falls down using either 4 or 16 threads
per processing unit if population of 1024 decision vectors has been used, and
using 16 threads for population of 2048 decision vectors. Note that using the
maximum number of processing units the workload per unit is very small com-
paring with initialization an synchronization costs using shared memory parallel
programming subroutines. Consequently we increased the number of variables of
the problem from 10 to 50 thus increasing five times the computational costs per
processing unit. The size of the population has been chosen to be 1024 decision
vectors and the number of processing units varies up to 1024 as before while
investigating the performance of the algorithms with the population of the same
size. Results of the investigation are illustrated in Figure 6, where the meanings
of the vertical and horizontal axes remain the same as in Figures 4–5. From the
results we can see that hybrid MPI-OpenMP algorithm ParNSGA/MPI-OMP
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gives significant advantage, moreover using more threads per shared memory
processing unit, the hybrid algorithm was more superior comparing with the
algorithm which utilizes distributed memory parallel programing model only.

6 Conclusions

Parallel evolutionary Non-dominated Sorting Genetic Algorithm has been devel-
oped in the paper. Three different versions of the parallel algorithm have been
experimentally investigated utilizing both the distributed and shared memory
parallel computers. The results of the investigation show that utilization of the
shared memory parallel programming model gives significant advantage to the
performance of the algorithm when workload per processing unit is large enough
comparing with costs of communication between processing units.
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Abstract. Matrix diffusion is a phenomenon in which tracer particles
convected along a flow channel can diffuse into porous walls of the chan-
nel, and it causes a delay and broadening of the breakthrough curve
of a tracer pulse. Analytical and numerical methods exist for modeling
matrix diffusion, but there are still some features of this phenomenon,
which are difficult to address using traditional approaches. To this end
we propose to use the lattice-Boltzmann method with point-like tracer
particles. These particles move in a continuous space, are advected by
the flow, and there is a stochastic force causing them to diffuse. This
approach can be extended to include particle-particle and particle-wall
interactions of the tracer. Numerical results that can also be considered
as validation of the LBM approach, are reported. As the reference we
use recently-derived analytical solutions for the breakthrough curve of
the tracer.

1 Introduction

Matrix-diffusion phenomena have been studied for over three decades [1–3],
and they have attracted interest due to applications in biological and geolog-
ical flows, and in the safety assessment of nuclear-waste repositories. This phe-
nomenon arises when a pulse of tracer molecules is advected along a flow channel
with porous walls. Tracer molecules diffuse into pores, which affects their break-
through curve.

Analytical and numerical methods are available for many cases [4, 5], but there
are still several features of this phenomenon that are difficult to address, such as,
e.g., sorption and anion exclusion. We propose an approach based on the lattice-
Boltzmann method (LBM) [6] which can be used to resolve the flow field in
complicated geometries, and to track advection and diffusion of individual tracer
particles suspended in the fluid. A similar approach has been used, e.g., in [7] for
modeling a capillary-filling process of binary fluids that contain nanoparticles.

Before more complicated physics can be added, the approach must be vali-
dated. To this end, we consider a model transport system, for which the related
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mathematical model can be solved semi-analytically [8]. Although the model in-
volves some simplifications, it has been found to be in excellent agreement with
experimental results [8].

The rest of the paper is organized as follows. The matrix-diffusion problem
considered is described in Section 2. A brief introduction to LBM is given in
Section 3, and its parallel implementation is discussed in Section 4. Numerical
results of test cases are reported in Section 5, and conclusions are drawn in
Section 6.

2 Matrix Diffusion

We consider flow of solvent past a porous matrix of finite depth Lz (in the z
direction), in a flow channel or fracture having aperture 2b (in the z direction)
and width w (in the y direction). Advection of dissolved tracer along the channel
is then coupled to its diffusion in the porous matrix. A schematic diagram that
represents the situation is shown in Fig. 1. We assume that the fracture extends
to infinity in the x direction, but we are interested in the tracer concentration at
a given location x = L, i.e, the breakthrough curve of the tracer at that point.

Fig. 1. Schematic diagram of a fracture surrounded by a porous matrix

When advection along the channel is much faster than transport by diffusion
in the matrix, we can consider, in leading order, diffusion in the matrix as one
dimensional and transverse to the channel, since longitudinal concentration gra-
dients are small inside the matrix independent of the concentration gradients
that appear within the channel. As the aperture-to-length ratios and the flow
rates are small in situations in which matrix diffusion is important, we can as
well assume that tracer concentration within the flow channel is constant across
its aperture (a ’well-mixed’ flow channel). This is a valid approximation when
the time scale related to transverse diffusion of the tracer in the flow channel is
short in comparison with its advection time, i.e., when b << LDf/q̇, where Df

is the molecular diffusion coefficient of the tracer in the solvent and q̇ is the vol-
umetric flow rate per channel width along the channel. With these assumptions,
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the tracer concentration in the flow channel, Cf , and in the porous matrix, Cm,
can be described in the above transport system by the equations [2, 8]

∂Cf

∂t
(x, t) + v

∂Cf

∂x
(x, t)−Df

∂2Cf

∂x2
(x, t) =

εD

b

∂Cm

∂z
(x, 0, t) (1)

∂Cm

∂t
(x, z, t)−D∂

2Cm

∂z2
(x, z, t) = 0, (2)

whereD is the effective diffusion coefficient of the tracer in the matrix of porosity
ε and v is the flow velocity in the channel.

The following boundary and initial conditions describe the situation in which
a short pulse (amount M0) of tracer is injected into the flow at the entrance
(x = 0) of the channel at time t = 0:

Cm(x, z, 0) = 0,
∂Cm

∂z
(x, Lz , t) = 0, Cm(x, 0, t) = Cf (x, t) (3)

Cf (x, 0) = 0, Cf (0, t) =
M0

2wbv
δ(t). (4)

We look for a bounded solution to the above problem in the half space x > 0,
which provides the last boundary condition needed for a unique solution. The
quantity of interest is Cf at x = L, Cf (L, t), i.e., the breakthrough curve of the
tracer at that point.

Introducing the dimensionless variables

ξ =
x

L
, ζ =

z

Lz
, τ =

tv

L
, C(ξ, τ) =

2wbL

M0
Cf (x, t), (5)

and solving Eq. (2) for Cm (now in the form ∂Cm

∂τ (ζ, τ)− 1
κ2

∂2Cm

∂ζ2 (ζ, τ) = 0, τ >

0, 0 < ζ < 1) by separating the variables, we obtain the following dimensionless
form of the problem:

∂C

∂τ
(ξ, τ) +

∂C

∂ξ
(ξ, τ)− μ2 ∂

2C

∂ξ2
(ξ, τ) = −λ

∫ τ

0

Λ(τ − σ)∂C
∂σ

(ξ, σ)dσ. (6)

Here

Λ(τ) =
2

κ

∞∑
n=0

e−(γ2
n/κ

2)τ , γn = (n+
1

2
)π, (7)

and the behavior of the system is controlled by three dimensionless parameters,

λ = ε
L

b

√
D

Lv
, κ =

Lz

L

√
Lv

D
, μ =

√
Df

Lv
. (8)

The initial and boundary conditions are

C(ξ, 0) = 0, C(0, τ) = δ(τ). (9)
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3 The Lattice-Boltzmann Method

History of the lattice-Boltzmann method dates back to the lattice-gas automa-
ton proposed in the 1980s for the solution of the Navier-Stokes equation [9],
but in LBM the Boolean particle representation is replaced by a statistical one.
Using the Chapman-Enskog analysis it can be shown that, in low Mach-number
simulations, a lattice-Boltzmann equation (LBE) provides a second-order accu-
rate approximation for the Navier-Stokes equation. The strengths of the method
include simplicity of coding, straightforward incorporation of microscopic inter-
actions, and suitability for parallel computing. Moreover, it is relatively straight-
forward to construct the computation geometry from images, since the method
only requires a binary representation of the fluid and solid phases of the domain
instead of triangulation of the boundaries or volumes. For this reason the method
has gained popularity especially in simulations of flow through porous media.

LBM can be considered as a specific first-order-accurate finite-difference dis-
cretization of the discrete-velocity Boltzmann equation (DVBE),

∂fi
∂t

+ ci ·
∂fi
∂r

= Ji(
−→
f ), i = 0, 1, . . . , q − 1, (10)

which models the evolution of th mass-density distribution function
−→
f in the

case where each particle in the system has a velocity that belongs to a discrete
set {c0, ci, . . . , cq−1}. Here fi ≡ f(r, ci, t), r is the position, t the time, operator

Ji models the collisions of particles, and
−→
f = (f0, f1, f2, . . . , fq−1)

T
.

3.1 Discretization

The degrees of freedom in LBM are real-valued distribution functions fi(r, t),
where r is now a lattice site. A family of grid models is reported in [10], denoted
by DnQm. These models have m discrete velocities in a simple cubic lattice
of dimension n. Roughly speaking, accuracy can be gained by increasing the
number of local velocities, but this also increases the computational cost.

In the single-relaxation-time approximation, known as the BGK model [11],
distribution functions are updated such that

fi(r +Δtci, t+Δt) = fi(r, t)−
1

τ
(fi(r, t)− f eqi (r, t))︸ ︷︷ ︸

collision

. (11)

Transfer of distribution values to neighboring lattice sites is called the streaming
step. In our code this is done using the swap algorithm described in [12]. The
last term on the right-hand side of the equation represents the collisions through
which the distribution function is relaxed towards a local equilibrium,

f eqi = ρ(r, t)wi

(
1 +

ci · v
c2s

+
(ci · v)2

2c4s
− ||v||

2

2c2s

)
. (12)
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Parameter τ is the relaxation time that characterizes the collision process, and
is related to the kinematic viscosity of the fluid by the relation ν = (2τ − 1)/6.
Constant cs is the speed of sound, in this case cs = 1/

√
3 in lattice units, and

wi are weight factors.
From the macroscopic mass and momentum densities,

ρ(r, t) =
∑
i

fi(r, t), ρ(r, t)v(r, t) =
∑
i

cifi(r, t), (13)

the macroscopic velocity v can be computed.

3.2 Point-Particle Dynamics

In this work we consider point-like tracer particles without inertia. For a review
of applications and implementation techniques of LBM with colloidal particles
see [13].

We assume that particles are penetrable to the fluid and exclude the volume
interactions, and, assuming that the ratio of the particle mass to the drag coeffi-
cient is vanishingly small, we obtain the following stochastic differential equation
for the trajectories of the tracer particles [14]:

dX(t) = v(X(t))dt+
√
2DdW (t) +

F (t)

ξ
dt. (14)

Here X is the position of the particle, and the first term on the right-hand side of
the equation models advection in the flow field v(X, t). The second term models
the Brownian motion of the particle. HereD is the molecular diffusion coefficient,
and W (t) is a Gaussian random variable. All other forces are represented by F ,
and ξ is the drag coefficient. The force term can be used to model different kinds
of chemical interaction, but, in the simulations discussed here, such forces are
not present.

Approximation of Eq. (14) with the Euler method gives the following expres-
sion for the updated particle position:

X(t+Δtp) = X(t) + v(X(t))Δtp +
√
2DΔW (t) +

F (t)

ξ
ΔtPD. (15)

Here the random variableΔW (t) has variance 〈|ΔW (t)|2〉 = 3ΔtPD in the three-
dimensional case [14], and the time step ΔtPD is taken to be a fraction of the
LBM time step Δt. Instead of the Euler method, one could use, for example, the
Heun method [15] which is a weakly second-order convergent predictor-corrector
algorithm.

To compute the updated particle position using Eq. (15), the macroscopic
velocity v at the position of the particle is required. Particle positions are not
restricted to the lattice sites, and thus interpolation of the velocity is used to
compute the velocity as follows: Each lattice cell is divided into octants. From the
position of the particle we immediately obtain the lattice cell and the octant in



Simulation Software for Flow of Fluid with Suspended Point Particles 439

which it is located. Next we pre-interpolate the velocity into the corners of that
octant. One of the corners is a lattice site, where the velocity is already known.
The other corners are located in the middle of an edge or a face of the cell, and
one corner is in the cell center. In these corners the velocity is defined to be the
average of those in the two, four or eight neighboring lattice sites, respectively.
The velocity at the actual particle position is finally computed using trilinear
interpolation of the velocities at the corners of the octant.

4 Parallel Implementation (MPI)

Our implementation of LBM uses the D3Q19 grid model. The code is parallelized
following the single-program multiple-data (SPMD) paradigm using MPI. We
use box-domain decomposition, where the domain can be divided along all three
coordinate axes. Our code currently allows only regular decomposition, which
greatly simplifies the implementation, but generally results in unbalanced work-
load among the processors due to varying fluid-node counts. We notice that an
efficiency gain of more than 20 percentage points are reported in [16] in which
optimized domain decomposition and data-transfer layout for large porous do-
mains were used.

The present implementation is outlined in the following pseudo-code:

1: tLBM = 1
2: while tLBM ≤ tmax

LBM do
3: stream, update density
4: enforce boundary conditions
5: communicate new densities
6: compute density-dependent forces and update velocities
7: communicate new velocities
8: tPAR = 1
9: while tPAR ≤ tmax

PAR do
10: update particle positions
11: communicate particles
12: tPAR = tPAR + 1
13: end while
14: collision
15: communicate new distributions
16: tLBM = tLBM + 1
17: end while

The LBM update Eq. (11) consists of a completely local collision step that in-
volves only the distribution values of one lattice site, and a streaming step which
involves exchange of information between neighboring lattice sites. The stream-
ing step is realized on the subdomain boundary by adding there an extra lattice
layer where distribution values are acquired from the neighboring processes via
MPI communication.
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Tracer particles are divided among the processes according to the same domain
decomposition. Since the macroscopic velocities required for the particle update
are already computed for the LBM collision step, they are readily available at
all lattice sites except the ones belonging to the ghost layer. Velocities at the
ghost layer sites are obtained at each time step from neighboring processes via
communication.

The data describing the particles are transferred between processes, when
particles move between the corresponding subdomains. To this end, a list of
particles residing in each cell is maintained, which allows us to communicate
only those particles that reside in the overlapping region. Several particle position
updates are taken inside one step of LBM, and transfer of particles takes place
after each of these steps.

We notice that the choice of the same decomposition for the particle system
and LBM can cause load imbalance in case the particles are not evenly dis-
tributed between processes, or if transfer rates of particle data between processes
differ significantly. The latter condition can arise in heterogeneous domains due
to variable fluid velocity. In some geometries, unequal domain decomposition
could therefore improve the overall efficiency.

5 Numerical Results

In this Section we report results of numerical computations that have been per-
formed with the code discussed in the previous Section. A schematic diagram of
the computation geometry is shown in Fig. 3. It is a realization of the matrix-
diffusion problem discussed in Section 2, except that now the flow profile in the
channel will automatically be included. As discussed there, we are only con-
cerned of the part of the parameter space, where flow profile does not play a
significant role.

5.1 Scalability Tests

First we present results of scalability tests performed on a HP CP4000 BL Pro-
Liant supercluster maintained by CSC – IT Center for Science Ltd.

In practice it is difficult to obtain good parallel performance in matrix-diffusion
simulations due to the fact that the distribution of particles is very uneven in
the x and z directions, especially at the initial phase of the simulation (initial-
ization mimics a delta pulse). For this reason, in the scalability tests we made
the domain decomposition only along the y axis. The following results represent
an average over two computations.

In the first test we considered the strong scaling of the solver. The dimensions
of the domain were 540 × 2000 × 90, and the number of particles was 200000.
Results of this test are shown in Table 1.

The actual efficiency of parallel programs can be better understood by ana-
lyzing the algorithm so as to determine the amount of operations it performs
and the amount of data that is communicated. In [17] such an analysis has been
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Table 1. Strong scaling of the solver. The speed-up (S) and efficiency coefficient (E)
for different number of processors.

12 24 36 48 60 84 108

S(n) 8.04 12.91 22.68 23.93 27.53 37.82 46.84
E(n) 0.67 0.54 0.63 0.50 0.46 0.45 0.43

done for a fluid-dynamics solver based on the finite-volume method, and in [16]
an implementation of LBM has been similarly analyzed. In our case it is evident
that efficiency will drop slightly when the number of processors is increased.
This behavior can be explained by considering the following simple model for
the workload and data transfer of the processes.

Since a slice decomposition along the y axis is used, the subdomains are ef-
fectively identical, and the number of particles is practically equal among the
processes. Moreover, the amount of data communicated between two neighbor-
ing processes is independent of the number of processes. We can estimate the
computation time, when using n > 1 processors, such that

T (n) ≈ nit
n

(
Nf tf +

Δt

ΔtPD
Ptp

)
+ nittd ≡ a/n+ b, (16)

where nit is the number of LBM iterations, Nf the number of fluid sites, tf the
time needed for one fluid-site update, Δt/ΔtPD the number of particle time steps
within an LBM time step, P the number of particles, tp the time needed for one
particle update, and td the time needed for communication.

Estimates for tf and tp could be obtained by performing computations on
a single processor. An estimate for td would be more difficult to obtain, since
in addition to the exact amount of data that is transferred, it depends on the
data-transfer rate and latency of the interprocessor communication network. It
has been proposed in [16] to measure these quantities using specialized software.
We chose, however, to fit observed speed-up data by the model Eq. (16) using a
and b as the fitting parameters.

If we, furthermore, replace T (1) by a constant absorbed in parameters a and
b (its value would be absorbed in these parameters anyway), the speed-up can
be expressed in the form

S(n) =
T (1)

T (n)
≈ 1

A/n+B
. (17)

We found A = 1.6 and B = 0.0070 by making a least squares fit with this model
to the measured data shown in Table 1. The fit and the measured values are
shown in Fig. 2. The model predicts saturation of the speed-up, which is typical
of strong scaling, with an upper bound of 143 for this particular geometry.

In the second test we considered weak scaling, where the size of the domain and
the number of particles were proportional to the number of processors involved.
More precisely, the size of the domain was 540× (50n)× 90 and the number of
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Fig. 2. Speed-up versus the number of processors. Measured values and a least squares
fit by the model Eq. (17).

particles was 20000n. Now an estimate for the computation time can be expressed
in the form

T (n) ≈ nit
(
Nf tf +

Δt

ΔtPD
Ptp + td

)
, (18)

where Nf and P are the number of fluid sites and number of particles per sub-
domain, respectively. This implies that T (n)/T (1) should remain constant when
the number of processors is increased, which is in line with the results shown in
Table 2.

Table 2. Weak scaling of the solver

12 24 36 48

T(n)/T(1) 1.69 1.49 1.58 1.51

5.2 Matrix Diffusion

Next we performed simulations of the matrix diffusion phenomenon in a phys-
ical realization of the case described by Eqs. (1)–(4). In Eq. (2) we assumed
that diffusion of the tracer in the matrix takes places only in the z direction.
Therefore, the matrix used in the computations was constructed so as to allow
for 1D diffusion perpendicular to the channel alone, and it is shown in Figure 3.

The width of the channel, w (in the y direction), was assumed to be large,
which was modelled by imposing periodic boundary conditions along the y axis.
The tracer particles were removed from the simulation when they crossed the
boundary of the computation domain. To prevent back-diffusion of particles
through the inlet, particles were initialized at some distance downstream. Simi-
larly, the outlet was sufficiently distant from the zone where concentration was
measured.
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Fig. 3. A schematic diagram of the setup used in the matrix-diffusion simulations

Simulations were performed on a server equipped with 8 Intel Xeon processors,
each having 8 cores running at 2.67 GHz. Typical lattice size in the simulations
was about 540 × 9 × 90, and the number of particles was 20000. The runtime
of such a simulation with 9 processes (decomposition 1 × 3 × 3) was about 48
hours.

Solutions for the system Eqs. (1)–(4) have been reported in [8] in the form of
series expansions and convolution integrals. In Fig. 4 we compare the solution
for this particular setup (matrix of finite depth) with our simulation results.
The parameters λ, κ, and μ (L, K and M in the Figure) vary between the test
cases. The simulation results are in good agreement with those of the analytical
solution.
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Fig. 4. Results of particle simulations and the related analytical solutions
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6 Conclusions

Matrix-diffusion phenomena deal with a pulse of tracer molecules advected along
a flow channel with porous walls. Tracer particles diffuse into pores, which affects
the breakthrough curve of the tracer. Numerical and analytical methods are
available for many cases, but there are still several features of this phenomenon
that are difficult to address. To this end we propose an approach based on the
lattice-Boltzmann (LB) method, which can be used to resolve the flow field in
complicated geometries, and to track the advection and diffusion of individual
tracer particles. In this work numerical results for validation of the LB approach
were reported together with a description and performance analysis of its parallel
implementation. Simulation results were in good agreement with the reference
solutions.

A D3Q19 LB code was used for the fluid laden with point-like tracer particles.
These particles moved in a continuous space, were advected by the fluid, and
there was a stochastic force causing them to diffuse.

Acknowledgments. The scalability tests were performed using the computing
resources of CSC - IT Center for Science Ltd.
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17. Starikovičius, V., Čiegis, R., Iliev, O.: A parallel solver for the design of oil filters.
Mathematical Modelling and Analysis 16(2), 326–341 (2011)



Part VI

HPC Interval Methods



Introduction to the “HPC Interval Methods”

Minisymposium

Bart�lomiej Jacek Kubica

Institute of Control and Computation Engineering, Warsaw University of Technology,
Poland

bkubica@elka.pw.edu.pl

1 Introduction

Interval methods are an approach to performing numerical computations of var-
ious kinds, in the presence of errors and uncertainty. They deal with the impre-
cision caused by several reasons, including:

– numerical inaccuracy,
– discretization errors,
– inexact data (e.g., results of measurements),
– human-related uncertainty (e.g., precise description of decision-makers’ pref-

erences),
– . . .

The origin of interval computations is attributed to Ramon E. Moore, usually
[7]; precursors include Norbert E. Wiener and Mieczys�law Warmus.

Initial considerations were related to numerical inaccuracy, mostly. However,
as for floating-point computations, the traditional Wilkinson’s error analysis [11]
is sufficient, usually (not always, see e.g. the Rump’s example in [2]), there are
several other kinds of imprecision, where using intervals is inevitable.

Particular applications of interval methods include:

– solving systems of linear equations with uncertain parameters,
– seeking solutions of nonlinear equations and systems of equations,
– optimization of nonconvex functions,
– approximating Pareto sets of multi-criterion problems,
– solving ordinary and partial differential equations,
– . . .

2 Basics of Interval Arithmetic

Now, we shall define some basic notions of intervals and their arithmetic. We
follow a widely acknowledged standards (cf. e.g. [2], [4], [6], [7], [8], [10]).

We define the (closed) interval [x, x] as a set {x ∈ R | x ≤ x ≤ x}.
Following [5], we use boldface lowercase letters to denote interval variables,

e.g., x, y, z, and IR denotes the set of all real intervals.

P. Manninen and P. Öster (Eds.): PARA 2012, LNCS 7782, pp. 449–453, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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We design arithmetic operations on intervals so that the following condition
was fulfilled: if we have � ∈ {+,−, ·, /}, a ∈ a, b ∈ b, then a � b ∈ a � b.
The actual formulae for arithmetic operations (see e.g., [2], [4], [6], [10]) are as
follows:

[a, a] + [b, b] = [a+ b, a+ b] ,

[a, a]− [b, b] = [a− b, a− b] ,
[a, a] · [b, b] = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)] ,

[a, a] / [b, b] = [a, a] ·
[
1 / b, 1 / b

]
, 0 /∈ [b, b] .

Other interval operations can be defined in a similar manner, e.g.:

exp
(
[a, a]

)
= [exp(a), exp(a)] ,

ln
(
[a, a]

)
= [ln(a), ln(a)] , x > 0 ,

etc.

When computing interval operations, we can use directed rounding (see, e.g.,
[6]) and round the lower bound downward and the upper bound upward. This
operation, called outward rounding, will result in an interval that will be a bit
overestimated, but guaranteed to contain the true result of the real-number op-
eration. The IEEE 754 standard guarantees that there is a possibility to switch
the rounding mode in floating-point computations [9].

The definition of interval vector x, a subset of Rn is straightforward: Rn ⊃
x = x1 × · · · × xn. Traditionally interval vectors are called boxes.

Links between real and interval functions are set by the notion of an inclusion
function, also called an interval extension – see, e.g., [4].

Definition 1. A function f: IR → IR is an inclusion function of f :R → R, if
for every interval x within the domain of f the following condition is satisfied:

{f(x) | x ∈ x} ⊆ f(x) . (1)

The definition is analogous for functions f :Rn → Rm.

3 Interval Algorithms

The objective of most interval algorithms is to enclose by a – possibly tight –
interval, the solution to a problem, e.g., equation, optimization problem, etc.
Most interval methods obtain it by subdividing the initial interval of possible
values and discarding and/or narrowing subintervals that cannot contain the
solution. We can call this class of methods, branch-and-bound type methods –
and this class contains classical b&b methods (used, e.g., in optimization [4]),
branch-and-prune methods [3], partitioning parameter space (PPS) [10], etc.

In some cases, we do not need branching, as we want to obtain the so-called
hull solution, only, i.e., obtain one – possibly wide – box, containing all of the
solutions. Such problems are considered for linear systems, often [10].



Introduction to the “HPC Interval Methods” Minisymposium 451

There are also other variants, e.g., finding the “inner solution” of a problem,
i.e., the box containing solutions only (but not necessarily all of them). See [10]
for a detailed discussion.

How to process boxes in the b&b type methods? Interval approach provides us
several useful tools here, like various types of constraint propagation operators
and – the most important one – Newton operators.

The interval Newton operator. The interval Newton operator is one of the most
powerful achievements of the interval analysis. As the classical (real-valued)
Newton operator, it is used to seek roots of nonlinear equations, using the lin-
earization (first-order Taylor expansion). For the unidimensional case, it can be
expressed by the following formula:

N(x, f) = midx− f(midx)
df
dx(x)

. (2)

Obviously, this operator returns an interval. There are three possible results:

– x and N(x, f) are disjoint – then f(·) has no roots in x,
– N(x, f) ⊆ x – then f(·) is verified to have exactly one root in x,
– otherwise, all roots of f(·) that belong to x, have to belong to N(x, f) ∩ x;

so we can narrow the investigated interval.

The proof of the above result (and its several variants) can be found in numerous
textbooks, e.g., [4], [7], [8].

For multivariate functions, the linearization results in a system of linear equa-
tions with interval-valued parameters. Consequently, the Newton operator (2)
has to be replaced with a more sophisticated one, solving this system. Examples
are the Krawczyk operator [8] or the (most commonly used) interval Gauss-Seidel
operator (see [4]). They have analogous properties as their unidimensional rela-
tive.

4 State of the Art and the Contribution of Our Workshop

4.1 Interval Linear Systems

Interval linear systems are intensively studied by several researchers. Several
kinds of the solution set are being investigated – the united solution set, tolerable
solution set, controlable solution set, algebraic solutions, etc. See [10] for detailed
discussions.

Also, several methods are applied – some direct methods, iterative ones, al-
gorithms based on partitioning parameter space (PPS), etc.

As obtaining a tight enclosure of the solution set is hard (actually, it is known
to be an NP-hard problem), some researchers try to apply some meta-heuristics
for this task. In particular, Duda and Skalna, participants of our Minisymposium,
introduced a presentation “Heterogeneous multi-agent evolutionary system for
solving parametric interval linear systems”.
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4.2 Partial Differential Equations

PDEs are widely used in several branches of science – mechanics, fluid dynam-
ics, quantum physics, etc. Consequently, the topic of their numerical solving is
intensively studied by several researchers. In our Minisymposium, we had three
PDE-related presentations:

– Tomasz Hoffmann and Andrzej Marciniak “Proper vs. directed interval arith-
metic in solving the Poisson equation”,

– Andrzej Marciniak and Barbara Szyszka “The central-backward Difference
interval method for solving the wave equation”,

– Ma�lgorzata Jankowska and Grażyna Sypniewska-Kamińska “Interval finite-
difference method for solving the one-dimensional heat conduction problem
with heat sources”.

4.3 Interval Matrix Operations

Operations on floating-point matrices are the core of several numerical algo-
rithms. Hence, they have been implemented extremely efficiently, using several
BLAS packages – both Open Source (e.g., ATLAS BLAS or OpenBLAS) as
commercial ones (e.g., Intel MKL).

Interval matrices have a similar importance in interval computations. One
might be tempted to try implementing some interval analogs of BLAS libraries,
but it is also possible to reduce operations on interval matrices to operations on
floating-point ones and thus utilizing classical BLAS libraries.

The presentation of Hong Diep Nguyen, Nathalie Revol and Philippe Théveny
“Tradeoffs between accuracy and efficiency for optimized and parallel interval
matrix multiplication” summarized several efforts in this area.

4.4 Interval Computations on GPUs

The idea of GPU computing is extensively exploited in several branches of nu-
merical sciences, in recent years. Application of this approach to interval compu-
tations was difficult, initially, as early GPU programming tools have not allowed
directed rounding.

Modern versions of both most popular GPGPU languages – CUDA and
OpenCL – are compatible with IEEE floating-point standards, which makes
interval computations quite convenient.

In our Minisymposium, we had two presentations related to GPU interval
computing: Marco Nehmeier presented his joined work with Philip-Daniel Beck,
titled “Parallel interval Newton method on CUDA” and Grzegorz Kozikowski
presented his joint work with Bartlomiej Kubica “Interval arithmetic and auto-
matic differentiation on GPU, using OpenCL”.
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4.5 Multi-criterion Decision Making

Decision making problems with multiple criteria are ubiquitous. To allow the
decision-maker choosing a proper alternative, it is useful to present them the
whole set of non-dominated points, i.e., the so-called Pareto frontier.

Interval methods are well-suited to solve this sort of problems (we try to
approximate a continuous set of points). However, as for other interval algo-
rithms, optimizing the method (choosing proper interval tools, parameterizing
and arranging them) is crucial for its efficiency. The presentation of Kubica and
Woźniak “Tuning the interval algorithm for seeking Pareto sets of multi-criteria
problems” introduces this topic for a sophisticated, efficient method.
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Abstract. In this paper we discuss a parallel variant of the interval
Newton method for root finding of non linear continuously differen-
tiable functions on the CUDA architecture. For this purpose we have
investigated different dynamic load balancing methods to get an evenly
balanced workload during the parallel computation. We tested the func-
tionality, correctness and performance of our implementation in different
case studies and compared it with other implementations.
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1 Introduction

In the last years the GPU has come into focus for general purpose computing by
the introduction of CUDA (Compute Unified Device Architecture) [11] as well
as the open standard OpenCL (Open Computing Language) [8] to exploit the
tremendous performance of highly parallel graphic devices.

Both technologies, CUDA as well as OpenCL, have a huge impact onto the
world of scientific computing and therefore it is a matter of importance for the
interval community to offer their algorithms and methods on these systems. One
of the famous algorithms using interval arithmetic is the interval Newton method
for which a parallel implementation on CUDA is discussed in this paper.

2 Interval Arithmetic

Interval arithmetic is set arithmetic working on intervals defined as connected,
closed and not necessarily bounded subsets of the reals

X = [x, x] = {x ∈ R | x ≤ x ≤ x} (1)

where x = −∞ and x = +∞ are allowed. The set of all possible intervals together
with the empty set is denoted IR. The basic arithmetic operations on intervals
are based on powerset operations:

X ◦ Y = [ min
x∈X,y∈Y

(

&

(x ◦ y)), max
x∈X,y∈Y

(&(x ◦ y))] (2)
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With floating point numbers the value of the lower bound is rounded toward−∞
(symbol

&

) and the upper bound is rounded toward +∞ (symbol &) to include
all possible results of the powerset operation on the real numbers1. Continuous
functions could be defined in a similar manner [7].

The enclosure of all real results of a basic operation or a function is the
fundamental property of interval arithmetic and is called inclusion property.

Definition 1 (Inclusion Property). If the corresponding interval extension
F : IR→ IR to a real (continuous) function f : R→ R is defined on an interval
X it follows:

f(X) ⊆ F (X)

2.1 Interval Newton Method

The interval Newton method in Algorithm 1 is one of the famous applications
based upon interval arithmetic. Likewise the well known Newton method, it is an
iterative method to compute the roots of a function. But it has the benefit that
it can — for some functions — compute all zeros of a non linear continuously
differentiable function f : R→ R in the start interval X0 with guaranteed error
bounds and it can provide information about the existence and uniqueness of
the roots2 [5].

The iterative computation of the enclosing interval of a root is defined as

Xn+1 := Xn ∩N(Xn), n = 0, 1, 2, . . . (3)

N(Xn) := mid(Xn)−
F (mid(Xn))

F ′(Xn)
(4)

where F and F ′ are the corresponding interval extension and derivative to
the function f . In this paper we use an extended form of the interval New-
ton method [5] which will return two distinct intervals for the case 0 ∈ F ′(Xn)
in (4) for which the computation is performed recursively, see Algorithm 1 line 7
et seq. This has the advantage that we can use the algorithm for non monotonic
functions.

With the mean value theorem it can be easily shown that each root of the
function f in Xn also lies in Xn+1 [5] and therefore we have a sequence of nested
intervals3 which means that the algorithm will always converge.

Additionally a verification step could be performed after the computation of
Algorithm 1 to check the uniqueness of the enclosed roots, see [5] for details.

1 Note that monotonicity properties could be used to define the result of an interval
operation or function only using the bounds of the input intervals.

2 Note that for the reason of readability the check for the uniqueness of the roots is
not included in Algorithm 1 but is included in our implementation. Basically it is a
test if N(Xn) is an inner inclusion of Xn, see [5] for more details.

3 In the case of Xn+1 = Xn the interval is bisected and the computation is performed
on both distinct intervals recursively, see Algorithm 1 line 13 et seq.
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Algorithm 1. INewton

Input:
F : function
X : interval
ε : accuracy of enclosing intervals
zeros : list of enclosing intervals
Output: zeros
begin1

/* Use Definition 1 to check possible existence of a root */2

if 0 �∈ F (X) then3

return zeros;4

c ← mid(X);5

/* Newton step with extended division; formula (3) and (4) */6

(N1, N2) ← F (c)/F ′(X);7

N1 ← c−N1;8

N2 ← c−N2;9

X1 ← X ∩N1;10

X2 ← X ∩N2;11

/* Bisection in case of no improvement */12

if X1 = X then13

X1 ← [x, c];14

X2 ← [c, x];15

foreach i = 1, 2 do16

/* No root */17

if Xi = ∅ then18

continue;19

/* Suitable enclosure of a root */20

if width(Xi) < ε then21

zeros.append(Xi);22

/* Recursive call */23

else24

INewton(F,Xi, ε, zeros);25

26

return zeros;27

end28
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3 Dynamic Load Balancing

The main challenge in the parallelization of the interval Newton method is a
good utilization of all parallel processes during the computation. As described
in Sec. 2, we can have a bisection of the workload for the cases Xn+1 = Xn in (3)
or 0 ∈ F ′(Xn) in (4). On the other hand, a thread will become idle in the case
Xn+1 = ∅ which means that no root exists in Xn. Hence, static load balancing
is probably not the best way to precompute a good distribution of the workload.

Therefore we have investigated an implementation of the parallel interval
Newton method on CUDA with four different dynamic load balancing methods
to get an evenly balanced workload during the computation.

Blocking Queue [3] is a dynamic load balancing method which uses one queue
in the global memory for the distribution of the tasks. The access to the queue
is organized by mutual exclusion using the atomic operations atomicCAS and
atomicExch on an int-value to realize the lock and unlock functionality, see [6]
for more details.

__device__ void lock( void ) {

while( atomicCAS ( mutex , 0, 1 ) != 0 );

}

__device__ void unlock( void ) {

atomicExch ( mutex , 0 );

}

Listing 1. Lock and unlock functionality

Task Stealing [1,4] is a lock-free dynamic load balancing method which uses a
unique global queue for each CUDA thread block [11]. In the case of an empty
queue, the thread block will steal tasks from other thread blocks to avoid idleness.
To ensure a consistent dequeue functionality with atomic operations, the CUDA
function threadfence system is used during the enqueue.

__device__ void pushBottom (T const & v) {

int localBot = bot;

buf[localBot ] = v;

__threadfence_system ();

localBot += 1;

bot = localBot;

return;

}

Listing 2. Enqueue functionality

Distributed Stacks is a lock-free load balancing method using local stacks in
shared memory for each thread block and is almost similar to distributed queu-
ing [12]. Dynamic load balancing is only realized between threads of a thread
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block. In the case of storing an element onto the stack, the atomic operation
atomicAdd is used to increase the stack pointer. Reading from the stack is real-
ized simultaneously without atomic operations using the thread id threadIdx.x

to access the elements of the stack. The workload for the thread blocks is stati-
cally distributed at the beginning of the parallel computation.

Static Task List [3] is a lock-free method which uses two arrays, the in-array
and the out-array, for the dynamic load balancing. In an iteration the in-array
is a read-only data-structure containing the tasks. For each task in the in-array
a thread is started writing their results in the out-array. After each iteration the
in-array and the out-array are swapped4, see Fig. 1 for more details.

Bl
oc

k1 Thread1 Thread2

Bl
oc

k2 Thread1 Thread2

In-array

Out-array

W1 W2 W3 W4

W5 W6 W7

Parallel step

In-array

Out-array

W1 W2 W3 W4

W5 W6 W7

Sequential Step

Start

1.

In-array

Out-array
W1 W2 W3 W4

W5 W6 W7
2.

empty?

No

End

Yes

GPU

CPU

Fig. 1. Static task list

4 Implementation

In our parallel implementation of the interval Newton method on CUDA it was
first of all necessary to have interval arithmetic on CUDA. For this purpose we
have implemented the required data structures, interval operations, and standard
functions in CUDA C.

4 This means that the kernel is called with swapped pointers for the in-array and the
out-array.
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For the CUDA C implementation of the interval Newton method we simulated
the recursive Algoritm 1 by an iterative CUDA kernel which uses two different
concepts depending on the different load balancing methods.

Static task list is the only one of our four used load balancing methods which
almost meets the common concept of lightweight threads in CUDA. In our case,
this means that the threads are created at the start of the kernel and then
only compute one iteration of the parallel interval Newton method. After this
iteration all threads are terminated and a new kernel with new threads is started
for the next iteration, see Fig. 1 for more details.

For the other three load balancing methods we use so called persistent threads
[12] which means that all required threads are started at the beginning of the
interval Newton method and keep alive until the algorithm terminates.

The initialization and execution of the CUDA kernels is wrapped in a C++
function which handle the data transfer between the host and the GPU. The
specification of the function, which should be analyzed, and their corresponding
derivative is done by functors.

5 Performance Tests

We tested our implementation on a Nvidia Tesla C2070 GPU with CUDA com-
pute capability 2.0 hosted on a Linux Debian 64 Bit System with an Intel Xeon
E5504 2.0 GHz CPU and 8 GB Memory.

For all four different implementations we have analyzed the performance for
the following functions

f1(x) = sinhx

f2(x) = sinx− x

100

f3(x) = sinx− x

10000

f4(x) = sin
1

x

f5(x) = (3x3 − 5x+ 2) · sin2 x+ (x3 + 5 · x) · sinx− 2x2 − x− 2

f6(x) = x
14 − 539.25 · x12 + 60033.8 · x10 − 1.77574e6 · x8

+ 1.70316e7 · x6 − 5.50378e7 · x4 + 4.87225e7 · x2 − 9.0e6

with different thread and block configurations. Additionally we have compared
our implementations with a parallel bisection algorithm on CUDA as well as
with filib++ [9] and Boost [2] implementations on the CPU.

Prior to the performance tests it was necessary to analyze the best block-grid-
ratio of the four different implementations on a GPU to ensure the best possible
performance of each implementation. This means that we have measured the
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(a) Function f1 (b) Function f2 (c) Function f4 (d) Function f5

Fig. 2. Sketches of some used functions for the performance tests

runtime with a variable number of threads per block as well as a variable number
of blocks per grid on the GPU, see [6].

For our measurements we used configurations with 1 up to 56 blocks using 32,
64, or 128 threads. Thereby the number of 56 blocks is an upper bound which
could be computed out of the used memory of our implementations. Table 1
shows the used memory information provided by the nvcc compiler using option
-ptxas-options=-v. Note that for static task list there is no shared memory
used due to the fact that there is no communication between the threads.

Table 1. Used memory

Method Register per thread Shared memory per Block

BlockingQueue 63 8240 Byte
TaskStealing 63 8240 Byte
DistributedStacks 63 32784 Byte
StaticTaskList 59 0 Byte

For our runtime tests we used the maximum of 128 threads per block. Ad-
ditionally, a multiprocessor of a NVIDIA GPU with CUDA compute capability
2.0 is specified with 32768 registers and 48 KB shared memory [11]. Hence we
can easily compute⌊

32768[registers/multiprocessor]

128[threads/block] ∗ 63[registers/thread]

⌋
= 4[blocks/multiprocessor]

which leads to the upper bound of 56 blocks for a Nvidia Tesla C2070 GPU with
14 multiprocessors.

Figure 3 shows some sketches of the performed runtime tests with a variable
number of blocks and Tab. 2 shows the best configurations for our test cases.

Note that for static task list we have not measured any difference between 32,
64, or 128 threads per block. Hence, we used 32 threads per block for the other
performance tests. Furthermore, the number of blocks per grid is not specified
for static task list in Tab. 2 due to the fact that the number of blocks depend
on the current workload of each iteration and is adjusted automatically.



Parallel Interval Newton Method on CUDA 461

100

101

102

0 10 20 30 40 50

blocks per grid

t
im

e
in

m
s

� 32 threads per block
� 64 threads per block
� 128 threads per block

(a) Distributed stacks

100

101

102

0 10 20 30 40 50

blocks per grid

t
im

e
in

m
s

� 32 threads per block
� 64 threads per block
� 128 threads per block

(b) Task stealing

Fig. 3. Sketches of the runtime measurements for function f3 with a variable number
of blocks

Table 2. Block-grid-ratio

Method Blocks per grid Threads per block

BlockingQueue 14 64
TaskStealing 28 64
DistributedStacks 14 128
StaticTaskList - 32

Figure 4 shows the average runtime of 1000 runs for our test cases with double
precision and an accuracy of ε = 10−12 for the enclosing intervals. It is easily
visible that the additional expenses for the computation on the GPU are not
worth it for simple functions like f1 or f2. In these cases the GPU is outper-
formed by filib++ or Boost on a CPU. But for harder problems like f3 or f4 the
GPU, especially with static task list or distributed stacks, dominates filib++
and Boost.

Additional performance tests have shown that there is no significant difference
between the runtime with single or double precision, see Fig. 5. This results in
the assumption that our implementation is mainly limited by the load balancing
and not by the interval arithmetic on the GPU.

Finally we compared a bisection algorithm 5 on a GPU using the same load
balancing methods with our interval Newton method. Figure 6 shows some mea-
surements which reflect our observation that the bisection algorithm is outper-
formed by the interval Newton method for all our test cases.

6 Related Work

In [3] dynamic load balancing on a GPU is discussed for the task of creating an
octree partitioning of a set of particles.

5 Simply it is a branch-and-prune algortihm [7] which only uses the function value and
bisection.
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Fig. 4. Average runtime with double precision
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Furthermore, in [4] dynamic load balancing for an interval Newton method
is analyzed for an implementation on a cluster of workstations using message
passing [10].

7 Conclusion

In this paper we have discussed a parallel implementation of an interval Newton
method on CUDA and especially different load balancing concepts to utilize the
highly parallel CUDA architecture.

Performance analyzations of our approach showed promising results for some
hard problems. Especially the two load balancing methods — static task list
and distributed stacks — are well suited for complicated functions. Thereby
distributed stacks should be preferred for functions with “evenly” distributed
roots whereas static task list is more preferable for functions with “unevenly”
distributed roots.

Further investigations in the area of parallel interval arithmetic on the GPU
as well as on multicore CPU’s are planned.
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Abstract. The problem of computing the hull, that is the tightest in-
terval enclosure of the solution set for linear systems with parameters
being nonlinear functions of interval parameters, is an NP-hard problem.
However, since the problem of computing the hull can be considered as
a combinatorial or as a constrained optimisation problem, metaheuristic
techniques might be helpful. Alas, experiments performed so far show
that they are time consuming and their performance may depend on the
problem size and structure, therefore some acceleration and stabilisa-
tion techniques are required. In this paper, a new approach which rely
on a multi-agent system is proposed. The idea is to apply evolutionary
method and differential evolution for different agents working together
to solve constrained optimisation problems. The results obtained for sev-
eral examples from structural mechanics involving many parameters with
large uncertainty ranges show that some synergy effect of the metaheuris-
tics can be achieved, especially for problems of a larger size.

1 Introduction

The paper addresses the problem of solving large-scale linear algebraic systems
whose elements are nonlinear functions of parameters varying within prescribed
intervals. Such systems arise, e.g., in reliability and risk analysis of engineering
systems. The experiments done so far (see [14]) were designed to test the most
popular metaheuristics such as evolutionary algorithm (EA), tabu search (TS),
simulated annealing (SA) and differential evolution (DE) for their suitability to
solve such problems, especially in the case of many parameters and large un-
certainty. The experiments demonstrated that for relatively small problems the
considered methods give very accurate results. However, for larger problems the
computation time is significant, which limits their usage. To shorten the compu-
tation time, the algorithms were run in parallel. This allowed to reduce the total
computation time, but further improvements are still required. During the ex-
periments it was found that evolutionary method and differential evolution give
significantly better results than the remaining algorithms and depending on the
problem characteristic and size either EA or DE was the winning strategy. This
suggested to the authors to employ both methods working together as agents
and exchanging the best solutions between each other, instead of using paral-
lelised methods independently. The proposed approach is presented in Section 3.

P. Manninen and P. Öster (Eds.): PARA 2012, LNCS 7782, pp. 465–472, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The rest of the paper is organised as follows. Parametric interval linear systems
are described in Section 2. In Section 4, computational experiments for illus-
trative problem instances from structural mechanics with different number of
intervals as well as different uncertainty ranges are presented in order to verify
the usefulness of the proposed approach. The results for homogenous agents,
using either evolutionary method or differential evolution and heterogeneous
agents, where half of agents use one method, whereas other half of agents use
the other one are provided and compared with the results obtained by single
algorithms. The paper ends with concluding remarks.

2 Parametric Interval Linear Systems

Systems of parametric linear equations arise directly in various problems (e.g.,
balance of forces, of electric current, etc.) Systems of linear equations arise also
indirectly in engineering problems through the use of numerical methods, e.g.,
by discrete solution of differential equations.

A parametric linear systems is a linear system of the form:

A(p)x(p) = b(p), (1)

where A(p) = [aij(p)] is an n× n matrix, b(p) = [bj(p)] is n-dimensional vector,

and aij(p), bi(p) are general nonlinear functions of p = (p1, . . . , pk)
T

which is
a k-dimensional vector of real parameters.

Often, the parameters pi are unknown which stems, mainly, from the scarcity
or lack of data. This kind of uncertainty is recognised as epistemic uncertainty
and can (or [5] should) be modelled using interval approach, that is using only
range information. In the interval approach ([1], [8], [9]), a true unknown value
of a parameter pi is enclosed by an interval pi = [p̌ − Δp, p̌ + Δp], where p̌
is an approximation of pi (e.g., resulting from an inexact measurement) and
Δp > 0 is an upper bound of an approximation (measurement) error. Obviously,
appropriate methods are required to propagate interval uncertainties through
a calculation (see, e.g., [1], [8], [9]).

Thus, if some of the parameters are assumed to be unknown, ranging within
prescribed intervals, pi ∈ pi (i = 1, . . . , k), the following family of parametric
linear system, usually called parametric interval linear system (PILS),

A(p)x(p) = b(p), p ∈ p (2)

is obtained, where p = (p1, . . . ,pk)
T
.

The set of all solutions to the point linear systems from the family (2) is called
a parametric solution set and is defined as

Sp = {x ∈ �n | ∃ p ∈ p A(p)x = b(p)} . (3)

This set is generally of a complicated non-convex structure [2]. In practise,
therefore, an interval vector x∗, called the outer solution, satisfying Sp ⊆ x∗ is
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computed. The tightest outer solution, with respect to the inclusion property, is
called a hull solution (or simply a hull) and is denoted by �Sp:

�Sp =
⋂
{Y | Sp ⊆ Y } .

Computing the hull solution is in general case NP-hard [12]. However, the prob-
lem of computing the hull can be considered as the family of the following 2n
constrained optimisation problems:

xi = min{x(p)i | A(p)x(p) = b(p), p ∈ p},

xi = max{x(p)i | A(p)x(p) = b(p), p ∈ p},
(4)

and, therefore, heuristic approach can be used to find very good approximations
of the required optima while minimising the computation overhead. Additionally,
in this paper it is claimed that the usage of metaheuristic agents strategy allows
additional reduction in the computational time.

Theorem 1. Let xi and xi denote, respectively, the solution of the i-th minimi-
sation and maximisation problem (4). Then, the hull solution

�Sp = �{x(p) : A(p)x(p) = b(p), p ∈ p} = [x1, x1]× ...× [xn, xn]. (5)

3 Methodology

3.1 Evolutionary Multi-agent System

Different strategies can be used in order to compute population-based meta-
heuristics in parallel. In the so called global parallelisation model there is one
population, and computation of objective function are done in parallel on slave
units [15]. This approach is particularly useful for multicore or multiprocessor
architectures where communication cost is almost negligible. In the island model
the whole population is divided into subpopulations that can be run on different
heterogeneous machines. Since in this case communication time is significant,
thus the subpopulations are run independently and they occasionally exchange
solutions. Finally, in the master-slave model there is one central (master) pop-
ulation that communicates with other subpopulations to collect (and use) their
best solutions.

When solving parametric interval linear systems, the time spent for computing
the objective function significantly dominates the time spent for communication
between algorithms, so the island model approach seems to be the most suitable.
Agents are run independently and communicate with each other after a given
time has elapsed (1-3 seconds). In the preliminary experiments, agents commu-
nicate by exchanging their best so far solutions stored in auxiliary files, but in
the future more effective communication methods is planned. Three variants of
island model have been considered. Two of them were homogeneous multi-agent
systems based either on evolutionary method or differential evolution, while the
third one was a heterogeneous system with half agents based on one method and
the other half based on the other one. In the following sections metaheuristics
used by agents are briefly described.
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3.2 Evolutionary Optimisation

Population P consists of popsize individuals characterised by k-dimensional vec-
tors of parameters pi = (pi1, . . . , pik)

T
, where pij ∈ pj , i = 1, . . . , popsize,

j = 1, . . . , k. Elements of the initial population are generated at random based
on the uniform distribution. The 10% of the best individuals pass to the next
generation and the rest of the population is created by the non-uniform mutation

p′j =

{
pj + (pj − pj) r(1−t/n)b , if q < 0.5

pj + (pj − pj) r
(1−t/n)b , if q � 0.5

(6)

and arithmetic crossover

p1′ = rp1 + (1− r)p2, p2′ = rp2 + (1− r)p1 (7)

It turned out from numerical experiments [14] that mutation rate rmut should
be close to 1 (rmut=0.95), and the crossover rate rcrs should be less than 0.3
(rcrs=0.25). Population size and the number of generations n depend strongly
on the problem size (usually popsize should be set to at least 16 and n to 30).
General outline of the EO algorithm is shown in Fig. 1.

Initialise P of popsize at random
j = 0 /* number of generation */
while (j < n) do

Select P ′ from P ; Choose parents p1 and p2 from P ′

if (r[0,1] < rcrs) then Offspring o1 and o2 ←− Recombine p1 and p2
if (r[0,1] < rmut) then Mutate o1 and o2

end while

Fig. 1. Outline of an evolutionary algorithm

3.3 Differential Evolution

Differential evolution (DE) has been found to be a very effective optimisation
method for continuous problems [3]. DE itself can be treated as a variation of
evolutionary algorithm, as the method is founded on the same principles such
as selection, crossover, and mutation. However, in DE the main optimisation
process is focused on the way the new individuals are created. Several strategies
for constructing new individuals [11] have been defined. Basic strategy described
as /rand/1/bin (which means that vectors for a trial solution are selected in a
random way and binomial crossover is then used) creates a mutated individual
pm as follows

pm = p1 + s · (p2 − p3) , (8)

where s is a scale parameter called also an amplification factor. After a series of
experiments, the best strategy for the problem of solving large PILS appeared to
be the strategy described as /best/2/bin (compare [4]). In this strategy a mutated
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individual (trial vector) is created on the basis of the best solution pbest found
so far and four other randomly chosen individuals

pm = pbest − s · (p1 + p2 − p3 − p4) . (9)

The mutated individual pm is then mixed with the original individual p with
a probability CR using the following binomial crossover

p′j =
{
pmj, if r � CR or j = rn
pj , if r > CR and j �= rn

, (10)

where r ∈ [0, 1] is a random number and rn ∈ (0, 1, 2, ..., D) is a random
index ensuring that p′j is a at least an element obtained by pmj . The following
parameters values were taken s = 0.8 and CR = 0.9, as the most efficient.

Initialise P of popsize at random
while (i < n) do

Do
Choose at random 4 individuals p1, p2, p3, p4
Generate mutant pm from pbest and from p1, p2, p3, p4

While (pm is not valid)
p′ ←− Crossover(p, pm)
if (f(p′) > f(pi)) then pi+1 ←− p′ else pi+1 ←− pi

end while

Fig. 2. Outline of a differential evolution algorithm

4 Numerical Experiments

The multi-agent system proposed by the authors has been tested for the three
exemplary truss structures, each of different size: four bay two floor truss, five
bay six floor truss and ten bay eleven floor truss. Additionally, different levels of
uncertainty for the parameters and the load have been considered: 40% for the
first truss, 10% for the second, and 6% for the third truss.

Three variants of the island model have been tested for each of the test prob-
lems. Each system consisted of 8 independent agents. Number of generations n
and population size popsize for both evolutionary computation and differential
evolution were set to the same values. For the first problem n = 300, popsize = 30,
for the second problem n = 100, popsize = 20, and for the third problem n=10,
popsize = 10.

In order to compare the proposed variants, a measure similar to the overesti-
mation measure described by Popova [10] was used. This time, however, as the
algorithms computed the inner interval of the hull solution, the overestimation
measure was calculated in the relation to the tightest inner solution, i.e. the
worst estimation of the hull solution. The measure can be treated as a relative
increase over the tightest inner solution and will be marked as RITIS. For each
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variant of the multi-agent system the result of the best agent, average result
of all agents and the worst result obtained by a given system or algorithm are
provided. The same data are listed for the evolutionary optimisation and dif-
ferential evolution ran as a single algorithm. The overestimation is computed
over the worst solution coming from all experiments for a given problem size.
Comparison of the results for the first test problem consisting of 15 nodes and
38 elements is presented in Table 1.

Table 1. RITIS measure for four bay two floor truss (higher is better)

Multi-agent Largest Average Smallest Computation
system RITIS RITIS RITIS time [sec.]

HomEO 1.9% 1.8% 1.7% 274
HomDE 1.5% 1.4% 1.4% 289
Heter 2.0% 1.8% 1.6% 298
SingleEO 0.1% 0.0% 0.0% 318
SingleDE 1.4% 1.3% 1.3% 232

Hull approximations obtained by the homogenous agent system based only
on the evolutionary optimisation method (HomEO) and the heterogeneous sys-
tem (Heter) with both EO and DE agents were on average better than the
approximations obtained by the other systems and algorithms. The system with
heterogeneous agents achieved the best approximation of the hull solution, but
on average those two systems performed the same. Algorithms running alone
with the same parameters as for the multi-agent systems obtained the worst re-
sults, however, the approximations generated by differential evolution were only
slightly worse than the results obtained by DE agents working together. Con-
trary to the agents based on the evolutionary method, the solutions provided by
the agents based on DE do not sum up in a simple way.

The results for the second test problem that consisted of 36 nodes and 110
elements are collected in Table 2.

Table 2. RITIS measure for five bay six floor truss (higher is better)

Multi-agent Largest Average Smallest Computation
system RITIS RITIS RITIS time [min.]

HomEO 18.3% 17.0% 14.9% 31.7
HomDE 20.7% 20.1% 19.5% 31.5
Heter 22.9% 19.6% 16.9% 34.0
SingleEO 0.1% 0.0% 0.0% 43.1
SingleDE 19.4% 19.2% 19.0% 21.8
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This time the results obtained by the agents in the heterogeneous mutli-agent
system (Heter) were similar to the results obtained by the homogenous system
with the agents using differential evolution (HomDE). The synergy effect of EO
and DE allowed to achieve the best hull approximation, however, on average the
heterogeneous system performed a little worse than HomDE.

Finally, Table 3 gathers the results for the largest of all test problems consist-
ing of 120 nodes and 420 elements.

Table 3. RITIS measure for ten bay eleven floor truss (higher is better)

Multi-agent Largest Average Smallest Computation
system RITIS RITIS RITIS time [min.]

HomEO 10.4% 5.7% 1.4% 288
HomDE 31.7% 30.7% 29.8% 291
Heter 33.1% 25.3% 5.1% 289
SingleEO 0.1% 0.1% 0.0% 356
SingleDE 18.7% 18.5% 18.2% 267

For the largest problem considered the homogenous multi-agent system based
on differential evolution (HomDE) and the single DE algorithm performed on av-
erage better than others systems. Evolutionary optimisation method gave much
worse results than differential evolution, thus the agents based on EO could not
go hand in hand with the agents using DE method and it caused that heteroge-
neous agents were on average worse than homogenous DE agents. It is also wort
to notice that, unlike previous experiments, approximations obtained by the DE
mutli-agent system were significantly better (by 66%) that those generated by
the single DE algorithm.

5 Conclusions

Heterogeneous multi-agent evolutionary system for solving parametric interval
linear systems has been proposed in the paper. Although some examples of
evolutionary multi-agent systems can be found in literature ([7],[6]), the system
proposed by the authors can use two different methods that are based on the
idea of evolution: evolutionary algorithm and differential evolution. Numerical
experiments performed by the authors have shown that the proposed approach
can bring a synergy effect of those two metaheuristics. Despite the experiments
were computed on a single multiprocessor machine the proposed muti-agent
system can be easily applied in distributed computing. This would allow to use
more than 8 agents and the differences in the hull approximation between multi-
agent systems and single algorithms would be more significant.

Future studies should focus on finding more efficient metaheuristic algorithms
for heterogeneous agents, capable to provide good results for the problems of
large size, like the third test problem presented in the paper. The authors also
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plan to test such metaheuristics like ant colony optimisation (ACO) and artificial
bee colony (ABC). Also evolutionary method might be improved by introducing
some local search algorithms based e.g. on iterated local search (ILS) or variable
neighbourhood search (VNS).

Acknowledgements. This work was partly financed within the statutory ac-
tivity no 11/11.200.232.
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Abstract. The one-dimensional heat conduction equation with the term
concerning some heat sources, together with the mixed boundary con-
ditions is considered. Such problems occur in the area of the bioheat
transfer and their well-known example is given by the Pennes equation.
The paper deals with some interval finite difference method based on the
Crank-Nicolson finite difference scheme. In the approach presented, the
local truncation error of the conventional method is bounded by some
interval values. A method of approximation of such error term intervals
is also presented.

Keywords: finite difference methods, interval methods, bioheat
transfer.

1 Introduction

Interval methods that are based on some conventional finite difference schemes
and take into account also the appropriate local truncation errors represent one of
a few alternative approaches (see e.g. Nakao [12]) in the area of numerical meth-
ods for solving initial-bounadary value problems for partial differential equations.
The most often studied problems seem to be the elliptic ones that correspond
to stationary processes. We have the approach based on high-order quadrature
and a high-order finite element method utilizing Taylor model methods. It is
used by Manikonda, Berz and Makino [7] to obtain verified solutions of the 3D
Laplace equation. On the basis of a method of Nakao [11] for elliptic problems,
a numerical verification method of solutions for stationary Navier-Stokes equa-
tions is in [15]. If we consider parabolic problems that correspond to transport
phenomena, then we can give as an example a numerical verification of solu-
tions for nonlinear parabolic equations in one-space dimensional case proposed
by Minamoto and Nakao [9]. Nontrivial solutions for the heat convection prob-
lems are numerically verified by Nakao, Watanabe, Yamamoto and Nishida in
e.g. [13], [16]. Finally, we have hyperbolic problems that belong to wave processes
with the papers on numerical verification of solutions for nonlinear hyperbolic
equations as proposed by Minamoto [8] and the interval central finite difference
method for solving the wave equation as formulated by Szyszka [14].
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The interval finite difference methods for solving one-dimensional heat con-
duction problems were proposed in a number of previous papers. A final form of
the interval scheme depends on finite differences used and a kind of boundary
conditions that define the problem. We can distinguish the interval method of
Crank-Nicolson type [10] for solving the one-dimensional heat conduction equa-
tion with the Dirichlet (or first-type) boundary conditions. Then we have the
interval method of Crank-Nicolson type for solving the heat conduction equation
with the mixed boundary conditions [3] with some kind of the error term ap-
proximation proposed in [4]. Evaluation of the accuracy of the interval solution
obtained with this method was presented in [5].

Subsequently, we deal with the one-dimensional heat conduction equation
with the term concerning heat sources given by a function linearly dependent
on the unknown temperature, as defined in Section 2.1. Note that an example of
the initial-boundary value problem of the form considered is the bioheat trans-
fer problem expressed with the Pennes equation (see e.g. [17]). The conventional
and interval finite difference schemes proposed in Sections 2.2 to 2.3 are based on
finite differences used in the approach of Crank-Nicolson method. The modifica-
tion required takes into account a function that can represent the heat sources
term. The interval method proposed deals with the local truncation error of its
conventional counterpart. The endpoints of the appropriate error term intervals
are approximated by means of a method presented in [4] (see Section 2.4). The
results of computations obtained with the interval method are compared with
values of the analytical solution in Section 3. Finally, some conclusions are given
in Section 4.

2 Interval Method of Crank-Nicolson Type for Solving
the Heat Conduction Problem with Heat Sources

2.1 Heat Conduction Problem

We consider the one-dimensional heat conduction equation of the form

∂u

∂t
(x, t)− α2 ∂

2u

∂x2
(x, t) = α1 + α2u (x, t) , 0 < x < L, t > 0, (1)

subject to the initial condition and the Robin (third-type) boundary conditions

u (x, 0) = f (x) , 0 ≤ x ≤ L, (2)

∂u

∂x
(0, t)−Au (0, t) = ϕ1 (t) , t > 0, (3)

∂u

∂x
(L, t) +Bu (L, t) = ϕ2 (t) , t > 0. (4)

Furthermore, we assume that the consistency conditions are also satisfied, i.e. for
t = 0 we have ∂u/∂x (0, 0)−Af (0) = ϕ1 (0) and ∂u/∂x (L, 0)+Bf (L) = ϕ2 (0).

We deal with the mixed boundary conditions, only if A = 0 or B = 0. Note
that for α1 = 0 and α2 = 0, the initial-value problem (1)-(4) reduces to the one
considered in [3]- [5] and hence, it can be solved with the interval method of
Crank-Nicolson type proposed there.
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2.2 Conventional Finite Difference Method

In the approach based on finite differences, we first set the maximum time Tmax

and choose two integers n and m. Then we find the mesh constants h and k such
as h = L/n and k = Tmax/m. Hence we have the grid points (xi, tj), such that
xi = ih for i = 0, 1, . . . , n and tj = jk for j = 0, 1, . . . ,m.

We express the terms of (1) at the grid points
(
xi, tj+1/2

)
, where tj+1/2 =

(j + 1/2)k and we use some finite difference formulas, together with the ap-
propriate local truncation errors (as derived in [3]), for ∂u/∂t

(
xi, tj+1/2

)
and

∂2u/∂x2
(
xi, tj+1/2

)
. We have as follows

∂u

∂t
(xi, tj+1/2) =

u(xi, tj+1)− u(xi, tj)
k

− k
2

24

∂3u

∂t3

(
xi, η

(1)
j

)
, (5)

and

∂2u

∂x2
(
xi, tj+1/2

)
=

1

2h2
[u (xi−1, tj)− 2u (xi, tj) + u (xi+1, tj)

+ u (xi−1, tj+1)− 2u (xi, tj+1) + u (xi+1, tj+1)] (6)

−h
2

24

[
∂4u

∂x4

(
ξ
(1)
i , tj

)
+
∂4u

∂x4

(
ξ
(2)
i , tj+1

)]
− k

2

8

∂4u

∂t2∂x2

(
xi, η

(2)
j

)
,

where ξ
(1)
i , ξ

(2)
i ∈ (xi−1, xi+1), η

(1)
j , η

(2)
j ∈ (tj , tj+1).

Then, we expand u in the Taylor series about
(
xi, tj+1/2

)
and evaluate it at

(xi, tj). We get

u (xi, tj) = u
(
xi, tj+1/2

)
− k

2

∂u

∂t

(
xi, tj+1/2

)
+
k2

8

∂2u

∂t2

(
xi, η

(3)
j

)
, (7)

where η
(3)
j ∈

(
tj , tj+1/2

)
. If we substitute u

(
xi, tj+1/2

)
from (7) to the equation

(1) expressed at
(
xi, tj+1/2

)
, then we have

λ1
∂u

∂t

(
xi, tj+1/2

)
−α2 ∂

2u

∂x2
(
xi, tj+1/2

)
= α1+α2u (xi, tj)−α2

k2

8

∂2u

∂t2

(
xi, η

(3)
j

)
,

(8)
where λ1 = 1− (α2k) /2.

Finally, inserting (5)-(6) to (8) yields

−λ2
2
u (xi−1, tj+1) + λ3u (xi, tj+1)−

λ2
2
u (xi+1, tj+1) =

λ2
2
u (xi−1, tj)

+λ4u (xi, tj) +
λ2
2
u (xi+1, tj) + α1k + R̂i,j , (9)

i = 0, 1, . . . , n, j = 0, 1, . . . ,m− 1,

where λ2 =
(
α2k

)
/h2, λ3 = λ1 + λ2, λ4 = λ1 − λ2 + α2k and

R̂i,j = λ1
k3

24

∂3u

∂t3

(
xi, η

(1)
j

)
− α2 kh

2

24

[
∂4u

∂x4

(
ξ
(1)
i , tj

)
+
∂4u

∂x4

(
ξ
(2)
i , tj+1

)]
−α2 k

3

8

∂4u

∂t2∂x2

(
xi, η

(2)
j

)
− α2

k3

8

∂2u

∂t2

(
xi, η

(3)
j

)
. (10)
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From the initial and boundary conditions we have

u (xi, 0) = f (xi) , i = 0, 1, . . . , n,

∂u

∂x
(0, tj)−Au (0, tj) = ϕ1 (tj) ,

∂u

∂x
(L, tj) +Bu (L, tj) = ϕ2 (tj) ,

j = 1, 2, . . . ,m.

Note that for the finite difference scheme (9) some values of u, i.e. u (x−1, tj),
u (xn+1, tj), j = 0, 1, . . . ,m are also needed. Subsequently, we apply the formulas
derived in [3]. Then, for j = 0 we have

u (x−1, t0) = −3u (x0, t0) + 5u (x1, t0)− u (x2, t0) (11)

+
2

3
h3

[
1

2

∂3u

∂x3

(
ζ(1), t0

)
+
∂3u

∂x3

(
ζ(2), t0

)]
,

u (xn+1, t0) = −3u (xn, t0) + 5u (xn−1, t0)− u (xn−2, t0) (12)

−2

3
h3

[
1

2

∂3u

∂x3

(
ζ(3), t0

)
+
∂3u

∂x3

(
ζ(4), t0

)]
,

where ζ(1) ∈ (x−1, x1), ζ
(2) ∈ (x0, x2), ζ

(3) ∈ (xn−1, xn+1), ζ
(4) ∈ (xn−2, xn).

Furthermore, for j = 1, 2, . . . ,m we take

u (x−1, tj) = u (x1, tj)− 2h [Au (x0, tj) + ϕ1 (tj)]−
h3

3

∂3u

∂x3

(
ξ
(L)
j , tj

)
, (13)

u (xn+1, tj) = u (xn−1, tj)− 2h [Bu (xn, tj)− ϕ2 (tj)] +
h3

3

∂3u

∂x3

(
ξ
(R)
j , tj

)
, (14)

where ξ
(L)
j ∈ (x−1, x1), ξ

(R)
j ∈ (xn−1, xn+1).

Now if we transform (9) with (11)-(14), then we get as follows

(λ2hA+ λ3)u (x0, t1)− λ2u (x1, t1) =
(
λ4 −

3

2
λ2

)
u (x0, t0) + 3λ2u (x1, t0)

−λ2
2
u (x2, t0)− α2 k

h
ϕ1 (t1)− α2 kh

6

∂3u

∂x3

(
ξ
(L)
1 , t1

)
+α2 kh

3

[
1

2

∂3u

∂x3

(
ζ(1), t0

)
+
∂3u

∂x3

(
ζ(2), t0

)]
+ α1k + R̂0,0,

i = 0, j = 0, (15)

(λ2hA+ λ3)u (x0, tj+1)− λ2u (x1, tj+1) = (λ4 − λ2hA) u (x0, tj)

+λ2u (x1, tj)− α2 k

h
[ϕ1 (tj) + ϕ1 (tj+1)]

−α2 hk

6

[
∂3u

∂x3

(
ξ
(L)
j , tj

)
+
∂3u

∂x3

(
ξ
(L)
j+1, tj+1

)]
+ α1k + R̂0,j ,

i = 0, j = 1, 2, . . . ,m− 1, (16)
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−λ2
2
u (xi−1, tj+1) + λ3u (xi, tj+1)−

λ2
2
u (xi+1, tj+1) =

λ2
2
u (xi−1, tj)

+λ4u (xi, tj) +
λ2
2
u (xi+1, tj) + α1k + R̂i,j

i = 1, 2, . . . , n− 1, j = 0, 1, . . . ,m− 1, (17)

−λ2u (xn−1, t1) + (λ2hB + λ3)u (xn, t1) =

(
λ4 −

3

2
λ2

)
u (xn, t0)

+3λ2u (xn−1, t0)−
λ2
2
u (xn−2, t0) + α

2 k

h
ϕ2 (t1) + α

2hk

6

∂3u

∂x3

(
ξ
(R)
1 , t1

)
−α2hk

3

[
1

2

∂3u

∂x3

(
ζ(3), t0

)
+
∂3u

∂x3

(
ζ(4), t0

)]
+ α1k + R̂n,0,

i = n, j = 0, (18)

−λ2u (xn−1, tj+1) + (λ3 + λ2hB)u (xn, tj+1) = λ2u (xn−1, tj)

+ (λ4 − λ2hB)u (xn, tj) + α2 k

h
[ϕ2 (tj) + ϕ2 (tj+1)]

+α2hk

6

[
∂3u

∂x3

(
ξ
(R)
j , tj

)
+
∂3u

∂x3

(
ξ
(R)
j+1, tj+1

)]
+ α1k + R̂n,j,

i = n, j = 1, 2, . . . ,m− 1. (19)

The formulas (15)-(19) can be given in the following matrix representation

Cu(1) = D(0)u(0) + ÊC
(1) + ÊL

(1), j = 0,

Cu(j+1) = D(1)u(j) + ÊC
(j+1) + ÊL

(j+1), j = 1, 2, . . . ,m− 1, (20)

where u(j) = [u (x0, tj) , u (x1, tj) , . . . , u (xn, tj)]
T
.

The matrices of coefficients C, D(0), D(1) in (20) are all tridiagonal. They
depend on the stepsizes h, k and the parameters α, α1, α2, A, B given in the
initial-boundary value problem formulation (1)-(4). Note that if we multiply the

equation (17) by 2, then the resultant matrix C̃ corresonding to C in (20) is
symmetric and we can examine its positive definiteness. For sufficiently small
values of the stepsizes h and k, we can always find the region such that C̃ is
positive defined. The size of this region depends mainly on the quotient α2/α

2.
The matrices considered are as follows

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ2hA+ λ3 −λ2 0
... 0 0 0

−λ2

2 λ3 −λ2

2

... 0 0 0

0 −λ2

2 λ3
... 0 0 0

· · · · · · · · · . . . · · · · · · · · ·

0 0 0
... λ3 −λ2

2 0

0 0 0
... −λ2

2 λ3 −λ2

2

0 0 0
... 0 −λ2 λ2hB + λ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (21)
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D(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ4 − 3
2λ2 3λ2 −λ2

2

... 0 0 0

λ2

2 λ4
λ2

2

... 0 0 0

0 λ2

2 λ4
... 0 0 0

· · · · · · · · · . . . · · · · · · · · ·

0 0 0
... λ4

λ2

2 0

0 0 0
... λ2

2 λ4
λ2

2

0 0 0
... −λ2

2 3λ2 λ4 − 3
2λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (22)

D(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ4 − λ2hA λ2 0
... 0 0 0

λ2

2 λ4
λ2

2

... 0 0 0

0 λ2

2 λ4
... 0 0 0

· · · · · · · · · . . . · · · · · · · · ·

0 0 0
... λ4

λ2

2 0

0 0 0
... λ2

2 λ4
λ2

2

0 0 0
... 0 λ2 λ4 − λ2hB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

Now let us consider the vectors of coefficients ÊC
(j), j = 1, 2, . . . ,m, in the for-

mulas (20). They depend on the stepsizes, the problem parameters and the values
of the functions ϕ1, ϕ2. Furthermore, they are different for each j = 1, 2, . . . ,m.
Similarly as the vectors ÊL

(j), j = 1, 2, . . . ,m. Most importantly the compo-
nents of ÊL

(j) represent the local truncation error terms of the conventional
finite-difference method at each mesh point. We also note their dependence not
only on the stepsizes and the problem parameters but also values of some deriva-
tives of u at the midpoints. The vectors described above are of the following form

ÊC
(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α2 k
hϕ1 (t1) + α1k
α1k
α1k
· · ·
α1k
α1k

α2 k
hϕ2 (t1) + α1k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (24)
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ÊC
(j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α2 k
h [ϕ1 (tj−1) + ϕ1 (tj)] + α1k

α1k
α1k
· · ·
α1k
α1k

α2 k
h [ϕ2 (tj−1) + ϕ2 (tj)] + α1k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (25)

j = 2, 3, . . . ,m,

ÊL
(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α2 kh
6

∂3u
∂x3

(
ξ
(L)
1 , t1

)
+ α2 kh

3

[
1
2
∂3u
∂x3

(
ζ(1), t0

)
+ ∂3u

∂x3

(
ζ(2), t0

)]
+ R̂0,0

R̂1,0

R̂2,0

· · ·
R̂n−2,0

R̂n−1,0

α2 kh
6

∂3u
∂x3

(
ξ
(R)
1 , t1

)
− α2 kh

3

[
1
2
∂3u
∂x3

(
ζ(3), t0

)
+ ∂3u

∂x3

(
ζ(4), t0

)]
+ R̂n,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(26)

ÊL
(j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α2 kh
6

[
∂3u
∂x3

(
ξ
(L)
j−1, tj−1

)
+ ∂3u

∂x3

(
ξ
(L)
j , tj

)]
+ R̂0,j−1

R̂1,j−1

R̂2,j−1

· · ·
R̂n−2,j−1

R̂n−1,j−1

α2 kh
6

[
∂3u
∂x3

(
ξ
(R)
j−1, tj−1

)
+ ∂3u

∂x3

(
ξ
(R)
j , tj

)]
+ R̂n,j−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (27)

j = 2, 3, . . . ,m.

Remark 1. Consider the exact formulas (15)-(19) with (10) and the correspond-
ing matrix representation (20) with (21)-(27). Let ui,j approximate u (xi, tj). If

we also neglect R̂i,j , i = 0, 1, . . . , n, j = 0, 1, . . . ,m−1 and all terms in (15)-(19)
that contain values of the derivatives of u in some midpoints (similarly as the

error terms given in components of ÊL
(j), j = 1, 2, . . . ,m, in reference to (20)

with (21)-(27)), then we get the conventional finite difference method with the
local truncation error O

(
h2 + k2

)
.

Remark 2. Since the equations (15)-(19) (or (20) with (21)-(27)) with (10) are
based on the finite differences used for derivation of the conventional Crank-
Nicolson method [1], [6], then we refer to the conventional finite difference
method proposed in the paper as the conventional Crank-Nicolson method (for
solving the heat conduction problem with heat sources given by a function lin-
early dependent on the temperature) (i.e. CN-LHS method). Subsequently, we
call its interval counterpart formulated in Section 2.3, the interval method of
Crank-Nicolson type (i.e. ICN-LHS method).
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2.3 Interval Finite Difference Method

The interval approach to (20) with (21)-(27) (or (15)-(19) with (10)) requires
additional assumptions about values in midpoints of some derivatives given in
the terms of (26)-(27) (or (15)-(19)) with (10) of the local truncation error of
the conventional method. Following [3] and [4], we assume that there exists the

intervalsMi,j , Qi,j, N
(L)
j , N

(R)
j , P (L) and P (R), such that the following relations

hold

– for i = 0, 1, . . . , n, j = 0, 1, . . . ,m− 1,

∂3u

∂t3

(
xi, η

(1)
j

)
∈Mi,j, (28)

∂4u

∂t2∂x2

(
xi, η

(2)
j

)
=

1

α2

∂3u

∂t3

(
xi, η

(2)
j

)
∈ 1

α2
Mi,j , (29)

– for i = 0, 1, . . . , n,

α2 ∂
4u

∂x4

(
ξ
(1)
i , tj

)
=

∂3u

∂t∂x2

(
ξ
(1)
i , tj

)
∈ Qi,j , j = 0, 1, . . . ,m− 1, (30)

α2 ∂
4u

∂x4

(
ξ
(2)
i , tj

)
=

∂3u

∂t∂x2

(
ξ
(2)
i , tj

)
∈ Qi,j , j = 1, 2, . . . ,m, (31)

– for j = 1, 2, . . . ,m,

α2 ∂
3u

∂x3

(
ξ
(L)
j , tj

)
=
∂2u

∂t∂x

(
ξ
(L)
j , tj

)
∈ N (L)

j , (32)

α2 ∂
3u

∂x3

(
ξ
(R)
j , tj

)
=
∂2u

∂t∂x

(
ξ
(R)
j , tj

)
∈ N (R)

j , (33)

– for j = 0,

α2 ∂
3u

∂x3

(
ζ(1), t0

)
=
∂2u

∂t∂x

(
ζ(1), t0

)
∈ N (L)

0 , (34)

α2 ∂
3u

∂x3

(
ζ(3), t0

)
=
∂2u

∂t∂x

(
ζ(3), t0

)
∈ N (R)

0 , (35)

α2 ∂
3u

∂x3

(
ζ(2), t0

)
=
∂2u

∂t∂x

(
ζ(2), t0

)
∈ P (L), (36)

α2 ∂
3u

∂x3

(
ζ(4), t0

)
=
∂2u

∂t∂x

(
ζ(4), t0

)
∈ P (R). (37)

The problem that remains is how to find the intervals that contain a value of

∂2u/∂t2
(
xi, η

(3)
j

)
, where η

(3)
j ∈

(
tj , tj+1/2

)
. We assume that for i = 0, 1, . . . , n,

j = 0, 1, . . . ,m− 1, we have

∂2u

∂t2

(
xi, η

(3)
j

)
∈ Si,j . (38)
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Hence, substituting (28)-(37) and (38) to (15)-(19) with (10) we get an interval
method of Crank-Nicolson type of the following form

(λ2hA+ λ3)U0,1 − λ2U1,1 =

(
λ4 −

3

2
λ2

)
U0,0 + 3λ2U1,0 −

λ2
2
U2,0

−α2 k

h
Φ1 (T1)−

kh

6
N

(L)
1 +

kh

3

(
1

2
N

(L)
0 + P (L)

)
+ α1k +R0,0,

i = 0, j = 0, (39)

(λ2hA+ λ3)U0,j+1 − λ2U1,j+1 = (λ4 − λ2hA)U0,j + λ2U1,j

−α2 k

h
[Φ1 (Tj) + Φ1 (Tj+1)]−

kh

6

(
N

(L)
j +N

(L)
j+1

)
+ α1k +R0,j ,

i = 0, j = 1, 2, . . . ,m− 1, (40)

−λ2
2
Ui−1,j+1 + λ3Ui,j+1 −

λ2
2
Ui+1,j+1 =

λ2
2
Ui−1,j

+λ4Ui,j +
λ2
2
Ui+1,j + α1k +Ri,j ,

i = 1, 2, . . . , n− 1, j = 0, 1, . . . ,m− 1, (41)

−λ2Un−1,1 + (λ2hB + λ3)Un,1 =

(
λ4 −

3

2
λ2

)
Un,0 + 3λ2Un−1,0 −

λ2
2
Un−2,0

+α2 k

h
Φ2 (T1) +

kh

6
N

(R)
1 − kh

3

(
1

2
N

(R)
0 + P (R)

)
+ α1k +Rn,0,

i = n, j = 0, (42)

−λ2Un−1,j+1 + (λ2hB + λ3)Un,j+1 = λ2Un−1,j + (λ4 − λ2hB)Un,j

+α2 k

h
[Φ2 (Tj) + Φ2 (Tj+1)] +

kh

6

(
N

(R)
j +N

(R)
j+1

)
+ α1k +Rn,j ,

i = n, j = 1, 2, . . . ,m− 1, (43)

where

Ri,j = λ1
k3

24
Mi,j −

kh2

24
(Qi,j +Qi,j+1)−

k3

8
Mi,j − α2

k3

8
Si,j (44)

and

Ui,0 = F (Xi) , i = 0, 1, . . . , n. (45)

Note that Xi, i = 0, 1, . . . , n, Tj , j = 0, 1, . . . ,m are intervals such that xi ∈ Xi

and tj ∈ Tj . Furthermore, F = F (X), Φ1 = Φ1 (T ), Φ2 = Φ2 (T ) denote interval
extensions of the functions f = f (x), ϕ1 = ϕ1 (t) and ϕ2 = ϕ2 (t), respectively.
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The interval method (39)-(43) with (44) has also the matrix representation
given as follows

CU (1) = D(0)U (0) + EC
(1) + EL

(1), j = 0,

CU (j+1) = D(1)U (j) + EC
(j+1) + EL

(j+1), j = 1, 2, . . . ,m− 1, (46)

where U (j) = [U0,j , U1,j , . . . , Un,j ]
T
and

EC
(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α2 k
hΦ1 (T1) + α1k
α1k
α1k
· · ·
α1k
α1k

α2 k
hΦ2 (T1) + α1k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (47)

EC
(j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α2 k
h [Φ1 (Tj−1) + Φ1 (Tj)] + α1k

α1k
α1k
· · ·
α1k
α1k

α2 k
h [Φ2 (Tj−1) + Φ2 (Tj)] + α1k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (48)

j = 2, 3, . . . ,m,

EL
(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−kh
6 N

(L)
1 + kh

3

(
1
2N

(L)
0 + P (L)

)
+R0,0

R1,0

R2,0

· · ·
Rn−2,0

Rn−1,0

kh
6 N

(R)
1 − kh

3

(
1
2N

(R)
0 + P (R)

)
+Rn,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (49)

EL
(j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−kh
6

(
N

(L)
j−1 +N

(L)
j

)
+R0,j−1

R1,j−1

R2,j−1

· · ·
Rn−2,j−1

Rn−1,j−1

kh
6

(
N

(R)
j−1 +N

(R)
j

)
+Rn,j−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (50)

j = 2, 3, . . . ,m.

In order to explain the meaning of the vectors EC
(j), EL

(j), j = 1, 2, . . . ,m, used
in (46), we denote by eC i

(j) and EC i
(j) the components of ÊC

(j) and EC
(j),
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respectively. Similarly, we donote by eL i
(j) and EL i

(j) the components of the
vectors ÊL

(j) and EL
(j). Note that for EC

(j) we always have eC i
(j) ∈ EC i

(j),
i = 0, 1, . . . , n, j = 1, 2, . . . ,m. If we further assume that the relations (28)-
(38) hold, then the vectors EL

(j) are such that eL i
(j) ∈ EL i

(j), i = 0, 1, . . . , n,
j = 1, 2, . . . ,m. Hence, as we see the interval components of the vectors EL

(j)

are such that a local truncation error of the conventional finite-difference scheme
at each mesh point is enclosed in.

Theorem 1. Let us assume that the local truncation error of the CN-LHS
scheme can be bounded by the appropriate intervals at each step. Then, let
F = F (X), Φ1 = Φ1 (T ), Φ2 = Φ2 (T ) denote interval extensions of the functions
f = f (x), ϕ1 = ϕ1 (t), ϕ2 = ϕ2 (t), given in the initial and boundary conditions
(2)-(4) of the heat conduction problem (1)-(4). If u (xi, 0) ∈ Ui,0, i = 0, 1, . . . , n
and the linear system of equations (46) corresponding to the ICN-LHS method
(39)-(43) with (44) can be solved with some direct method, then for the interval
solutions obtained we have u (xi, tj) ∈ Ui,j, i = 0, 1, . . . , n, j = 1, 2, . . . ,m.

Remark 3. The correctness of the above theorem can be justified in a similar way
as in [3]. Note that according to Theorem 1, with the theoretical formulation (46)
with (47)-(50), (44) of the interval method considered, provided the assumptions
(28)-(38) can be met, the exact solution of the problem belongs to the interval
solution obtained.

2.4 The Error Term Approximation

The effective means of computing values of the endpoints of the error term

intervals Mi,j , Qi,j , N
(L)
j , N

(R)
j , P (L), P (R) and Si,j such that the relations

(28)-(38) hold, is still an open problem and deserves further research. Note that
except for some special cases, in practice we usually cannot give values of the
endpoints of the error term intervals such as all the appropriate assumptions are
met. Hence, we cannot guarantee that the interval solutions obtained are such
that they include the exact solution. Nevertheless, we can try to approximate

these endpoints in a way proposed in [4] for the intervalsMi,j , Qi,j , N
(L)
j , N

(R)
j ,

P (L), P (R). We follow the similar procedure for the intervals Si,j .
We assumed that the relation (38) holds for the intervals Si,j , i = 0, 1, . . . , n,

j = 0, 1, . . . ,m− 1. Hence, they are such that for η
(3)
j ∈

(
tj , tj+1/2

)
, the relation

(38) hold. We have

∂2u

∂t2

(
xi, η

(3)
j

)
∈ Si,j =

[
Si,j , Si,j

]
.

We can choose the endpoints Si,j and Si,j as

Si,j ≈ min
(
S∗
i,j , S

∗
i,j+1/2

)
, Si,j ≈ max

(
S∗
i,j , S

∗
i,j+1/2

)
, (51)

where

S∗
i,j =

∂2u

∂t2
(xi, tj) . (52)
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For the finite difference approximations of the partial derivative ∂2u/∂t2 we can
use the following formulas

∂2u

∂t2
(xi, tj) =

1

k2
[−u (xi, tj+3) + 4u (xi, tj+2)− 5u (xi, tj+1) (53)

+ 2u (xi, tj)] +O
(
k2

)
,

∂2u

∂t2
(xi, tj) =

1

12k2
[−u (xi, tj+2) + 16u (xi, tj+1)− 30u (xi, tj) (54)

+ 16u (xi, tj−1)− u (xi, tj−2)] +O
(
k4

)
,

∂2u

∂t2
(xi, tj) =

1

k2
[2u (xi, tj)− 5u (xi, tj−1) + 4u (xi, tj−2) (55)

− u (xi, tj−3)] +O
(
k2

)
.

We denote by ui,j the approximation of u (xi, tj) obtained with the conventional
scheme and we neglect the error terms in (53)-(55). After that we can use (53)-
(55) for approximation of S∗

i,j , i = 0, 1, . . . , n, in the following way: the formula
(53) for j = 0; the formula (54) for j = 1, 2, . . . ,m − 2; the formula (55) for
j = m− 1.

Remark 4. Note that to get the endpoints Si,j and Si,j in (51), the exact values

or just approximations of ∂2u/∂t2 at the points (xi, tj) and
(
xi, tj+1/2

)
are re-

quired. Hence, at the beginning we can use the conventional method, as proposed
in Section 2.2, for the same value of the stepsize h (as for the interval method
applied) and for the time stepsize equal to k/2 (because the point

(
xi, tj+1/2

)
is located between (xi, tj) and (xi, tj+1)). Then, with the approximations ui,j ,
we can apply the formulas (53)-(55) to compute the approximations of ∂2u/∂t2

required. Nevertheless, if the uncertainties of initial values are considerable, then
we advise to use the interval realization of the conventional method instead of
the conventional one, to find the endpoints Si,j and Si,j . The interval realiza-

tion produces interval values of solution, denoted by UC
i,j =

[
uci,j , u

c
i,j

]
, such that

they include errors of initial data, rounding errors and representation errors,
except for the local truncation error of the conventional method. Then we can
use left and right endpoints of such intervals (instead of approximations ui,j) in
the formulas (53)-(55) and choose a minimum (maximum) value of S∗

i,j , S
∗
i,j+1/2

computed for both uci,j and uci,j to find the endpoints Si,j (Si,j).

3 Numerical Experiments

We consider the heat conduction problem of the form

ut (x, t)− α2uxx (x, t) = α1 + α2u (x, t) , 0 < x < L, t > 0, (56)

subject to the initial and boundary conditions
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u (x, 0) = 3x (L− x) , 0 ≤ x ≤ L, (57)

ux (0, t)−Au (0, t) = 0, ux (L, t) +Bu (L, t) = 0, t > 0. (58)

For such a problem formulation the analytical solution can be derived. We have

u (x, t) =

∞∑
n=1

un (t)Xn (x) , (59)

where

un (t) = [g1 (μn) + g2 (μn)] exp (−γnt)− g1 (μn) , (60)

Xn (x) = sin (μnx/L) + [μn/ (AL)] cos (μnx/L) , (61)

and with the notations c1 = A+B, c2 = A2L2 + μ2n, we have

g1 (μn) =
2Ac1L

4α1 (Ac1Lμn +Bc2 sinμn)

(L2α2 − α2μ2n)
[
c21Lμ

2
n (AL+ c2) +Bc22 sin

2 μn
] , (62)

g2 (μn) =
6Ac1L

3
[
c1Lμn

(
2AL− μ2n

)
+

(
2BL− μ2n

)
c2 sinμn

]
c21Lμ

4
n [AL (1 +AL) + μ2n] +Bμ

2
nc

2
2 sin

2 μn
. (63)

γn = α2 (μn/L)
2 − α2. (64)

Note that μn, n = 1, 2, . . . in (60)-(64) are positive roots of the equation

π

2
− arctan

[
−ABL

2 − μ2
(A+B)Lμ

]
+ (n− 1)π = μ. (65)

The series proposed in (59) is bounded as t approaches infinity, if the following
condition is met

μ1 > L
√
α2/α2. (66)

We set L = 1, Tmax = 1.5. Furthermore, values of the constants depending on a
physical problem are specified as follows

α =
√
0.6, α1 = 2, α2 = 1.5, A = 2, B = 25. (67)

We use the exact solution (59) with (60)-(64) to get the temperature distribution
described by (56)-(58) with (67) as shown in Fig. 1. Comparison of the widths
of the interval solutions obtained for selected values of h and k is shown in
Fig. 2. The widths of the interval solutions Ui,j and the components of E

(j)
L ,

j = 1, 2, ...,m obtained for h = 1E-2, k = 2.5E-5 are presented in Fig. 3. In Tables
1-2 values of the exact and interval solutions at t = 1.0, t = 1.5 are given. For
computations we used the C++ libraries for the floating-point conversions and
the floating-point interval arithmetic dedicated for the Intel C++ compiler [2].
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(a) (b)

Fig. 1. Temperature distribution described by (56)-(58) with (67) for: a) t ∈ [0, 1.5];
b) selected values of time t

(a) (b)

Fig. 2. Widths of the interval solution: a) U(x, t = 1.0); b) U(x, t = 1.5) obtained
with the ICN-LHS method for the problem (56)-(58) with (67) for different values of
h and k

(a) (b)

Fig. 3. Widths of: a) the interval solutions Ui,j ; b) the components of E
(j)
L , j =

1, 2, ..., m obtained with the ICN-LHS method for the problem (56)-(58) with (67)
for h = 1E-2, k = 2.5E-5
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Table 1. Values of the exact and interval solutions at t = 1.0 obtained with the
ICN-LHS method for h = 1E-2 and k = 2.5E-5

x u (x, t = 1.0) U (x, t = 1.0) width

0.0 +1.0290849E+0 [+1.02901153724382E+0,+1.02916440133155E+0] 1.528641E-04

0.1 +1.2067942E+0 [+1.20671599977288E+0,+1.20689538374457E+0] 1.793840E-04

0.2 +1.3260129E+0 [+1.32593240407807E+0,+1.32612953720827E+0] 1.971331E-04

0.3 +1.3842509E+0 [+1.38417087344458E+0,+1.38437611985331E+0] 2.052464E-04

0.4 +1.3802769E+0 [+1.38020024407569E+0,+1.38040357354486E+0] 2.033295E-04

0.5 +1.3141385E+0 [+1.31406793634956E+0,+1.31425941189625E+0] 1.914755E-04

0.6 +1.1871632E+0 [+1.18710130619728E+0,+1.18727156810621E+0] 1.702619E-04

0.7 +1.0019414E+0 [+1.00189031837399E+0,+1.00203104166227E+0] 1.407233E-04

0.8 +7.6228993E-1 [+7.62251200508054E-1,+7.62355501915610E-1] 1.043014E-04

0.9 +4.7319585E-1 [+4.73170599279248E-1,+4.73233373879811E-1] 6.277460E-05

1.0 +1.4074110E-1 [+1.40729705217429E-1,+1.40747876206010E-1] 1.817099E-05

Table 2. Values of the exact and interval solutions at t = 1.5 obtained with the
ICN-LHS method for h = 1E-2 and k = 2.5E-5

x u (x, t = 1.5) U (x, t = 1.5) width

0.0 +1.1183915E+0 [+1.11835154466522E+0,+1.11842581206267E+0] 7.426740E-05

0.1 +1.3116315E+0 [+1.31159315059256E+0,+1.31168030281238E+0] 8.715222E-05

0.2 +1.4412514E+0 [+1.44121523580722E+0,+1.44131101162725E+0] 9.577582E-05

0.3 +1.5042523E+0 [+1.50421881388058E+0,+1.50431853191966E+0] 9.971804E-05

0.4 +1.4991699E+0 [+1.49913960675766E+0,+1.49923839395570E+0] 9.878720E-05

0.5 +1.4261060E+0 [+1.42607931396122E+0,+1.42617234244423E+0] 9.302848E-05

0.6 +1.2867272E+0 [+1.28670429921930E+0,+1.28678702146717E+0] 8.272225E-05

0.7 +1.0842305E+0 [+1.08421166809912E+0,+1.08428003923122E+0] 6.837113E-05

0.8 +8.2327813E-1 [+8.23263209139443E-1,+8.23313884697483E-1] 5.067556E-05

0.9 +5.0989927E-1 [+5.09888175669761E-1,+5.09918675216012E-1] 3.049955E-05

1.0 +1.5136401E-1 [+1.51356399908803E-1,+1.51365228436968E-1] 8.828528E-06

4 Conclusions

The interval method of Crank-Nicolson type for solving the heat conduction
problem with heat sources given by a function linearly dependent on the tem-
perature is proposed. Such problem can be formulated with the Pennes equation
of the bioheat transfer. Since the physical parameters can often take ranges of
values, then the main advantage of the interval method considered is the ability
to represent the uncertain values of parameters in the form of intervals. The
interval solutions obtained also include the errors caused by the floating-point
arithmetic used by computers, i.e. the rounding errors and the representation
errors. Furthermore, we propose a method (also based on some finite differences)
which can be applied for the approximation of the endpoints of the error term
components. Note that such approach is not enough to guarantee the inclusion
of the local truncation error in the resultant interval solutions. Nevertheless, the
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numerical experiments confirm that the exact solution belongs to the interval
solutions obtained with the interval method considered.
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Abstract. This paper investigates efficient and powerful approach to
the Gradient and the Hessian evaluation for complex functions. The idea
is to apply the parallel GPU architecture and the Automatic Differentia-
tion methods. In order to achieve better accuracy, the interval arithmetic
is used. Considerations are based on sequential and parallel authors’ im-
plementation. In this solution, both the AD methods: Forward and Re-
verse modes are employed. Computational experiments include analysis
of performance and are studied on the generated test functions with a
given complexity.

Keywords: interval computations, automatic differentiation, GPGPU,
OpenCL.

1 Introduction

Interval computations (see, e.g., [6], [8]) are a well-known approach to solving
several decision problems, e.g., equations systems, optimization, Pareto-set seek-
ing, etc. (see, e.g., [13]). Their significant drawback is high computational cost of
the branch-and-bound (b&b) type method – the basic schema of most interval
algorithms.

On the other hand, the b&b method is relatively easy to parallelize – as for
the shared memory environments as for the distributed memory.

The second author, in his previous papers, (and several other researchers)
investigated several multithreaded programming tools and applied them to dif-
ferent interval algorithms (see [13]).

A relatively new variant of multithreaded programming is computing on
GPUs. The devices designed for graphical computations (image rendering, etc.)
have been found useful for other kinds of floating-point computations, also. In
recent years, several tools have been developed to perform such computations,
including CUDA (Compute Unified Device Architecture) [2] and – more recently
– OpenCL (Open Computing Language) [3].

Not much effort has been put into utilization of these tools for interval com-
putations, up to now. CUDA has been applied in [5] and [7].

P. Manninen and P. Öster (Eds.): PARA 2012, LNCS 7782, pp. 489–503, 2013.
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The first author used OpenCL [11] to implement not only the library of basic
interval functions and arithmetic operations, but also the Automatic Differenti-
ation algorithms for the gradient and the Hesse matrix computations according
to Forward and Reverse Mode, respectively.

2 Automatic Differentiation

What Is Automatic Differentiation?

The differential calculus has been invented in the second half of the seventeenth
century – independently by Isaac Newton and Gottfried Wilhelm Leibniz. Since
then, it has become a basic tool of several branches of science and engineering.

Consequently, computing the derivatives – precisely and efficiently – a is very
important problem for several applications. Automatic Differentiation – besides
numerical and symbolical methods – is one of the approaches to perform this
operation.

It is based on decomposition of complex functions into elementary ones. Dur-
ing such decomposition, chain-rules are created. More generally, the chain-rule
consists of a sequence of arithmetic operations and calls to standard functions in
which the value of each entry depends only on the input variables or previously
computed values.

In general, Automatic Differentiation has two basic modes of operations: For-
ward Mode and Reverse Mode. First algorithm was described in 1960, by R.E.
Moore [12]. The derivatives are propagated throughout the computation using
the chain rule with forward order (from the elementary steps by the intermediate
ones to the final result – derivative of the input function).

In the 80s, P. Werbos [12] described an efficient and revolutionary approach
to computing the gradient and the Hesse matrix – the Reverse Mode. It allows
to obtain the gradient immediately (for the Hessian operation – n sequences
are required). The difference lies in the fact that the Reverse Mode algorithm
computes derivatives for all intermediate variables backwards (reverse manner)
through the computation. Nevertheless, it requires saving the entire computation
trace (since the propagation is done backwards through the computation) and
hence is very mmemory demanding.

Mathematical Fundamentals

To present principles of the Automatic Differentiation algorithms, let us treat
each complex function as a superposition of elementary ones (the elementary
function consists of a single unary or binary operator). Consider:

– x1, x2, . . . , xn denote independent variables,
– fi : U → R, where U ⊆ Rn+k−1, for 1 ≤ i ≤ n+ k
– yn+k = fn+k(f1, f2, . . . , fn+k−1) – a differentiable function fn+k (superposi-

tion of elementary f1, . . . , fn+k−1),
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– f1, . . . , fn+k−1 – differentiable, elementary functions
– yi – intermediate results, yi = fi(xi) for 1 � i < n and yi = fi(f1, f2, . . . ,
fi−1) for i = n+ 1, n+ 2, . . . , n+ k.

Subsequent operations required to obtain the final result of fn+k can be rep-
resented as a vector of continuously differentiable elementary functions (chain-
rule): ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
.
.
.
yn
yn+1

.

.
yn+k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(x1)
f2(x2)
.
.
.

fn(xn)
fn+1(f1, f2, . . . , fn)

.

.
fn+k(f1, f2, . . . , fn+k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

This chain-rule can be simply illustrated in form of Kantorovich Graph:

Fig. 1. The chain-rule of the example function as Kantorovich graph

Evaluation of the first-order derivatives (the gradient operation) relies on
differentiation of the following elementary, functions with respect to each inde-
pendent input variable. In result, we have:

Jf (x) =
( ∂fi
∂xj

)
(n+k)·n

=

⎡⎢⎣
∂f1
∂x1

. . . ∂f1
∂xn

· · ·
∂fn+k

∂x1
. . . ∂fn+k

∂xn

⎤⎥⎦ (2)

Each column of the above matrix (called the Jacobian matrix) denotes next
elementary steps, necessary to evaluate the final partial derivative (in terms of
the elementary interval operations like: +, −, ×, / and transcendental functions,
such as: sin(x), cos(x), etc.).
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2.1 Forward Mode – Gradient

Considering the elementary function fcurr from the list (1) as dependent on
one or two immediately preceding functions in the Kantorovich Graph, we have:
ycurr = fcurr(fleft) or ycurr = fcurr(fleft, fright) for 1 ≤ left ≤ right < curr ≤
n+ k.

Differentiating fcurr with respect to input variable, we obtain the results
defined as follows:

– for fcurr that include a binary operator:

fcurr(fleft, fright) = fleft op fright , (3)

∂fcurr
∂xi

=
∂fcurr
∂fleft

· ∂fleft
∂xi

+
∂fcurr
∂fright

· ∂fright
∂xi

, (4)

– for fcurr that include an unary operator:

fcurr(fleft) = op fleft , (5)

∂fcurr
∂xi

=
∂fcurr
∂fleft

· ∂fleft
∂xi

. (6)

Please, note that:
∂xi
∂xi

= 1 . (7)

The Forward Mode algorithm is to perform the operations (4), (6) and store
intermediate results for each node (starting from independent variables through
intermediate functions to the final one). In this manner, we obtain the partial
derivative of target function.

2.2 Forward Mode – Hessian Matrix

Due to the number of required operations, the Hessian matrix computation is
more complicated. Nevertheless, the essentials are analogous to the Forward
Mode algorithm for the gradient. To produce the Hessian formulae we extend
the model described in the previous section. As a result of differentiation of
Expression (4) by the second variable (xj), we get the second-order derivative:

∂2fcurr
∂xi∂xj

=
∂

∂xj

(∂fcurr
∂fleft

· ∂fleft
∂xi

+
∂fcurr
∂fright

· ∂fright
∂xi

)
= (8)

=
∂2fcurr
∂fleft∂xj

· ∂fleft
∂xi

+
∂fcurr
∂fleft

· ∂
2fleft
∂xi∂xj

+

+
∂2fcurr
∂fright∂xj

· ∂fright
∂xi

+
∂fcurr
∂fright

· ∂
2fright
∂xi∂xj

,

where the initial values are equal to zero: ∂2xi

∂xi∂xj
= 0 and

∂2xj

∂xi∂xj
= 0
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It is worth mentioning that we utilize the gradient results for the Hessian
matrix. Unfortunately, those operations are not trivial. Note, that the Hessian

requires the values of those derivatives: ∂2fcurr

∂fleft∂xj
and ∂2fcurr

∂fright∂xj

For simplicity and efficiency of the calculations, we should apply some abbre-
viations.
The following table contains appropriate derivatives depending on arithmetic
operator.

Table 1. Equations for the second-order partial derivatives that are necessary for
Hessian

Operation Left operand Right operand

addition ∂2fcurr
∂fleft∂xi

= 0 ∂2fcurr
∂fright∂xi

= 0

subtraction ∂2fcurr
∂fleft∂xi

= 0 ∂2fcurr
∂fright∂xi

= 0

multiplication ∂2fcurr
∂fleft∂xi

=
∂fright

∂xi

∂2fcurr
∂fright∂xi

=
∂fleft

∂xi

division ∂2fcurr
∂fleft∂xi

= ∂
∂xi

(
1

∂fright

)
= −(

1
fright

)2 · ∂fright

∂xi

∂2fcurr
∂fright∂xi

= 0

unary ∂2fcurr
∂fleft∂xi

= ∂2fcurr

∂2fleft
· ∂fleft

∂xi
-

2.3 Reverse Mode – Gradient

Another approach to automatic differentiation is the Reverse Mode algorithm.
The key is that the derivative propagation is done in reverse manner. This is
often better suited to the problems with large numbers of input variables. In
order to explain underlying method, we have to consider the relation below:

f̄i =
∂fcurr
∂fi

· ¯fcurr , (9)

where f̄i =
∂fn+k

∂fi
and ¯fcurr =

∂fn+k

∂fcurr
. Index curr corresponds to the function

which is directly dependent on the operations denoted by subindex i (as could
be seen in Kantorovich graph), additionally for curr = n + k we assume that:
¯fcurr =

∂fcurr

∂fcurr
= 1

Taking into account the previous equation (9), we might as well derive the for-
mulae for partial derivatives with respect to preceding functions in Kantorovich
graph.

∂fn+k

∂fleft
=

∑ ∂fcurr
∂fleft

· ∂fn+k

∂fcurr
,

∂fn+k

∂fright
=

∑ ∂fcurr
∂fright

· ∂fn+k

∂fcurr
. (10)

Having performed the above operations, the final, partial derivatives are asso-
ciated with nodes of the independent variables. In result we obtain the gradient.

Formulae for the Hesse matrix computed in the Reverse Mode are analogous.
Details can be found in [11].
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3 Interval Arithmetic

Obviously, numerical computations are performed with limited accuracy, only.
Also, the arguments which we use in our computations are often inaccurate, due
to imprecise measurements, discretization error or other sources of uncertainty.

The interval calculus (see, e.g., [6], [8]) is an approach to dealing with all these
kinds of errors, obtaining guaranteed results. Using the interval notation [9], we
present the basic notions of interval calculus. By an interval we mean the set of
numbers x = [x, x] = {x ∈ R | x ≤ x ≤ x}, where x and x are floating-point
numbers. According to the IEEE 754 standard, they can be infinite (obviously
x = +∞ or x = −∞ would make little sense in practice).

Operations on intervals are defined so that the actual result of the real-number
operation was verified to belong to the resulting interval. The basic arithmetic
operations can be described as follows:

[x, x] + [y, y] = [x+ y, x+ y] ,

[x, x]− [y, y] = [x− y, x− y] ,
[x, x] · [y, y] = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)] ,

[x, x] / [y, y] = [x, x] ·
[
1 / y, 1 / y

]
, 0 /∈ [y, y] .

Moreover, if using the directed rounding, we can obtain guaranteed results. This
means, we can deal with numerical errors, by rounding the lower bound down-
wards and the upper bound – upwards and thus enclosing the correct result,
rigorously.

Arithmetic operations on intervals are not the only ones to be defined. If the
function f : R→ R is monotonic on the interval [x, x] then for all: [y, y] ⊆ [x, x]
we have:

f([y, y]) = [min{f(y), f(y)},max{f(y), f(y)}] .

Based on this assumption, we define, e.g.:

e[x,x] = [ex, ex] , loga([x, x]) = [loga(x), loga(x)] for x > 0 and a > 1 .

Formulae for other transcendental functions (sin(·), cos(·), etc.) can be obtained,
also (see, e.g., [6]). In all cases, outward rounding allows to enclose the correct
result, dealing with the numerical imprecision.

4 Introduction to OpenCL Technology

4.1 GPGPU

Technological development of graphics cards had a significant impact on software
development. Leading GPU manufacturers – as NVIDIA and ATI – rely on a
parallel architecture in order to provide General Purpose computations to their
products; not only related to rendering. This approach often gives a high speed-
up.
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However, multiple cores available on graphics cards have some constraints
and require a suitable programming model. In particular, the decomposition
of the main problem to many subroutines executed in parallel (simultaneously
by many cores) should be adequate. For high performance and scalability, each
thread has to perform the same computations, just on different data, to avoid
the latency caused by synchronization. Such an architecture is commonly known
as Single Instruction Multiple Thread. According to this model, the program
includes similar instructions that are executed as threads operating on many
different data elements and executed by many multiprocessors, simultaneously.

Consequently, only algorithms using data parallelism will be efficient on GPUs,
usually. Fortunately, this is the case for many problems and algorithms in sev-
eral fields, including compression algorithms, artificial intelligence, Monte Carlo
methods or optimization.

4.2 OpenCL

OpenCL (Open Computing Language) was previously developed by Apple for
OS X platforms (particularly Mac OS X Snow Leopard). Soon, due to the rapid
industrial progress, the project was joined by other leading companies, such
as: Intel, IBM, ATI, AMD or Sun. Consequently, the Khronos consortium was
established and has been managing OpenCL since 2008.

OpenCL specification provides an API, based primarily on the C99 standard
for C language, for GPGPU (or other devices with independent threads). In
particular, for parallel processing on GPUs, there is a specific function, called
a kernel. It is executed many times by many different threads. Moreover, tasks
are organized into many groups of 512 (GPUs supporting capability 1.1) or
1024 threads (capability 2.1) that are executed by subsequent multiprocessors.
Threads and thread-groups are identified using a one-, two- or three-dimensional
index. All work-groups reside on one or two-dimensional grids, so the number
of all threads in a grid is the number of threads per block times the number of
blocks in the grid.

OpenCL provides synchronization methods within each work-group and for
the whole grid. It does not support object-oriented programming or recursion,
as they might be unsuitable for some devices.

Depending on the context, OpenCL allows to use several types of memory
space that differ with performance parameters and capacity. The most impor-
tant of them (but not the most efficient!) is the global memory. This is an in-
termediary space for exchanging data between the host and other types of GPU
memory. Due to its role, the global memory is available for all threads (work-
items) and groups of threads (work-groups). Another one is the local memory
of each multiprocessor. Because of performance and capacity features, it is often
utilized in order to share data within threads in a work-group. Each thread has
also its own registers to store local variables. The architecture provides also other
address spaces, such as texture memory, constant memory etc. [2], but they are
of less importance.
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(a) Execution on GPU (b) Threads on GPU

Fig. 2. GPU Architecture

5 Architecture of Automatic Differentiation Library

5.1 Introduction

The developed library consists of the Automatic Differentiation algorithms,
working on GPU. The nature of this environment implies the specific struc-
ture of implemented routines. Operator overloading was applied to transform
the formulae to Kantorovich graphs. How to parallelize operations on the Kan-
torovich graph? For some graph’s structures it would be pretty difficult, but
usually, this graph contains independent nodes (at the same depth) that can be
processed simultaneously.

As a simple example, let us consider the function: y = sin(x)+ cos(x). It con-
sists of two trigonometric functions that can be evaluated in parallel – sin(x) and
cos(x). These intermediate values must be stored in separate memory spaces, cor-
responding to its nodes. Besides the value of the intermediate function, the first
and the second-order partial derivatives are associated with each node. Travers-
ing the expressions tree and applying formulae for the Forward or Reverse Mode,
the work-items compute the proper partial derivatives. Suitability for parallel
processing is strictly dependent on the structure of differentiable function. Un-
fortunately, not all functions include maximum number of independent nodes at
a fixed depth.

Obvoiously, even if we cannot parallelize the differentiation of a single func-
tion, we can still compute derivatives of several arguments in parallel.

5.2 Common Interface

Both, sequential and parallel implementations are based on the same set of
functions. These are in particular the following routines:

– Evaluate(graph, i) – evaluating the function associated with the i-th node
– GradForwardStep(graph, i) and GradReverseStep(graph, i) – responsible for

evaluation of partial derivative according to the equations for the gradient
in Forward Mode (4) and Reverse Mode (10) respectively
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– HessForwardStep(graph, i) and HessReverseStep(graph, i) – responsible for
evaluation of partial derivative according to the equations for the Hessian in
Forward Mode (9) and Reverse Mode respectively.

5.3 Sequential Model

Even if a formula consists a relatively large number of independent operations,
the sequential architecture does not permit processing it in parallel. For this
reason, it is advisable to previously sort the graph with ascending/descending
order of depth for Forward/Reverse Mode and prepare it for sequential execu-
tion. Obviously, as every value and partial derivative of the function is evaluated
sequentially, the next node cannot be processed until the previous one is com-
pleted. Algorithm 1 illustrates the sequential execution model.

input : Array of n Kanotorivich Graphs of size s
output: Array of intervals, representing subsequent derivatives

funcIdx ← 1
while funcIdx ≤ n do

Sort(graph[funcIdx]) // Sorting the graph with ascending or

descending order with respect to the depth

graph[funcIdx][derivativeIdx].derivative ← [1, 1] // Assignment of the node,

with respect to which, the function will be differentiated

nodeIdx ← 1
while nodeIdx ≤ s do

Evaluate(graph[funcIdx], nodeIdx)
GradForwardStep(graph[funcIdx], nodeIdx)
nodeIdx ← nodeIdx + 1

end

end

Algorithm 1. Gradient Forward Mode – the sequential version

5.4 Parallel Model

Having in mind technical principles of OpenCL and mathematical fundamentals
of the AD methods, parallel model can be designed. According to authors’ as-
sumptions, all the Kantorovich graphs and computation results are stored in local
memory situated closely to cores. This space is only shared within work-items.
Differentiable functions can be represented by nodes, whose amount is less or
equal to the maximal number of work-items per work-group. Additionally, each
work-item within a work-group corresponds to a single node of the function un-
der differentiation it and performs computation according to the rules described
in Section 2. It emphasises that each work-item is responsible for evaluation and
differentiation of function associated witha particular node.
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Two levels of parallelization are considered:

– parallel execution within a single function,
– parallel execution within all differentiable functions.

Algorithm 2 illustrates key points of the parallel method.

s input : Array of n Kantorovich Graphs of size s
output: Array of intervals representing subsequent derivatives

nodeIdx ← GetLocalIdx(0) // the work-item identifier (1st dimension)

funcIdx ← GetGlobalIdx(0) // the work-group id (1st dimension)

derivativeIdx ← GetGlobalIdx(1) // the work-group id (2nd dimension) --

differentiation with respect to the node with this index

currentDepth ← 0
if nodeIdx < s and funcIdx < s and derivativeIdx < n then

// Transfer of each graph from global to local memory

graph[funcIdx][derivativeIdx].derivative ← [1, 1] // Assignment of the node,

wrt which the function will be differentiated

LocalBarrier() // necessary to load all graphs into local memory

while currentDepth ≤ graph[s].depth do
if currentDepth = graph[nodeIdx].depth then

Evaluate(graph[funcIdx], nodeIdx)
ForwardStep(graph[funcIdx], nodeIdx)

end
LocalBarrier() // after processing all nodes at a given depth

currentDepth ← currentDepth + 1
end
// Transfer of each result from local to global memory

end

Algorithm 2. Gradient Forward Mode – the parallel version

6 Computational Experiments

6.1 Test Data and Test Environment

Test Data Performance of the developed procedure have been investigated for
both versions: sequential and parallel. It required input functions with various
structure and complexity. They have been generated by an appropriate module of
the library. Three basic types of the Kantorovich graph with various complexity
have been considered:

– Type 1 (a pessimistic version) – a complex function of a single variable; no
binary operators, i.e., no independent operations.

– Type 2 (an expected version) – a function that contains both unary and

binary operators. For n independent variables, the graph is of the size n(n+1)
2 .
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– Type 3 (an optimistic version, binary trees only) – a function consisting only
of binary operators; best parallelization possibilities.

Test Environment Numerical experiments were performed on a PC equipped
with:

– Dual-Core AMD Athlon X2 with 2,8Ghz clock,

– 2GB DDRAM memory (with 800Mhz frequency),

– GeForce 9800 GT 512 MB supporting CUDA/OpenCL 1.1,

– Windows XP Professional SP3 operating system.

6.2 Analysis of the Speedup with Respect to the Sequential Version

The parallel version (using local and global memory) was compared to the CPU
version. Tests were performed with a given range and complexity of input func-
tions. Along with the best properties of performance, there were selected graphs
of binary tree structure (type 3). The vertical axis represents the ratio of run-time
of parallel version to the sequential. The horizontal axis indicates the degree of
complexity – the size of the graph assigned to the function under differentiation.
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As one could expect, the GPU version using local and even global memory is
faster than the CPU version. Initially, we achieved the speedup from 100x to 120x
for 80 functions (Gradient Forward). Considering the function represented by 63
nodes, we obtain a maximum ratio of execution time on the GPU compared to
CPU; speedup is about 180 times. With the increasing size of the graph, we would
see a steady and smooth decrease of the acceleration. Taking into account usage
of global memory, plots show that a frequent data transfer from global to local
memory on device is a bottleneck of GPGPU technology. For relatively simple
differentiable functions, execution times of algorithm with global memory to local
one, are even shorter. It comes from no need to data transfer from global memory
to local one. However, greater number of nodes causes loss of acceleration and
prolongs the times of algorithms on GPU. We observe that speedup has sharply
fallen with increasing complexity of differentiable functions.

Much less memory requirements for Reverse Mode algorithm allow to prepare
tests for a greater number of functions (5000). Both lines (global and local mem-
ory) present a declining trend. Data transfer has also a huge impact on execution
time of Reverse Mode.

Forward and Reverse Mode algorithms for the Hesse Matrix are a few hundred
times faster than sequential versions. Thanks to reduced memory requirements,
the Reverse method features a better performance because it takes less time on
data transfer. Unlike Forward Mode, Reverse Mode allows to prepare tests even
for a few hundreds of functions.

6.3 Analysis of the Impact of Input Test Function on Speedup of
Differentiation

Tests were performed on various range of differentiable functions, depending on
the algorithm:

– Gradient Forward – 60 functions,
– Gradient Reverse – 10000 features,
– Hessian Forward – 6 functions,
– Hessian Reverse – 500 functions.

The vertical axis represents the ratio of time execution for parallel version to
the sequential one. The horizontal axis denotes the degree of complexity – the
size of the graph representing the function under differentiation.

The graphs corresponding to the Forward Mode algorithm for gradient and
the Hesse matrix show that the differentiation of complex functions, dependent
on a single variable, is the most efficient. The speedup has a linear trend. As
expected, the differentiation of functions consisting of only binary operators is
more efficient than of other functions (greater number of nodes at the same
depth). In comparison to CPU, we obtain even 200x shorter execution times.
According to measurements for gradient and the Hesse matrix computed in re-
verse manner, we conclude that functions with binary operators are well-suited
for parallel execution (maximal number of nodes at the same depth).
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7 Future Work

Although OpenCL is an open standard, independent of the specific hardware
architecture, its generality may entail a performance penalty. It is not the only
interface supporting GPGPU; in particular NVIDIA offers the API set for its
CUDA architecture, with similar features to OpenCL.

According to the report [10], CUDA performs slightly better than OpenCL,
when transferring data between the host and the GPU. Benchmarks have shown
the OpenCL can be about 13-63% slower than CUDA. Consequently, porting
the kernel code can bring us a significant performance boost. Considering these
factors, we may concentrate on further use of CUDA.

The second issue worth investigation is to reduce the effects of loading data to
the GPU’s global memory. Aiming at differentiating a large number of functions
(required data exceeding the capabilities memory on each kernel, but not global
memory), we would transfer data between host and device in an asynchronous
way (calling non-blocking read/write functions to memory on GPU, while the
kernel is being executed).

8 Conclusion

Automatic Differentiation is a powerful tool that can be useful in various fields
ranging from option price evaluation in finance and optimization problems to
medical imaging and geoscience. Until now, it was difficult and computationally
demanding, but recent technological development allows to increase the its per-
formance. One of the possibilities is to perform this procedure on GPUs, utilizing
its potential parallelism.

As a part of this work a research regarding utilization of GPUs to AD meth-
ods has been done. We considered gradient and Hesse matrix computations in
two different variants: Forward and Reverse modes. All of them have been im-
plemented using OpenCL. Performance and memory usage of the implemented
library have been investigated. Performance tests prove that the GPU architec-
ture with multi-core processors bring us tremendous computational horsepower
for Automatic Differentiation algorithms.

Acknowledgments. The paper has been done as a part of realization of the
grant for statutory activity, financed by the Dean of Faculty of Electronics and
Information Technology (WUT), titled “Interval methods for solving nonlinear
problems”.
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Abstract. The paper presents the authors’ effort to optimize a previ-
ously developed interval method for solving multi-criteria problems [17].
The idea is to apply heuristics presented, e.g., in [27], [22], [26] and some
new ones, to the Pareto set seeking method. Numerical experiments are
presented and parallelization of the algorithm is considered. Based on
the tuned algorithm, we propose a new approach to interactive multiple
criteria decision making.

Keywords: Pareto-set, multi-criteria analysis, interval computations,
bisection, Newton operator, tuning.

1 Introduction

The general problem of multi-criteria analysis (sometimes called multi-criteria
optimization) can be formulated as follows:

min
x
qk(x) k = 1, . . . , N , (1)

s.t.

gj(x) ≤ 0 j = 1, . . . ,m ,

xi ∈ [xi, xi] i = 1, . . . , n .

By solving the above problem we mean finding two sets. Firstly – a set of Pareto-
optimal points, i.e., feasible points that are non-dominated according to criteria,
and secondly – a Pareto frontier, i.e., a set of N -tuples of criteria values for
Pareto-optimal points. For convenience in the sequel we will call them together
Pareto sets (see, e.g., [8], [10], [25]). A feasible point x is Pareto-optimal (non-
dominated), if there exists no other feasible point x′ such that:

(∀k) qk(x
′) ≤ qk(x) and

(∃i) qi(x
′) < qi(x) .

Computing the Pareto sets – or even approximating them precisely enough – is
a hard task, especially for nonlinear problems.

P. Manninen and P. Öster (Eds.): PARA 2012, LNCS 7782, pp. 504–517, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Interval methods (see, e.g., [11], [12], [13]) are a proper approach for this
application. Indeed, several interval algorithms to compute Pareto sets have
been developed – see, e.g., [3], [7], [17], [20], [28].

All of them are based on the branch-and-bound (b&b) schema that is reliable,
but time-consuming and memory demanding.

It is well-known that it is crucial for efficiency of interval algorithms to design
proper heuristics for choosing and parameterizing accelerating mechanisms. For
example Csendes et alii considered several such accelerators for global optimiza-
tion (see, e.g., [5], [27]) and Kubica – for underdetermined equations systems
solving [23].

In this paper we consider tuning of a b&b method, introduced in [17], [18],
[19], [21], [20].

2 Generic Algorithm

In previous papers we developed an algorithm to seek the Pareto frontier and
the Pareto-optimal set. It subdivides the criteria space in a branch-and-bound
manner and inverts each of the obtained sets using a variant of the SIVIA (Set
Inversion Via Interval Analysis) procedure [12]. Some additional tools (like the
componentwise Newton operator) are applied to speedup the computations.

Using the notation of [14], the algorithm is expressed by the following pseu-
docode.

compute_Pareto-sets (q(·), x(0), g(·), εy, εx)
// q(·) is the interval extension of the criterion function q(·) = (q1, . . . , qN )(·)
// g(·) is the interval extension of the constraint function g(·) = (g1, . . . , gN )(·)
// L is the list of quadruples (y, Lin, Lbound, Lunchecked)

y(0) = q(x(0));

L =
{(

y(0), {}, {}, {x(0)}
)}

;

while (there is a quadruple in L, for which widy ≥ εy)
take this quadruple (y, Lin, Lbound, Lunchecked) from L;

bisect y to y(1) and y(2);
for i = 1, 2

SIVIA-like ((q, g), Lunchecked, (y, [−∞, 0]m), εx, Lin, Lbound);
// where m is the number of constraints gj
if (the resulting quadruple has a nonempty interior, i.e., Lin �= ∅)

delete quadruples of L that are dominated by y(i);
end if

insert the quadruple to the end of L;
end for

end while

// finish the Pareto-optimal set computations
for each quadruple in L do

process boxes from Lunchecked until all of them get to Lin or Lbound;
end do;
end compute_Pareto-sets
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Obviously, both loops in the above algorithm – the while loop and the for each

loop can easily be parallelized (at least in a shared memory environment [?], [19]).
The SIVIA-like procedure is a variant of classical SIVIA, introduced in [12].

It was proposed in [17]. It computes the reverse image of a set Y , but breaks
after finding an interior box (which proves that the reverse image is non-empty).
The procedure can be described by the following pseudocode:

SIVIA-like (f(·), Lunchecked, Y , ε, Lin, Lbound)
// f(·) is the interval extension of the function
// Lunchecked is the list of boxes to process (their sum contains the domain)
// Y is the inverted set – usually an interval, but not necessarily in general
// ε is the accuracy of approximation
Lin = ∅; // the list of boxes contained in the set f−1(Y )
Lbound = ∅; // the list of boundary boxes

stack (x(0));
while (Lunchecked �= ∅) do

pop(Lunchecked, x);
process box x; // perform the rejection/reduction tests
y = f(x);
if (y ⊆ Y )

push (Lin, x);
break; // the set is sure to have a nonempty interior

else if (y ∩ Y = ∅) discard x;
else if (wid (x) ≤ ε) push (Lbound, x);
else

bisect x;
push subboxes to Lunchecked;

end if

end while

end SIVIA-like

The above pseudocode does not specify details of the box processing procedure.
The following techniques can be applied there:

– checking if the box x is contained in the reverse image of corresponding y;
possibly narrowing the box by the componentwise interval Newton operator
[17],

– the monotonicity test, adapted to the multi-criteria case (this test uses the
first-order information),

– checking 2nd-order Pareto-optimality conditions, using an interval Newton
operator [21].

The same techniques are applied in the for each loop of the main
compute_Pareto-sets procedure.
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3 Improvements

Improvements, we propose in this paper, can be classified in two groups:

– improvements to the main algorithm from Section 2,
– heuristics to choose/parameterize tools to process boxes in the SIVIA-like

procedure.

The corrections to the main algorithm include:

– not subdividing quadruples with empty interior,
– an additional narrowing procedure for quadruples: we compute the hull of

q(·)’s of all boxes in Lin and Lbound and intersect it with y of the quadruple.

Considered heuristics include:

– choosing whether to apply the Newton operator or not for a specific box,
– choosing what type of the Newton operator to apply on a specific box (as in

[22]),
– different procedures to choose the bisection direction for boxes.

3.1 When to Apply the Newton Operator?

In equations solving, the Newton operator is (usually) the basic tool we use. In
solving other problems, it is not so – we have several forms of the monotonicity
test, we can compare the objective’s values (i.e., use the 0th-order information),
remove regions that violate the constraints, etc.

In particular, when seeking the Pareto sets of a multi-criteria analysis problem,
the Newton operator can be used to solve the system of 2nd order Pareto-
optimality conditions. It is a powerful tool, but also relatively time-consuming
(Hesse matrices of all criteria and all constraints have to be evaluated!), so
skipping it for boxes for which it would not improve the result, would be very
beneficial.

For global optimization, some interesting results have been obtained by
Csendes [6] and Pal [26]. Pal investigated a heuristic based on trisection and
monotonicity test – if two, out of the three subboxes get deleted by the mono-
tonicity test, the Newton operator is applied to the third box, otherwise not.
According to [6], the heuristic did not perform as expected and a simple one
based on the box’s diameter turned better.

In our study we adopt this simple heuristic – for boxes larger than a given
threshold value, the Hesse matrices are not computed and the Newton operator
is not applied; for small enough ones, they are. Csendes suggested the threshold
absolute value to be 0.1, but in our experiments a smaller value, i.e., 0.025 turned
out to be better.
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3.2 How to Choose the Subdivision Direction?

A few approaches to branching have been proposed for different b&b algorithms.
The most common one is bisection of the longest component of the box. It is
used as for equations systems, as for global optimization, Pareto sets seeking
and other problems.

For global optimization, a different criterion, known as maximal smear, is
suggested by some authors (see, e.g., [13], [27]). It has been argued that bisection
should reduce the diameter of objective on the subdivided box, as much as
possible. Hence, we choose the variable j, for which the value |gj(x)| · widxj is
the largest. Csendes et alii investigated this approach extensively, realizing its
usefulness.

Yet another idea, for global optimization, is based on the so-called rejection
index (see, e.g., [5])

For equations systems, the MaxSmear technique can be adapted (see [4]),
by computing the maximal magnitude for all equations and all variables, but
experiments performed in [22] suggested its poor performance.

In [22] a completely different heuristic has been proposed. It was based on the
assumption that bisection should not reduce the diameter of interval functions by
itself, but rather create subboxes suitable for reduction by the Newton operator
or other rejection/reduction tests. For details, the reader is referred to [22].

In our study, we investigate the Pareto sets seeking problem and we use the
following approaches for the subdivision direction choosing:

– MaxDiam, i.e., choosing the maximal diameter – as in previous papers ([17]–
[21]),

– MaxSmear, based on the gradients of criteria ([13], [27]),
– the heuristic proposed in [22],
– new procedures, described below.

Inconsistency measure. In our algorithm, we invert sets from the criteria space
to the decision space. So, for each box x(k) from the decision space, we compute

the vector of criteria y(k) = (y
(k)
1 , . . . ,y

(k)
N )T to check if they are included in the

inverted set y.
If y(k) ⊆ y or y(k) ∩ y = ∅, then no subdivision of x(k) is needed. Otherwise,

we should choose for bisection such a variable that would reduce the components
of y(k) that are the most distant (in the sense of an absolute distance) from y.

Note, that as in [2], we consider an asymmetric distance measure here (a quasi-
metric, because if one set is contained in another, the distance is considered to be
zero). So, the heuristic is to find the criterion i with the highest “distance” from

y
(k)
i to yi and apply the MaxSmear for this single criterion, as for unicriterion

optimization. Let us call this approach MaxDist.

MaxDist augmented. Our experiences from [22] suggest that basing on a single
feature of the function (or box) for direction choosing results in poor perfor-
mance, usually. In particular, it might be good not to bisect very short edges,
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i.e., not to let the boxes have too high differences between boxes sizes. This
intuition leads to the MaxDistAug heuristic: choose the variable using MaxDist
approach only if the longest edge is shorter than eight times the one chosen by
MaxDist; otherwise choose the longest edge.

4 Computational Experiments

Numerical experiments were performed on a computer with 16 cores, i.e., 8 Dual-
Core AMD Opterons 8218 with 2.6GHz clock. The machine ran under control of
a Fedora 16 Linux operating system.ATLAS 3.9.11 was installed there for BLAS
libraries. The solver was implemented in C++, using C-XSC 2.5.1 library [1] for
interval computations. The GCC compiler was used, version 4.6.1.

Parallelization of the algorithm was done using POSIX threads, in a way
described in [18] and [19]. This approach parallelizes the “outer loop” of the
algorithm, i.e., operations on different boxes in the criteria space are done in
parallel, but there is no nested parallelism on the SIVIA-like procedure applied
to them. This allows larger grain-size, but makes us to execute costly operations
on the list of sets in a critical section (deleting all dominated sets).

The following well-known test problems have been considered.

4.1 The Kim Problem

Our first example is a classical hard problem for multi-criteria analysis [15]:

min
x1,x2

(
q1(x1, x2) = −(

3 · (1 − x1)2 · exp(−x2
1 − (x2 + 1)2) − 10 · (x1

5
− x3

1 − x5
2

)×
× exp(−x2

1 − x2
2) − 3 exp(−(x1 + 2)2 − x2

2) + 0.5 · (2x1 + x2)
)
, (2)

q2(x1, x2) = −(
3 · (1 + x2)2 · exp(−x2

2 − (1 − x1)2) − 10 · (− x2

5
+ x3

2 + x5
1

)×
× exp(−x2

2 − x2
1) − 3 exp(−(2 − x2)2 − x2

1)
))

,

x1, x2 ∈ [−3, 3] .

This problem has a non-connected Pareto frontier and is very difficult, e.g., for
evolutionary methods [15].

The solver’s parameters used for this problem are: εy = 0.05 and εx = 0.001.

4.2 The Osyczka Problem

This constrained problem with 6 variables, 2 criteria and 6 constraints is taken
from [3]:

min
x1,...,x6

(
q1(x1, . . . , x6) = −

(
25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 +

+(x4 − 4)2 + (x5 − 1)2
)
, q2(x1, . . . , x6) =

6∑
i=1

x2i

)
, (3)
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s.t.

−x1 − x2 + 2 ≤ 0,

x1 + x2 − 6 ≤ 0,

−x1 + x2 − 2 ≤ 0,

x1 − 3x2 − 2 ≤ 0,

(x3 − 3)2 + x4 − 4 ≤ 0,

−(x5 − 3)2 − x6 + 4 ≤ 0,

x1, x2, x6 ∈ [0, 10], x3, x5 ∈ [1, 5], x4 ∈ [0, 6] .

This problem has a relatively simple Pareto frontier, but the high number of
constraints makes it a bit difficult for our algorithms (the SIVIA-like procedure
has to find a feasible box).

The solver’s parameters used for this problem are: εy = 4.0 and εx = 0.25.

4.3 SPH(3,3) Problem with a Nonlinear Constraint

This problem is the unconstrained problem from [29] with 3 variables and 3
criteria, augmented with a single constraint (considered also in [20]:

min
x1,...,xn

(
qk(x1, . . . , xn) =

N∑
j = 1,
j �= k

x2j + (xk − 1)2 k = 1, . . . , N
)

(4)

s.t.

−(x1 + 2)2 − x2 + 1 ≤ 0 ,

xi ∈ [−1000, 1000] i = 1, . . . , n .

The Pareto frontier and Pareto-optimal set are three-dimensional ones and hence
difficult to draw.

Obviously, n = N = 3, in our case. The solver’s parameters used for this
problem are: εy = 0.2 and εx = 0.05.

4.4 Results

In the tables below we present computational results for the described test prob-
lems and a few versions of our algorithm. Two versions of the algorithm, not
applying the advanced tools have been considered:

– old – the algorithm with no improvements at all,

– simple – the quadruples with empty interior are not bisected, but put into an
additional list; all quadruples that are not processed anymore are narrowed
by computing the intersection of y and the union of criteria values for all
their boxes from the decision space; no “advanced” improvements used.
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The following “advanced” versions have been considered. All of them, in ad-
dition to tools from the “simple” version, switch between using or not of the
Newton operator (see Subsection 3.1) and one of the heuristics to choose the
coordinate for bisection (Subsection 3.2: MaxDiam, MaxSmear, Hybrid (i.e., the
one presented in [22]), MaxDist or MaxDistAug.

Switching between different types of the Newton operator did not give any
improvements (for the reasons that remain to be determined) and we do not
present these results here. In all versions, using the 2nd order information, the
GS (Gauss-Seidel) operator has been applied.

It is difficult to give a single quantity that measures the algorithm perfor-
mance. The number of Hesse matrix evaluations might be a hint (as this is the
most time-consuming operation), but some versions of the algorithm do not use
Hesse matrices at all and they are not the most efficient ones, definitely. So, num-
bers of other operations (criteria evaluations, gradients evaluations, bisections,
etc.) should be considered, also.

The execution time is the only general efficiency measure, but it is related to
a specific machine.

As for the accuracy – Lebesgue measures of box collections seem a proper mea-
sure, but accuracies in the criteria and decision spaces might be much different;
we do not have a perfect measure, again.

Numbers of boxes deleted or reduced by various tools can give us the idea on
how efficient these mechanisms are.

We present all of these numbers in the tables below.

Table 1. Results for problem (2) and a single-threaded algorithm without advanced
improvements

old – 1st order old – 2nd order simple – 2nd order

criteria evals. 23655640 6445582 6372582
criteria grad. evals 6095650 1363678 1363678
criteria Hess. evals — 1833418 1833418
bisecs.in crit.space 1825 1695 1371
bisecs.in dec. space 1471926 425994 425994
boxes reduced by monot. 0 1 1
boxes del. by monot. 29825 13374 13374
boxes del. by Newton I 290086 109313 109313
boxes del. by Newton II — 24601 24601
resulting quadruples 854 737 417
quadr.with empty int. — — 315
internal boxes 122469 35933 35933
boundary boxes 942995 218147 219099
Lebesgue measure crit. 1.49 1.28 0.81
Lebesgue measure dec. 0.53 0.13 0.13
time (sec.) 83 81 81
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We can see high improvement in the accuracy – both in the decision and
criteria space. The improvement in efficiency is much smaller.

Table 2. Results for problem (2) and single-threaded algorithms with the advanced
improvements

MaxDiam MaxSmear Hybrid [22] MaxDist MaxDistAug

criteria evals. 6313992 12250258 6313992 13272688 9287190
criteria grad. evals 1499946 3297308 1499946 3724698 2377464
criteria Hesse evals 1632136 4168106 1632136 4819988 2848404
bisecs.in crit.space 1368 1351 1368 1344 1344
bisecs.in dec. space 432163 1069833 432163 1234705 741811
boxes reduced by monot. 1 1 1 1 1
boxes del. by monot. 11887 47223 11887 63995 22175
boxes del. by Newton I 113918 146350 113918 160074 136140
boxes del. by Newton II 28846 28137 28846 28043 27683
resulting quadruples 415 403 415 399 399
quadr.with empty int. 312 324 312 328 326
internal boxes 38008 278184 38008 323209 161717
boundary boxes 213483 481588 213483 527405 348493
Lebesgue measure crit. 0.80 0.77 0.80 0.78 0.78
Lebesgue measure dec. 0.13 0.11 0.13 0.11 0.11
time (sec.) 75 185 75 211 128

Fig. 1. Pareto frontier of the Osyczka problem (3) approximation, computed by the
old, simple and MaxDistAug algorithm versions

For the Osyczka problem, we obtained a very significant improvement – as
in accuracy, as in efficiency of the algorithm. Please note, that for the “simple”
improvements, the accuracy is slightly decreased in the criteria space. This is
because, we get a small number of relatively large boxes that cover some boxes
deleted by the original algorithm (see Figure 1). Using advanced techniques,
improves the accuracy (and efficiency) dramatically.
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Table 3. Results for problem (3) and single-threaded algorithms without advanced
improvements

old simple

criteria evals. 263187987 123750219
criteria grad. evals 11630028 11630028
criteria Hesse evals 0 0
constr. evals 24019414 24019414
constr. grad. evals 9014928 9014928
constr. Hesse evals 0 0
bisecs.in crit.space 1679 75
bisecs.in dec. space 2910382 2910382
boxes reduced by monot. 13306 13306
boxes del. by monot. 348936 348936
boxes del. by Newton I 8121 8121
boxes del. by Newton II 0 0
resulting quadruples 1524 3
quadr.with empty int. — 49
internal boxes 10 10
boundary boxes 21594477 3672279
Lebesgue measure crit. 15287.62 17354.70
Lebesgue measure dec. 1210.25 195.79
time (sec.) 433 200

Table 4. Results for problem (3) and single-threaded algorithms with the advanced
improvements

MaxDiam MaxSmear Hybrid [22] MaxDist MaxDistAug

criteria evals. 105738157 n/a 105738157 n/a 46907598
criteria grad. evals 11818048 n/a 11818048 n/a 4533336
criteria Hesse evals 2 n/a 2 n/a 2
constr. evals 16115759 n/a 16115759 n/a 8115028
constr. grad. evals 9181265 n/a 9181265 n/a 4417105
constr. Hesse evals 6 n/a 6 n/a 6
bisecs.in crit.space 62 n/a 62 n/a 256
bisecs.in dec. space 2957692 n/a 2957692 n/a 1130313
boxes reduced by monot. 13423 n/a 13423 n/a 507
boxes del. by monot. 366467 n/a 366467 n/a 82417
boxes del. by Newton I 8433 n/a 8433 n/a 19324
boxes del. by Newton II 0 n/a 0 n/a 0
resulting quadruples 3 n/a 3 n/a 29
quadr.with empty int. 38 n/a 38 n/a 115
internal boxes 8 n/a 8 n/a 631
boundary boxes 3167975 n/a 3167975 n/a 975368
Lebesgue measure crit. 18038.83 n/a 18036.83 n/a 3547.30
Lebesgue measure dec. 160.70 n/a 160.70 n/a 1.22
time (sec.) 179 > 3537 180 > 1047 72
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Table 5. Results for problem (4) and single-threaded algorithms with the advanced
improvements

MaxDiam MaxSmear Hybrid [22] MaxDist MaxDistAug

criteria evals. 5302025 3281457 5302025 n/a 3524538
criteria grad. evals 1535085 1057449 1535085 n/a 1198404
criteria Hesse evals 3 9 3 n/a 9
constr. evals 526237 222393 526237 n/a 221864
constr. grad. evals 392319 231366 392319 n/a 220673
constr. Hesse evals 1 1 1 n/a 1
bisecs.in crit.space 1157 1215 1157 n/a 1211
bisecs.in dec. space 244024 164247 244024 n/a 185624
boxes reduced by monot. 0 0 0 n/a 0
boxes del. by monot. 98707 53818 98707 n/a 54921
boxes del. by Newton I 8615 15845 8615 n/a 13282
boxes del. by Newton II 0 0 0 n/a 0
resulting quadruples 280 303 280 n/a 307
quadr.with empty int. 186 153 186 n/a 104
internal boxes 1289 1876 1289 n/a 6891
boundary boxes 38358 41593 38358 n/a 61511
Lebesgue measure crit. 2.37 2.28 2.37 n/a 1.82
Lebesgue measure dec. 1.43 1.37 1.43 n/a 1.07
time (sec.) 7 5 7 > 774 5

5 Interactive Decision Making Using the Pareto Frontier

Every point in the Pareto frontier and consequently in the Pareto-optimal set is
an equally acceptable solution of the multi-criteria optimization problem from
the formal point of view. However, making a decision means selecting one al-
ternative (point) from the set of feasible points. So, in multi-criteria decision
making (MCDM) this choice calls for the information that is not contained in
criteria, that is, for the decision maker’s preferences between different Pareto
frontier points. This is why – compared to single criterion decision-making –
a new element has to be added in MCDM. We need an active involvement of
the decision-maker in doing the selection. From pioneering work of S. Gass and
T. Saaty [9] it is known that this can be done by visualization of the Pareto
frontier.

The improvements, we have done to our algorithm of computing Pareto sets,
encourage us to begin the work on multiple criteria decision support software
package (MCDSSP) designed in the framework of a posteriori methods for
MCDM [25].

A standard a posteriori method includes four stages: (1) computing a Pareto
frontier; (2) its visualization; (3) trade-off analysis of different points from the
Pareto frontier, by the decision maker basing on her/his preferences and even-
tually the choice of one of the Pareto frontier points; (4) computing a Pareto-
optimal point corresponding to the selected point from the Pareto frontier.
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However, the designed MCDSSP to be effective, must satisfy some require-
ments formulated, for visualization and trade-offs calculation (cf. for example
[24], [10]). These requirements are demanding and now we are working on meet
all of them, especially on interactive presentation of impact of problem param-
eters change on Pareto sets shape.

6 Conclusions

We presented an improved and highly tuned interval algorithm for seeking the
Pareto-optimal set and Pareto frontier of a multi-criteria decision problem. We
also used the developed method as the basis to propose a new approach for
interactive multi-criteria decision making.

Analyzing the performance of our algorithm, we made important observations.
An interesting one is that quite different heuristics seem to perform well for
the problem of Pareto sets seeking than for solving underdetermined nonlinear
systems (see [22] for comparison). This is against our expectations, but it can
be explained by several reasons:

– in [22] the Newton operator is the only rejection/reduction tool used and
it is computed for almost all boxes; here a few acceleration mechanisms are
used (in particular, the powerful multi-criteria version of the monotonicity
test) and the Newton operator is applied only for sufficiently small boxes,

– in [22] the Newton operator is used to verify the segments of the solution
manifold; here we only use the Newton operator to narrow and discard boxes,
not to verify the existence of solutions,

– in the algorithm considered here, we have two kinds of variables – decision
variables x and Lagrange multipliers u – used in the system of necessary
conditions, solved by the Newton operator; however, only x’s are bisected
and not u’s,

– in the algorithm considered here, significant parts are not devoted to pro-
cessing the boxes, but to traversing the data structures, etc.

We can conclude that for different problems and algorithms different heuristics
and policies are needed in interval computations. However, we can formulate
some general remarks for them, basing on the results from both: this paper
and [22]. In particular: heuristics for choosing the subdivision direction should
consider several criteria of choice: assuring overall convergence, good cooperation
with the rejection/reduction tests, improving the bounds on the objective(s) as
much as possible, etc. For example policies, like MaxSmear, MaxDist (in contrast
to MaxDistAug) seem to perform poorly.

But the choice of policies adequate to a specific problem/algorithm seems a
relatively hard task and it can hardly be automated (compare also [23]). It seems
to require experience and some intuition from the algorithm designer.

7 Future Work

There are still several improvements that can be done to our algorithm – both
simple and sophisticated ones, e.g., improving the parallelization and dominated
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regions deletion by using proper data structures (see, e.g., [20], [23]). Also, it will
be very interesting to compare the performance of our approach with the one of
Fernandez and Toth [7]. This is going to be the subject of future investigations.

Acknowledgments. The paper has been done as a part of realization of the
grant for statutory activity, financed by the Dean of Faculty of Electronics and
Information Technology (WUT), titled “Interval methods for solving nonlinear
problems”.
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Abstract. The paper is devoted to an interval difference method for
solving one dimensional wave equation with the initial-boundary value
problem. The method is an adaptation of the well-known central and
backward difference methods with respect to discretization errors of the
methods. The approximation of an initial condition is derived on the ba-
sis of expansion of a third-degree Taylor polynomial. The initial condition
is also written in the interval form with respect to a discretization error.
Therefore, the presented interval method includes all approximation er-
rors (of the wave equation and the initial condition). The floating-point
interval arithmetic is used. It allows to obtain interval solutions which
contain all calculations errors. Moreover, it is indicated that an exact
solution belongs to the interval solution obtained.

Keywords: wave equation, PDE, difference method, initial-boundary
value problem, floating-point interval arithmetic, interval methods.

1 Introduction

Numerical computations for partial differential equations (PDE) are very im-
portant in scientific and technical calculations. In the approximate methods are
important: the kind of discretization of the method and the size of discretization
error. There is not much of works devoted to the partial differential equations in
the context to interval computations. Nakao and Plum are the authors of papers
related to the existence and uniqueness of these solutions. Almost all papers
written by these authors are devoted to elliptic equations (see e.g. [1], [2] or [3]).
The studies of partial differential equations with respect to interval methods in
floating-point interval arithmetic are conducted by Marciniak for Poisson equa-
tion (see e.g. [4]) and by Jankowska (see e.g. [5]) for a heat equation. The main
objective to create such methods is to take into account all numerical errors in
the resulting solutions. It is obvious that we want to obtain the widths of interval
solutions small enough. Difference interval methods for solving the wave equation
have been presented by authors in [6], [7], [8] and [9]. The methods presented in
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[6] and [7] are related to the errors of an initial condition of order O(h) and esti-
mations of errors dependent on a parameter of the wave equation (v). Another
way of estimating errors in discretization method has been presented in [8] and
[9]. There were presented the central-central and central-backward difference in-
terval method and the estimations of errors independent on the parameter v.
Additionally, an initial condition was considered with the local truncation error
of order O(h4). But in [6], [7], [8] and [9] the interval solutions were acceptable
only for v < 1. In this paper the central-backward (with respect to space and
time, respectively) difference interval method for solving hyperbolic PDE with
boundary-initial conditions is presented. The estimation error of discretization
method is the same as the method presented in [8] and [9], but the initial con-
dition is approximated (with local truncation error of order O(h4)) by the new
formula. Some numerical results are presented.

2 The Wave Equation

In this paper the one dimensional wave equation is considered, which corresponds
to the tighten string of the length L (see [10], [11], [12] and [13]). The wave
equation is given by the formula

v2
∂2u

∂x2
(x, t)− ∂

2u

∂t2
(x, t) = 0. (1)

The function u = u(x, t) denotes the amplitude of the string displacement in the
time t, where 0 < t, 0 < x < L and v = const.

If both ends of the string are fixed at x = 0 and x = L, then the function u,
for t > 0, satisfies the following Dirichlet conditions:

u(0, t) = 0, (2)

u(L, t) = 0.

The initial position and velocity of the string, for 0 < x < L, are given by the
following Cauchy conditions:

u(x, 0) = ϕ(x), (3)

∂u

∂t
(x, 0) = ψ(x),

where ϕ and ψ are given functions.

3 The Central-Backward Difference Method

To define a difference method, the space x and time t are divided into n and m
parts of the length Δx = h > 0 and Δt = k > 0, respectively (see e.g. [14]). The
mesh points (xi, tj) of the space-time grid are set up as follows:

xi = i · h, h =
L

n
> 0, i = 0, 1, . . . , n, (4)

tj = j · k, k > 0, j = 0, 1, . . . ,m.
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Using the central difference approximation to ∂2u
∂x2 and the backward difference

approximation to ∂2u
∂t2 (see e.g. [15] or [16]) we obtain

∂2u

∂x2
(xi, tj) =

u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)

h2
− h

2

12
· ∂

4u

∂x4
(ξi, tj),

(5)

∂2u

∂t2
(xi, tj) =

u(xi, tj)− 2u(xi, tj−1) + u(xi, tj−2)

k2
− k

2

12
· ∂

4u

∂t4
(xi, ηj−1),

where ξi ∈ (xi−1, xi+1) and ηj−1 ∈ (tj−2, tj), i = 1, 2, . . . , n− 1, j = 2, 3, . . . ,m.
Substituting (5) into (1) we get

γ2u(xi−1, tj) + γ
2u(xi+1, tj)− (1 + 2γ2)u(xi, tj) + (6)

+2u(xi, tj−1)− u(xi, tj−2) = eM ,

where

γ = v
k

h
, (7)

and where the truncation error of method (eM ) is given by

eM = v2
k2h2

12
· ∂

4u

∂x4
(ξi, tj)−

k4

12
· ∂

4u

∂t4
(xi, ηj−1) (8)

for ξi ∈ (xi−1, xi+1), i = 1, 2, . . . , n − 1 and ηj−1 ∈ (tj−2, tj), j = 2, 3, . . . ,m.
The method (6) is stable only if

γ ≤ 1. (9)

The Dirichlet conditions (2), j = 1, 2, . . . ,m, are as follows:

u(x0, tj) = 0, (10)

u(xn, tj) = 0.

If u ∈ C4[0, L] and ϕ′′, ψ′′ exist, then, for i = 1, 2, . . . , n − 1, and j = 0, the
Cauchy conditions (3) yield

u(xi, t0) = ϕ(xi), (11)

u(xi, t1) = ϕ(xi) + kψ(xi) +
k2

2
v2ϕ′′(xi) +

k3

6
v2ψ′′(xi) + eC .

The approximation error of the second initial condition (eC) is defined as follows:

eC =
k4

24
· ∂

4u

∂t4
(xi, η̃i), (12)

where η̃i ∈ (t0, t1) for i = 1, 2, . . . , n− 1.
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Fig. 1. The model of the mesh points grid given by the formula (6) with conditions
(10) and (11)

The second equation in (11) is received by an approximation of the derivative

∂u

∂t
(xi, 0).

The third-degree Taylor polynomial for function u expanded about t0 is used as
follows:

u(xi, t1) = u(xi, t0) + k ·
∂u

∂t
(xi, t0) +

k2

2
· ∂

2u

∂t2
+ (xi, t0) (13)

+
k3

6
· ∂

3u

∂t3
(xi, t0) +

k4

24
· ∂

4u

∂t4
, (xi, η̃i),

where η̃i ∈ (t0, t1) for i = 1, 2, . . . , n− 1.
The first initial condition in (3) satisfies the wave equation (1). Thus, it is dif-
ferentiated twice with respect to x (see [17]) and then we can write

∂2u

∂t2
(xi, 0) = v

2 ∂
2u

∂x2
(xi, 0) = v

2 d
2ϕ

dx2
(xi) = v

2ϕ′′(xi).

As a consequence we have

∂2u

∂t2
(xi, 0) = v

2ϕ′′(xi). (14)

Likewise, if ψ′′ exists, then

∂3u

∂t3
(xi, 0) =

∂

∂t

(
∂2u

∂t2
(xi, 0)

)
=
∂

∂t

(
v2
∂2u

∂x2
(xi, 0)

)
=

= v2
∂2

∂x2

(
∂u

∂t
(xi, 0)

)
= v2

d2ψ

dx2
(xi) = v

2ψ′′(xi).
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Finally, we obtain
∂3u

∂t3
(xi, 0) = v

2ψ′′(xi). (15)

Substituting (14), (15) and the first equation of (11) into (13), the second equa-
tion in (11) is obtained.

4 A Central-Backward Difference Interval Method

In the conventional difference methods the truncation errors eM (8) and eC (12)
are omitted. If we consider the interval method, the errors of method are involved
into interval solution (see e.g. [18], [19] or [20]). The equations below are satisfied
for all mesh points (xi, tj) ∈ (Xi, Tj), where (Xi, Tj) are interval representations
of mesh points (xi, tj). The functions Φ, Ψ and the values K,H, Γ are interval
extensions ([21]) of the functions ϕ, ψ and the values k, h, γ, respectively.

Substituting (5) into (1) the central-backward difference interval method is
defined by the formula

Γ 2U(Xi−1, Tj) + Γ
2U(Xi+1, Tj)− (1 + 2Γ 2)U(Xi, Tj) + (16)

+2U(Xi, Tj−1)− U(Xi, Tj−2) = EM

for i = 1, 2, . . . , n− 1 and j = 2, 3, . . . ,m.
The estimation of truncation error eM (8) is defined as follows (see [8]):

EM =
K2

12
(H2 +K2V 2)[−M,M ], (17)

where
eM ∈ EM . (18)

The Dirichlet conditions (2) for j = 1, 2, . . . ,m give

U(X0, Tj) = [0, 0], (19)

U(Xn, Tj) = [0, 0].

The Cauchy conditions (3), based on (11), for i = 1, 2, . . . , n− 1 yield

U(Xi, T0) = Φ(Xi), (20)

U(Xi, T1) = Φ(Xi) +KΨ(Xi) +
K2V 2

2
Φ′′(Xi) +

K3V 2

6
Ψ ′′(Xi) + EC .

The estimation of truncation error eC (11) we can write as follows:

EC =
K4V 2

24
[−M,M ], (21)



A Central-Backward Difference Interval Method 523

where
eC ∈ EC . (22)

The value M (in formulas (17) and (21)) satisfying∣∣∣∣∂4u(xi, tj)∂x2∂t2

∣∣∣∣ ≤M (23)

is calculated by the conventional difference method as follows:

M ( s

h2k2
max
i,j

∣∣∣ u(xi+1, tj+1)− 2u(xi, tj+1) + u(xi−1, tj+1)−

−2(u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)) + (24)

+u(xi+1, tj−1)− 2u(xi, tj−1) + u(xi−1, tj−1)
∣∣∣,

where i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m− 1 and s = 1.5 (see [22]).

The central-backward difference interval method (16) leads to the system of
(m− 1) interval linear equations (see [23]) for the (m− 1) unknown vectors Uj

(j = 2, 3, . . . ,m). The system has the following form:⎡⎢⎢⎢⎢⎢⎣
A
B A
C B A

. . .
. . .

. . .

C B A

⎤⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣

U2

U3

...

...
Um

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

R2

R3

...

...
Rm

⎤⎥⎥⎥⎥⎥⎥⎦ , (25)

with square blocks of size (n− 1), where the tridiagonal matrix A is given by

A =

⎡⎢⎢⎢⎢⎣
−(1 + 2Γ 2) Γ 2

Γ 2 . . .
. . .

. . .
. . . Γ 2

Γ 2 −(1 + 2Γ 2)

⎤⎥⎥⎥⎥⎦ (26)

and

B = 2 · I, (27)

C = −I,
where I is the identity matrix.
The unknown vectors Uj and the vectors of constants Rj (j = 2, 3, . . . ,m) oc-
curring in (25) are as follows:

Uj =

⎡⎢⎢⎢⎣
U1,j

U2,j

...
Un−1,j

⎤⎥⎥⎥⎦ , Rj =

⎡⎢⎢⎢⎣
R1,j

R2,j

...
Rn−1,j

⎤⎥⎥⎥⎦ . (28)
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Taking into account the Dirichlet (19) and the Cauchy (20) conditions, the ele-
ments Ri,j (i = 1, 2, . . . , n− 1, j = 2, 3, . . . ,m) has been derived and written in
the forms as follows:

j = 2 :

Ri,j = EM − Φ(Xi) − 2

(
KΨ(Xi) +

K2V 2

2
Φ′′(Xi) +

K3V 2

6
Ψ ′′(Xi) + EC

)
,

j = 3 : (29)

Ri,j = EM + Φ(Xi) + KΨ(Xi) +
K2V 2

2
Φ′′(Xi) +

K3V 2

6
Ψ ′′(Xi) + EC ,

j = 4, 5, . . . ,m :

Ri,j = EM .

On the basis of the Gaussian elimination with complete pivoting, an interval
algorithm is used for solving the interval linear system of equations (25).

All calculations for the central-backward difference interval method we have
performed in floating-point interval arithmetic using IntervalArithmetic unit
written in Delphi Pascal language (see [24]). The application of IntervalArith-
metic unit leads to interval solutions, which contain initial-data errors, data
representation errors and rounding errors. Then, applying the interval method
presented in this paper and floating-point interval arithmetic allow us to get the
interval solutions containing all numerical errors.

5 Numerical Experiments

Let us consider an electric transmission line of the length Lx (the problem is
presented in [17]), carrying alternating current of high frequency (”lossless” line).
The voltage V is described by

∂2V

∂x2
= LC

∂2V

∂t2
,

for 0 < x < Lx and 0 < t. The length of a line Lx, the inductance per unit
length L and the capacitance per unit length C are as follows:

Lx = 200[ft],

L = 0.3[henries/ft],

C = 0.1[farads/ft].

The voltage V satisfies the following Dirichlet and Cauchy conditions:

V (0, t) = V (200, t) = 0, 0 < t,

V (x, 0) = 110 sin
πx

200
, 0 ≤ x ≤ 200,

∂V

∂t
(x, 0) = 0, 0 ≤ x ≤ 200.
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The voltage V during the time t = 0.5 [sec.] has been calculated.
The wave propagation speed for the problem is

v =
1√
LC
≈ 5.8.

To obtain the interval solutions, the value of M (24) for estimations errors is
needed.
For the voltage V we have

M = 3.3 · 10−4.

The solutions for the voltage V are presented in Table 1.

Table 1. Interval solutions and estimations of errors for the voltage V at (x, t) =
(100, 0.25)

n = m INT.left INT.right INT.width EC EM

10 109.9710803 109.9727505 1.67 · 10−3 3 · 10−9 3 · 10−5

20 109.9715332 109.9720302 4.97 · 10−4 2 · 10−10 2 · 10−6

30 109.9716293 109.9718774 2.48 · 10−4 4 · 10−11 3 · 10−7

40 109.9716630 109.9718230 1.60 · 10−4 1 · 10−11 1 · 10−7

50 109.9716766 109.9717994 1.23 · 10−4 5 · 10−12 4 · 10−8

60 109.9716804 109.9717903 1.10 · 10−4 2 · 10−12 2 · 10−8

70 109.9716751 109.9717922 1.17 · 10−4 1 · 10−12 1 · 10−8

80 109.9659786 109.9774865 1.15 · 10−2 7 · 10−13 7 · 10−9

90 39.9446238 179.9988399 1.40 · 102 4 · 10−13 4 · 10−9

In Table 1 we can see that if we have the greater value n(= m), then the
smaller widths of interval solutions are obtained. Such a situation is for n(=
m) ≤ 60. For n(= m) = 60 the width of interval solution is the smallest. For
n(= m) > 60 the widths of interval solutions are wider and wider, despite of the
values of estimations of errors eM (8) and eC (12) are smaller and smaller.
The solutions obtained by the conventional central-backward difference method
are more accurate for the denser space-time grid (only if the stability condi-
tion (9) is satisfied). For the central-backward difference interval method imple-
mented in floating-point interval arithmetic can be similarly (then the widths of
interval solutions are smaller and smaller). But there are some positive values
of n and m, for which the diameters of interval solutions increase. Then denser
grid of mesh points is pointless.

The maximal widths of interval solutions for various n(= m) are presented in
Figure 2.
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Fig. 2. The maximal widths of interval solutions for the voltage V

6 Conclusions

In the central-backward difference interval method the following values have a
significant influence on the quality of obtained solutions:

• the estimation of error of the central-backward difference method (eM (8)) –
given by EM (17),

• the way of an approximation of the second initial condition (3) – by the second
formula (11),

• the estimation of approximation error(for expression eC (12)) – the value of
EC (21),
• the estimation of M (24).

In this paper a new formula for approximation of the initial condition (3) is
proposed by the expression (11). It allows us to solve the wave equation (1) for
greater value of v.

The local truncation error (of order O(h4)) of the second initial condition
eC (12) is a special case of the central-backward difference method truncation
error eM (8). Thus, the value of M (24) is considered as the same value in both
estimations: EM (17) and EC (21). Additionally, the estimations of errors do
not depend on the value of v.
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1 Introduction

Multiphysics simulations are at the core of modern Computer Aided Engineering
(CAE) allowing the analysis of multiple, simultaneously acting physical phenom-
ena. These simulations often rely on Finite Element Methods (FEM) and the
solution of large linear systems which, in turn, end up in multiple calls of the
costly Sparse Matrix-Vector Multiplication (SpM×V) kernel. The major—and
mostly inherent—performance problem of the this kernel is its very low flop:byte
ratio, meaning that the algorithm must retrieve a significant amount of data
from the memory hierarchy in order to perform a useful operation. In modern
hardware, where the processor speed has far overwhelmed that of the memory
subsystem, this characteristic becomes an overkill [1]. Indeed, our preliminary
experiments with the Elmer multiphysics package [3] showed that 60–90% of
the total execution time of the solver was spent in the SpM×V routine. Despite
being relatively compact, the widely adopted Compressed Sparse Row (CSR)
storage format for sparse matrices cannot compensate for the very low flop:byte
ratio of the SpM×V kernel, since it itself has a lot of redundant information.
We have recently proposed the Compressed Sparse eXtended (CSX) format [2],
which applies aggressive compression to the column indexing structure of CSR.
Instead of storing the column index of every non-zero element of the matrix,
CSX detects dense substructures of non-zero elements and stores only the initial
column index of each substructure (encoded as a delta distance from the previ-
ous one) and a two-byte descriptor of the substructure. The greatest advantage
of CSX over similar attempts in the past [5,4] is that it incorporates a variety of
different dense substructures (incl. horizontal, vertical, diagonal and 2-D blocks)
in a single storage format representation allowing high compression ratios, while
its baseline performance, i.e., when no substructure is detected, is still higher
than CSR’s. The considerable reduction of the sparse matrix memory footprint
achieved by CSX alleviates the memory subsystem significantly, especially for

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007–2013) under grant agreement
n° RI-261557.

P. Manninen and P. Öster (Eds.): PARA 2012, LNCS 7782, pp. 531–535, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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shared memory architectures, where an average performance improvement of
more than 40% over multithreaded CSR implementations can be observed.

In this paper, we integrate CSX into the Elmer [3] multiphysics simulation
software and evaluate its impact on the total execution time of the solver. Elmer
employs iterative Krylov subspace methods for treating large problems using
the Bi-Conjugate Gradient Stabilized (BiCGStab) method for the solution of
the resulting linear systems. To ensure a fair comparison with CSX, we also
implemented and compared a multithreaded version of the CSR used by Elmer.
CSX amortized its preprocessing cost within less than 300 linear system itera-
tions and built an up to 20% performance gain in the overall solver time after
1000 linear system iterations. To our knowledge, this is one of the first attempts
to evaluate the real impact of an innovative sparse-matrix storage format within
a ‘production’ multiphysics software.

The rest of the paper is organized as follows: Section 2 describes the CSX
storage format briefly, Section 3 presents our experimental evaluation process
and the performance results, and Section 4 concludes the paper and designates
future work directions.

2 Optimizing SpM×V for Memory Bandwidth

The most widely used storage format for non-special (e.g., diagonal) sparse ma-
trices is the Compressed Sparse Row (CSR) format. CSR compresses the row
indexing information needed to locate a single element inside a sparse matrix
by keeping only number-of-rows ‘pointers’ to the start of each row (assuming a
row-wise layout of the non-zero elements) instead of number-of-nonzeros indices.
However, there is still a lot of redundant information lurking behind the column
indices, which CSR keeps intact in favor of simplicity and straightforwardness.
For example, it is very common for sparse matrices, especially those arising from
physical simulations, to have sequences of continuous non-zero elements. In such
cases, it would suffice to store just the column index of the first element and the
size of the sequence. CSX goes even further by replacing the column indices with
the delta distances between them, which can be stored with one or two bytes in
most of the cases, instead of the typical four-byte integer representation of the
full column indices.

1 1 6 8 8–32 8–32 . . . 8–32CTL

nr rjmp id size colind deltas

Head Body

Fig. 1. The data structure used by CSX to encode the column indices of a sparse
matrix

Figure 1 shows in detail the data structure (ctl) used by CSX to store the
column indices of the sparse matrix. The main component of the ctl structure
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Table 1. The test problems used for the experimental evaluation

Problem name Equations involved SpM×V exec. time (%)

fluxsolver Heat + Flux 57.4
HeatControl Heat 57.5
PoissonDG Poisson + Discontinuous Galerkin 62.0
shell Reissner-Mindlin 83.0
vortex3d Navier-Stokes + Vorticity 92.3

is the unit, which encodes either a dense substructure or a sequence of delta
distances of the same type. The unit is made up of two parts: the head and the
body. The head is a multiple byte sequence that stores basic information about
the encoded unit. The first byte of the head stores a unique 6-bit ID of the
substructure being encoded (e.g., 2×2 block) plus some metadata information for
changing and/or jumping rows, the second byte stores the size of the substructure
(e.g., 4 in our case), while the rest store the the initial column index of the
encoded substructure as a delta distance from the previous one in a variable-
length field. The body can be either empty, if the type ID refers to a dense
substructure, or store the delta distances, if a unit of delta sequences is being
encoded.

CSX supports all the major dense substructures that can be encountered in a
sparse matrix (horizontal, vertical, diagonal, anti-diagonal and row- or column-
oriented blocks) and can easily be expanded to support more. For each encoded
unit, we use LLVM to generate substructure-specific optimized code in the run-
time. This adds significantly to the flexibility of CSX, which can support indefi-
nitely many substructures, provided that only 64 are encountered simultaneously
in the same matrix. The selection of substructures to be encoded by CSX is made
by a heuristic favoring those encodings that lead to higher compression ratios.

Detecting so many substructures inside a sparse matrix though, can be costly
and this is not strange to CSX. Nonetheless, we have managed to considerably
reduce the preprocessing cost without losing in performance by examining a
mere 1% of the total non-zero elements using samples uniformly distributed all
over the matrix.

3 Experimental Evaluation

The integration of the CSX storage format into the rest of the Elmer code was
straightforward; Elmer can delegate the SpM×V computation to a user-specific
shared library loaded at runtime, so implementing the required library interface
was enough to achieve a seamless integration. The default implementation of
CSR inside Elmer is single-threaded, but we also implemented a multithreaded
version to perform a fair comparison with the multithreaded CSX. Our exper-
imental platform consisted of 192 cores (24 nodes of two-way quad-core Intel
Xeon E5405 [Harpertown] processors interconnected with 1Gbps Ethernet) run-
ning Linux 2.6.38. We used GCC 4.5 for compiling both Elmer (latest version
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(a) Speedup of the total execution time spent inside the
SpM×V library, including the preprocessing cost in
the case of CSX.
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(b) Speedup of the total solver time.

Fig. 2. Average speedup of the Elmer code up to 192 cores using the CSX library (1000
linear system iterations)

from the SVN repository) and the CSX library along with LLVM 2.9 for the
runtime code generation for CSX. Table 1 shows the 5 problems we selected
from the Elmer test suite for the evaluation of our integration. We have appro-
priately increased the size of each problem to be adequately large for our system.
Specifically, we opted for problem sizes leading to matrices with sizes larger than
576MiB, which is the aggregate cache of the 24 nodes we used. Finally, we have
used a simple Jacobi (diagonal) preconditioner for all the tested problems.

Figure 2 shows the average speedups achieved by simply the SpM×V code
(Fig. 2(a)) and the total solver time (Fig. 2(b)) using the original Elmer CSR,
our multithreaded CSR version and the CSX (incl. the preprocessing cost), re-
spectively. In the course of 1000 linear system iterations, CSX was able to achieve
a significant performance improvement of 37% over the multithreaded CSR im-
plementation, which translates to a noticeable 14.8% average performance im-
provement of the total execution time of the solver. Nevertheless, we believe that
this improvement could be even higher if other parts of the solver exploited par-
allelism within a single node as well, since the SpM×V component would become
then even more prominent, allowing a higher performance benefit from the CSX
optimization. Concerning the preprocessing cost of CSX, we used the typical
case of exploring all the candidate substructures using matrix sampling, and yet
it was able to fully amortize its cost within 224–300 linear system iterations.

4 Conclusions and Future Work

In this paper, we presented and evaluated the integration of the recently pro-
posed Compressed Sparse eXtended (CSX) sparse matrix storage format into the
Elmer multiphysics software package, being one of the first approaches of eval-
uating the impact of an innovative sparse matrix storage format on a ‘real-life’
production multiphysics software. CSX was able to improve the performance of
the SpM×V component nearly 40% compared to the multithreaded CSR and of-
fered a 15% overall performance improvement of the solver in a 24-node, 192-core
SMP cluster. In the near future, we plan to expand our evaluation to NUMA
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architectures and even larger systems. Additionally, we are investigating ways
for minimizing the initial preprocessing cost of CSX and also extensions to the
CSX’s interface to support efficiently problem cases where the non-zero values of
the sparse matrix change during the simulation. Finally, we plan to investigate
sparse matrix reordering techniques and how these affect the overall execution
time of the solver using the CSX format.
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Introduction 

Computational effort required for the interactive parallel simulation of a structure 
under loading usually does not allow for results to be gained rapidly. Further, custom 
decomposition techniques, as in the case of long structures such as thigh bones, typi-
cally hinder the efficient exploitation of the underlying computing power. For the 
algebraic equations, gained by the p-version Finite Element Method (p-FEM) describ-
ing the behaviour of one such structure, K ⋅ u = d with K the system stiffness matrix, u 
the nodal displacements, and d all accumulated forces, often, due to the poor condi-
tion numbers, sophisticated iterative solvers fail to be efficient. As it is pointed out in 
[1, 3], applying hierarchical concepts, based on a nested dissection approach (i. e. 
recursive domain decomposition technique based on Schur complements, the de-facto 
standard of most domain decomposition approaches), allow for both the design of 
sophisticated direct solvers as well as for advanced parallelisation strategies, both of 
which are indispensable within interactive applications. Our main goal is the devel-
opment of an efficient load balancing strategy for the existing structure simulation of 
the bone stresses with p-FEM organised via octrees as described in [2]. 

Parallelisation Strategy 

Scheduling – in order to minimise the completion time of a parallel application by 
properly allocating the tasks to the computing resources – typically involves trade-off 
between the uniform work load distribution among all processors as well as keeping 
both the communication and optimisation costs minimal. For hierarchically organised 
tasks with the bottom-up dependencies, such as in our generated octree structure, for 
the classical scheduling based on the task locality, i. e. the property of belonging to 
the particular sub-tree, the number of processors which can be simultaneously ex-
ploited is decreasing by the factor of eight in each level closer to the root of the tree. 
Although dynamic load balancing strategies using hybrid parallelisation patterns per-
form excellent for the nested dissection solver [1], in interactive applications which 
assume aforementioned frequent updates from user’s side, those rapid changes of the 
simulation and tasks’ state favour static load balancing strategies. Furthermore, in our 
case, it would have to be taken into consideration that certain modifications  
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performed by a user may involve major changes of the computational model. Conse-
quently, for repeatedly achieving the optimal amount of work being assigned to each 
process for each new user update, the overhead-prone scheduling step has to be exe-
cuted each time. Therefore, we need an efficient, nevertheless simple to compute 
scheduling optimization approach, not damming the intended interactive process, 
which is, according to our best knowledge, out of the focus of the already existing 
sophisticated optimisation strategies. 

Scheduling of Tasks 

The prerequisites we assume known a priori for a certain input data are the sizes of 
the initial tasks, data dependencies, and synchronisation requirements. Traversing the 
tree bottom-up, we estimate first the number of operations needed for processing each 
node, i. e. the necessary floating-point operations for performing a partial Gaussian 
elimination. This is considered to be the weight of that node, i. e., a rough estimation 
of the amount of work to be done in the nested dissection solver for that particular 
node, representing one task. In our approach, we avoid common assumptions “which 
are apt to have restricted applicability in real environments” [4], such as the target 
parallel architecture or uniform task execution times. However, in this stage of the 
project, the data locality is neglected and the load balance highly prioritized. More-
over, since the sizes of the tasks vary notably and in order to avoid single processors 
becoming bottlenecks having to finish considerably big tasks, at any point during the 
execution we allow to split a single task among several processors when mapping all 
tasks to the processors. The splitting is done based on the comparison of a task’s es-
timated work with a ‘unit’ task, i. e. the one referring to an octree leaf or in terms of 
FEM to a single element. 

Since the scheduling problem can be solved by polynomial-depth backtrack search, 
thus, is NP complete for most of its variants, efficient heuristics have to be devised. In 
our case, in addition to the sizes of the tasks, the dependencies among them play a 
significant role, thus, before we make a decision how to assign tasks to processors 
two aspects have to be considered. The first is the level of the task dependency in the 
tree hierarchy. Namely, children nodes have to be processed before their parent nodes. 
Second, among the tasks of the same dependency level we distinguish between differ-
ent levels in the tree hierarchy, calling this property the processing order. Assuming 
the depth of the tree is N, the tasks from level M in the hierarchy have the processing 
order of N – M − 1. 

Then we form lists of priorities, based on finding the task with both the lowest 
level of dependency and the lowest order of processing. In this way, we make sure 
that the tasks inside very long branches of the tree with an estimated bigger load are 
still given a priority. Within the tasks having exactly the same priority according to 
this classification, inspired by state-of-art heuristics [5] and provided that we have 
more tasks in the same priority list than we have processors, we resort to a so-called 
Max-min order, making sure that big tasks, in terms of their estimated quantity of 
computations they involve, are the first ones assigned to the processors. Although we 
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follow the same principle, in order to avoid additional sorting of the tasks,  only par-
tial sorting is applied, i. e. filling in our priority lists of by adding those bigger than a 
certain predetermined limit to the front of the list and the smaller ones to the end. 

This way we end up with arrays of tasks, so-called ‘phases’, each phase consisting 
of as many tasks or their parts as there are computing resources. Namely, taken from 
the priority lists, tasks will be assigned to the phases in round-robin manner, while 
splitting tasks if necessary among several processors. Those phases refer exactly to 
the mapping which will be done. In the case of bulky tasks, i. e. those whose size 
divided by the number of available resources exceeds the size of one smallest process-
ing unit, the task is just equally split among all the processors. The results presented 
in the Figure 1 illustrate that our goal of having the capacity of each phase as “full” as 
possible, i. e. all the processors busy with the approximately equal amount of work 
throughout the solver execution, is achieved. 

 

Fig. 1. “Scheduling phases”: vertical axis describes the so-called phases, horizontal axis the 
number of processors involved in the particular phase. The balance is optimal (in terms of the 
number of phases) for 64 and 128 processors (two diagrams on the right). For 16 processors it 
results in 44 phases (left-hand side) where 43 is an optimum (last 3 phases refer to bulky tasks) 
and for 32 processors in 24 phases whereas optimum is 23. 

Communication Pattern 

At the beginning, all the working processes will receive all the tasks they are in 
charge of and start processing them in a sequential way. Here, we distinguish between 
tasks without dependencies, which can be processed immediately, and those which 
need information from other processors. For those which can be processed imme-
diately, the assembly step is done and the required data is sent to the processors which 
will need it for the assembly of their own tasks. Otherwise, all the related data has to 
be received before the assembly. In our implementation, not only data necessary for a 
certain step, but also all the pending data which will be needed later, is received, in 
order to reduce the latencies caused by the MPI internal default decisions. When 
processing of its task or a part of the task is finished, the latter being the case, all the 
processors are supposed to exchange data with others having a part of the same task. 
Finally, only the first processor, from the list of processors in charge of the task sends 
the result to those not being in charge of the same task, which will, however, need this 
data later. The pattern is repeated until the root node is reached, when, due to its size, 
often all the available computing resources become involved. 
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We show the speedup results for the described, message passing (MPI) based, pa-
rallel scenario (Figure 2, left). The satisfactory speedup is observed for different po-
lynomial degrees of the basis functions in finite element approximation, where higher 
polynomial degrees correspond to bigger problem sizes. For the reason of complete-
ness, we show also the results for shared memory based (OpenMP) parallelisation 
(Figure 2, right). Results for a larger number of distributed memory computational 
resources are part of imminent testing. In the case of still achieving the expected 
speedup, according to the tendency observed for up to 7 processes, engagement of a 
larger number of them would result even for p ≥ 6 in the desired rate of at least sever-
al updates per second for the calculated bone stresses in our interactive environment 
while, e.g., magnitude of the applied forces or the position of an implant are being 
modified. 

            

Fig. 2. Speedup results for up to 7 processors (Intel Xeon, 3.33 GHz). Left: distributed memory 
– the strategy described in the paper; right: shared memory parallelisation. 

Conclusions 

We have presented a load balancing strategy estimated as optimal for our interactive 
distributed environment, which exploits excellently the available processing units 
throughout the execution of the simulation program. The speedup results are very 
promising, however, testing it for a larger number of processes will show if the de-
sired update rate for the stresses of the bone under the load is going to be achieved, 
even in the case of intensive user interaction. In future work, we will consider reduc-
ing communication times by taking into account also the data locality, trying to find a 
balance between its benefits and inevitable computational costs. 
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Dealing with large scale dynamical systems is important in many industrial ap-
plications. In design and optimization, it is often impossible to work with the
original large scale system due to the necessary time for simulation. In order to
make this process economically acceptable one has to replace these large scale
models by smaller ones which preserve the essential properties and dynamics of
the original one. After the computation of a reduced order model a fast simula-
tion is possible. The reduced order model can be obtained by different techniques
minimizing the reduction error with respect to different system norms. One of
the most common techniques in this application area is balanced truncation [8]
which approximates with respect to the H∞-norm. A parallel implementation
of this is available in PLiCMR [2]. In this contribution we focus on the par-
allel implementation of the IRKA algorithm employing the H2-norm [1,11] for
measuring the error.

1 Mathematical Background

We consider a single-input single-output (SISO) linear time invariant (LTI) sys-
tem:

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

, (1)

with A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. The transfer function of the LTI
system

H(s) = C (sI −A)−1B, (2)

is the frequency domain representation of the input to output map corresponding
to (1). Employing (2) we can define the H2-norm of the system, as

||H ||2H2
=

1

2π

+∞∫
−∞

tr
(
H(iω)HH(iω)

)
dω, (3)
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where tr (·) denotes the trace of a matrix. There exist other equivalent repre-
sentations of the H2-norm for example using the controllability or observabil-
ity gramians [1,5] that are also the key ingredient in the balanced truncation
method.

The main idea behind the IRKA algorithm [5] is the computation of a reduced
order model Σr for Σ

Σr :

{
ẋr(t) = Arxr(t) +Bru(t)
yr(t) = Crxr(t),

(4)

with Ar =WTAV ∈ R
r×r, Br =WTB ∈ R

r×1 and Cr = CV ∈ R
1×r, r � n, by

interpolating the corresponding transfer function (2). The matrices V andW are
left and right projectors in a Petrov-Galerkin framework. Gugercin, Antoulas and
Beattie [5] proposed a set of optimality conditions for the interpolation points.
These conditions are equivalent to older results like the Wilson conditions [11]
or the Bernstein-Hyland conditions [4].

The IRKA algorithm iteratively computes an optimal set of interpolation
points. The interpolation is performed by projecting the original system Σ down
to the reduced order model Σr using the oblique projector VWT . The matrices
V and W have to be computed such that

span {V } = span
{
(μ1I −A)−1

B, . . . , (μrI −A)−1
B
}
, (5)

span {W} = span
{
(μ1I −A)−H

CH , . . . , (μrI −A)−H
CH

}
, (6)

where μi are the interpolation points and WTV = I, i.e., the columns of W and
V are biorthonormal. The interpolation points μi are determined as the mirror
images of the poles of the reduced order model from the previous iteration step.
The overall algorithm looks like the following:

Input: A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n and initial interpolation points
μ = {μi}ri=1

Output: Ar ∈ Rr×r, Br ∈ Rr×1, Cr ∈ R1×r satisfying the optimality conditions
from [5].

1: while not converged do
2: Compute V and W according to (5) and (6)
3: Find biorthonormal bases of V and W
4: Ar :=WTAV
5: Compute the Eigenvalues λ := {λi}ri=1 of Ar

6: μ := −λ
7: end while
8: Ar :=WTAV , Br :=WTB and Cr := CV

The stopping criterion can be chosen in different ways. Cheap variants are a
maximum iteration number or the change in the interpolation points. Expensive
variants are the evaluation of the H2-error or further analysis of the computed
subspaces.
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A generalization for multiple-input multiple-output (MIMO) systems was
given by Kubalinska in [7]. In the case of generalized state space systems, i.e.,
with an additional invertible E matrix in front of the ẋ(t), the changes in the
algorithm are small.

2 Analysis of the Algorithm

An efficient implementation requires a stepwise analysis of the algorithm with
respect to the capabilities of modern multicore cpus. Due to the overall algo-
rithm, presented in the previous section, being sequential, we need to check the
single steps of the algorithm for possible acceleration by shared memory paral-
lelization. The main focus lies on the computation of the subspaces V and W in
Step 2. We easily compute them using

V =
[
(μ1I −A)−1

B, . . . , (μrI −A)−1
B
]
, (7)

W =
[
(μ1I −A)−H

CH , . . . , (μrI −A)−H
CH

]
. (8)

The naive parallelization could be done using an OpenMP for construct. How-
ever, the properties of the interpolation parameter set allow us to safe up to
half of the linear system solves. This prevents the direct use of the OpenMP for
construct. We develop different ideas using OpenMP and PThreads for comput-
ing the columns of V and W . We will discuss and compare: a thread pool based
implementation, OpenMP for with preprocessing and OpenMP parallel sections.

The special structure of the linear systems

(μiI −A)X = Y (9)

can be exploited to reduced the memory usage drastically and help to develop a
memory efficient shared memory LU -decomposition [6]. The efficient solution of
such systems plays an important role in many other algorithms in model order
reduction, e.g., the TSIA algorithm [3], an alternative to IRKA for H2 model
order reduction, the ADI algorithm [10,9], for computing the system Gramians
in balanced truncation, or the solution of a class of Sylvester equations [3].

The other steps of the algorithm only allow trivial parallelism already imple-
mented in common software packages like threaded BLAS libraries.

3 Further Parallel Components

IRKA depends on several further algorithms that strongly contribute to the
efficient implementation of the method. We will shortly discuss the evaluation
of the H2-error and the sampling of a transfer function. The H2-error can be
determined by computing the H2-norm of the error system Σe:

Σe :

⎧⎪⎨⎪⎩ ẋe(t) =
[
A 0
0 Ar

]
xe(t) +

[
B
Br

]
ue(t)

ye(t) =
[
C −Cr

]
xe(t)

(10)
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The underlying large scale Lyapunov equation is solved using the ADI algo-
rithm [10,9], which, as mentioned above, can be accelerated using similar ideas
as in the IRKA algorithm.

The sampling of the transfer function is the evaluation of

H(si) = C(siI −A)−1B, (11)

or respectively

||H(si)||2 = ||C(siI −A)−1B||2, (12)

for a given set of sampling points si. If the inner linear system is solved directly
this is very expensive regarding the memory usage. In some cases it is not possible
to use as many threads as available cpu cores, because the computer does not
have enough memory. Normally this problem is solved by swapping parts of the
data to slow memory. We present an automatic thread number adjustment for
the parallel solution of (9) to prevent unnecessary swapping.
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Abstract. We describe our recent attempts to produce effective par-
allel block preconditioners by employing the open source finite element
package Elmer. Two example problems corresponding to the computa-
tional simulation of land ice flow and the high-fidelity modelling of small
acoustical devises are considered. We present features which make these
problems challenging from the viewpoint of the preconditioner design and
also demonstrate how the requirement of achieving scalability can even
lead to rethinking the overall formulation of the problem. The utility of
the preconditioners implemented has been explored experimentally.

Keywords: preconditioning, generalized Stokes equation, variable vis-
cosity, parallel linear solver, Elmer software.

1 Introduction

An option to simplify the Navier–Stokes flow equations by neglecting some of
the inertia-force terms arises naturally in many applications. In this paper, we
focus on the development of modern computational solution techniques for two
non-standard flow models which arise from such simplification. The first problem
considered originates from the finite element modelling of the flow of an ice sheet.
The second problem, which we also discretize by using finite elements, relates
to the simulation of the propagation of sound waves in small acoustical devises.
A common platform for implementing these methods has been the open source
software Elmer [1].

Both the models considered easily lead to solving large linear systems, the
treatment of which necessitates the utilization of parallel computation. Although
the two cases discussed may seem quite different at the first glance, the key con-
cepts which we have adapted in order to solve the corresponding linear algebra
problems are in common and relate to the idea of accelerating the convergence
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of Krylov solvers by using the block preconditioning (cf., for example, the mono-
graphs [2] and [3]).

We note that obtaining ideal linear solver performance via the block precondi-
tioning generally relies on attaining the following two conditions simultaneously.
First, the preconditioner should be such that the iteration counts needed for
the convergence of the preconditioned Krylov method do not depend on the size
of the discrete problem. This quality is essential in that we may then seek for
better resolution by mesh refinement without ruining the ability of the precondi-
tioner to produce quickly converging solution iterates. The second performance
requirement relates to the actual way how the preconditioner can be applied.
Ideally, optimal complexity solvers for performing linear solves associated with
the diagonal blocks of the preconditioner should be available. This has naturally
guided the preconditioner design, so that designs that enable the reuse of exist-
ing solvers for standard models have been sought. We shall widen this view here
by demonstrating that, in some cases, it may be as beneficial even to reformulate
the original problem, so that splittings leading to easily solvable subproblems
become a reality.

Our first example case which corresponds to the computational solution of
land ice flow described by the full Stokes equation has gained significant atten-
tion recently. Although highly efficient solvers for the standard Stokes system
have already been devised [3], extending these solvers to handle the systems aris-
ing from the glaciology may not be straightforward. Additional questions arise as
the viscosity of ice depends on the flow and can thus be highly place-dependent.
In addition, it is natural in this connection to employ the stress-divergence formu-
lation due to the easiness of imposing traction boundary conditions and, hence,
utilizing the standard splittings which enable the componentwise solution of the
velocity subproblem becomes less natural. The third question we want to rise
here is related to a characteristic feature that ice flow problems are posed on
thin domains. Finite elements with high aspect ratios are hence difficult to avoid
and maintaining the stability of the associated mixed finite element approxi-
mation may become problematic. Weakening the stability of the approximation
method may have an adverse effect on the efficiency of the preconditioner. We
shall consider all these issues in more detail in our presentation.

The second example which describes the use of a coupled Stokes-like model
in acoustics simulations has also received increasing attention recently. Never-
theless, the development of practical solution methods that enable the effective
use of parallel computation has not been described yet, and we shall overview
our recent developments to produce such solvers. In this case, the implemen-
tation of theoretically optimal preconditioners based on the Schur complement
reduction via the elimination of the velocities is complicated by the fact that the
associated Schur complement problem is still of complicated nature. Therefore
we shall consider alternate formulations of the problem that avoid handling the
Schur complement in this form.
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Abstract. The ever-growing demand for higher accuracy in scientific
simulations based on the discretization of equations given on physical
domains is typically coupled with an increase in the number of mesh
elements. Conventional mesh generation tools struggle to keep up with
the increased workload, as they do not scale with the availability of, for
example, multi-core CPUs. We present a parallel mesh generation ap-
proach for multi-core and distributed computing environments based on
our generic meshing library ViennaMesh and on the Advancing Front
mesh generation algorithm. Our approach is discussed in detail and per-
formance results are shown.

1 Introduction

A mesh as partitioning of a physical domain is required to model continuous
phenomena by means of discretized equations in the discrete domain of a com-
puter [6]. The continually growing demand for increased accuracy and the abil-
ity to simulate on more and more complex geometries introduces the need to
increase the number of the mesh elements. Today meshes with around 109 ver-
tices are utilized in large-scale scientific computations [9]. Increasing the mesh
size, however, intensifies the role of mesh generation, as conventional non-parallel
mesh generation tools simply take too long to compute the partitioning [4]. As
a remedy to this problem, a domain decomposition technique can, for exam-
ple, be utilized, where basically the initial domain is partitioned, distributed,
locally (re-)meshed, and utilized [5]. Merging the mesh generation step with
the simulation on distributed computing nodes significantly increases the overall
efficiency, as the communication overhead is minimized. In this work we inves-
tigate a self-consistent volume mesh generation approach for multi-core CPUs
and distributed computing environments based on the Message Passing Inter-
face (MPI). We show that our concise approach achieves a considerable scaling
behavior, thus we may conclude that our approach is a means to significantly
accelerate the generation of large volume meshes.
This work is organized as follows: Section 2 puts the work into context. Sec-
tion 3 introduces our approach, and Section 4 validates the work by depicting
performance results.
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Fig. 1. The input multi-segment hull mesh (left) is distributed segment-wise to the
individual processes (middle) and finally the multi-segment volume mesh is merged
from the partial segment volume meshes (right)

2 Related Work

Different methods for parallel mesh generation are available, which offer various
advantages and disadvantages [3]. For example, Delaunay based methods can be
used, where basically the input domain is initially just roughly meshed and then
gradually refined. The refinement process is parallelized which is quite challeng-
ing due to required synchronization steps between the individual point insertions.
Another example would be Advancing Front based methods which start the vol-
ume meshing from an initial surface and gradually attach new elements to this
surface. Hence, it can informally be seen as growing the volume mesh from an
initial surface towards the interior. Different parallelization approaches are used,
for instance, so-called partially coupled methods, where parallelizable regions in
the various mesh sub-domains are identified prior to the mesh generation process.
A self-consistent parallel volume meshing approach based on a shared-memory
model has already been investigated previously [7]. This approach utilizes the
Advancing Front technique for partial volume meshing steps, but obviously can
not scale beyond a multi-core CPU.

3 Our Approach

Our approach is based on the Advancing Front meshing technique, in which the
algorithm preserves the input hull mesh during the volume meshing process.
Therefore, the communication overhead is minimized, as interface changes do
not have to be communicated through the parallelized meshing environment.
We utilize the ViennaMesh library which offers a unified interface to various
mesh related tools [8]. We use the generic interface of ViennaMesh to utilize
the Netgen volume mesh generation tool [1]. The input mesh is expected to be
partitioned, which in our case is a reasonable assumption due to the availability
of CAD tools, for example, the Synopsys Structure Editor can be utilized in
the field of semiconductor device simulation [2]. We refer to each partition as
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a segment of the mesh, thus we call the whole mesh a multi-segment mesh.
Furthermore, the individual segments of the input multi-segment mesh are hull
meshes, meaning that each segment contains the surface of the sub-domain which
has to be meshed. Figure 1 depicts the schematic principle of our approach. The
individual hull segments are transmitted to the processes, where they are meshed.
The root process is used for driving the overall parallelized mesh generation,
whereas the other available processes are solely used for the partial volume mesh-
ing tasks. The partial volume mesh results are then sent back to the root node,
where they are merged in a final step to the resulting multi-segment volume
mesh.

4 Performance

In the following we present the performance of our approach. Our test environ-
ment consists of three workstations, namely two AMD Phenom II X4 965 with
8 GB of memory, and one INTEL i7 960 with 12 GB of memory, connected by
a gigabit Ethernet network. We investigate two different types of meshes. First,
two artificial test hull meshes containing 96 segments with ∼150k and ∼590k
vertices, respectively (Figure 2). The number of vertices per segment is con-
stant, allowing to investigate the optimal case, where each segment represents a
constant workload for a process. Second, a hull mesh from the field of semicon-
ductor device simulation is investigated, containing ∼110k vertices, 8 segments,
and a varying number of vertices per segment (Figure 3). This mesh is used
to outline the decrease in efficiency for small numbers of segments. The results
depict that the meshing step, which includes the volume mesh generation on the
nodes and the related MPI communications, scales reasonably well for meshes
with approximately a ten times larger number of segments than the number of
cores. Figure 2 depicts an efficiency of about 80% for 10 cores and different mesh

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

Sp
ee

du
p

Cores

Scaling

ideal
Meshing 150k

Overall 150k
Meshing 590k

Overall 590k

Fig. 2. Left: An artificial test mesh is analyzed in two different ways. The mesh offers
96 segments, 110k, and 590k vertices, and an equal number of vertices per segment.
The colors indicate different segments. Right: The meshing step offers reasonable
scalability for both mesh sizes (80% efficiency for 10 cores). However, the speedup
decreases due to the overhead of mesh merging.
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Fig. 3. Left: A mesh from the field of semiconductor device simulation is analyzed. The
mesh offers 8 segments, 110k vertices, and a varying number of vertices per segment.
The colors indicate different segments. Right: Excellent scaling can be achieved for
up to 3 cores. However, due to the small number of segments and differently sized
segments the scaling saturates at a speedup of 3.

sizes. However, the efficiency is reduced for larger core numbers, as the final step
of merging the partial mesh results on the root node becomes large relative to
the overall execution time. For example, for the 150k mesh and 2 cores, 7.7%
of the overall execution time is used for the final mesh merging, where with 10
cores it is already 25%. Figure 3 outlines that our approach achieves a consid-
erable speedup of 3 for meshes offering a small number of 8 segments. However,
the scaling saturates for 4 cores and a speedup of 3, due to the small number
of segments relative to the number of cores and due to the varying number of
vertices in the different segments.

5 Conclusion

Our approach offers good scalability for meshes with approximately ten times
larger number of segments than the number of cores. Even for meshes with
approximately three times the number of segments than the number of cores,
we achieve a considerable speedup. Therefore we conclude, that our presented
self-consistent parallel mesh generation approach is indeed a meaningful way to
significantly accelerate the volume mesh generation. However, a flexible mesh
partitioning approach is required to enable an improved speedup for larger dis-
tributed environments. The mesh merging step in the root process has to be
further improved, to achieve higher efficiency for large-scale meshes.
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School PDETech at the TU Wien.
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1 Introduction

The forest industries are developing new innovative products in addition to the
traditional bulk products. A promising raw material for added-value products
consists of lignans that are extracted in chemical pulping from residual knots.
The anticarcinogenic and antioxidative lignan hydroxymatairesinol (HMR) is
found in large amounts in the knots of Norway spruce (Picea abies). It has been
used in the synthesis of TADDOL-like α-conidendrin-based chiral 1,4-diols (LIG-
NOLs) [1] with the same functionality as TADDOLs [5] or BINOLs [2], which
are often used as ligands for transition metal catalysed asymmetric synthesis.
They have hindered structures containing two adjacent stereocenters, resulting
in a fixed angle between the metal-complexing hydroxyl groups.

The structures of the LIGNOLs included in this study have been quantum
chemically optimized [3] by a multi-level deterministic method, and studied by
molecular dynamics simulations [4] to explore the conformational changes of the
LIGNOLs in aqueous solution. As solvents play a role in the structures of many
molecules, solvation effects has been included using the implicit solvation model
COSMO (the COnductorlike Screening MOdel).

2 Methods

In this study the following chiral 1,4-diols (LIGNOLs) have been investigated:
1,1-diphenyl (2Ph), two diastereomers of 1,1,4-triphenyl (3PhR, 3PhS), 1,1,4,4-
tetraphenyl (4Ph) and 1,1,4,4-tetramethyl (4Met) 1,4-diol. In order to find the
minimum energy structure of the LIGNOLs, initial torsional analyses were per-
formed for each of the chiral 1,4-diols on the three single bonds (α− γ) denoted
in Figure 1 using a step size of 60 degrees at molecular mechanics (MM) level
using the Tripos Force Field as implemented in SYBYL 8.0.

The energetically most favourable structures were optimized with the program
GAMESS version 22 Feb 2006 by using Hartree-Fock (HF) theory with the basis
set 6-31G*. Altogether this resulted in 6 conformers for 3PhR, 10 for 3PhS as
well as for 4Met, 13 for 4Ph and 18 for the quite flexible 2Ph structure. All of
the conformers were then reoptimized for vibrational analysis using the TUR-
BOMOLE program package version 6.1 and density functional theory (DFT)
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Fig. 1. The four most relevant
torsional angles

with the B3LYP hybrid exchange-correlation
functional in combination with the multipole ac-
celerated resolution of identity (MARI-J) approx-
imation and the TZVP basis set for all atoms,
as implemented in TURBOMOLE. Frequencies
were scaled with a factor of 0.9614, when calcu-
lating the entropy contributions at 25 ◦C. To in-
vestigate the solvation effects the molecules were
placed in water-like continuum solvent (εr =
78.39) using COSMO in TURBOMOLE. The
minimum energy structure for each LIGNOL is
shown in Figure 2. The code for the conforma-
tions is adopted from [3].

The molecular dynamics (MD) simulations were performed using GROMACS
version 4.5.3 software. Water was described using the TIP4P model, and the
LIGNOLs were modeled with the OPLS-AA force field implemented in GRO-
MACS. The topologies of the LIGNOLs were constructed by hand, and they
comprised 415 (2Ph), 474 (3Ph), 533 (4Ph) and 369 (4Met) internal coordi-
nates, respectively. In order to get reasonable atomic charges to help for choosing
suitable atom types to the topologies, electrostatic potential fit (ESP) charges
were studied with GAMESS at HF/6-31G* level. The three quantum chemi-
cally most stable conformers of each of the LIGNOLs (three per stereoisomer
for 3Ph) were chosen as starting structures for the molecular dynamics study.
Each conformation was placed at the center of a cubic box with the dimension
between 5.2–5.6 nm (volume = 144–174 nm3) and solvated by 4802–5795 water
molecules. Each system was first energy minimized < 2000 kJ mol−1 nm−1 using
steepest descent for 3–121 steps. Then the system was shaken at 398 K for 50
ps, and finally the production simulation was run for 10 ns with the temper-
ature maintained at 298 K using the Berendsen thermostat. The pressure was
maintained at 1 atm using the Berendsen barostat. A 1 fs time step was used
in all simulations. A cutoff of 0.9 nm was applied to short-range nonbonded in-
teractions, and for long-range electrostatic interactions the particle mesh Ewald
(PME) method was used with grid spacing of 0.12 nm and fourth-order inter-
polation. In all simulations system snapshots were collected every 500 steps, i.e.
0.5 ps, for subsequent analysis. The four most relevant torsional angles in the
LIGNOLs (Figure 1) were properly analyzed during the simulations.

In order to understand the hydration effect more properly the g_hbond
analysing program implemented in GROMACS was used to study the num-
ber of hydrogen bonds for the oxygen atoms O9 and O9’, and totally for each
LIGNOL conformer, as well as the average lifetime of the uninterrupted hydro-
gen bonds. Tetramethyl 1,4-diol was found to be more likely to form hydrogen
bonds to TIP4P, and tetraphenyl less, mainly due to the small tendency of O9
to form hydrogen bonds to TIP4P. A correllation could be seen to the number of
hydrogen bonds as the lifetimes were longer for tetramethyl 1,4-diol and shorter
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Fig. 2. The minimum energy structure for each LIGNOL

for tetraphenyl. A shorter lifetime for a large average number of hydrogen bonds
implies that they are quite weak, meaning that the hydrogen bonds from O9’ in
2Ph1 and 2Ph2 are strong, as they had a remarkably longer life times with the
same average number of hydrogen bonds. This again could be very important for
the application of these LIGNOLs as transition metal catalysts, as the bonding
to a metal would be similar to the hydrogen bonding to TIP4P water. Diphenyl
1,4-diol is the only LIGNOL in this study with phenyls at C9’ and not at C9, so
the reason for this phenomenon is probably the electronic effects of the phenyl
rings at C9’.

3 Aim of the Study

One object of this study was to observe how the angle between the hydroxyl
groups in these LIGNOLs behaves in the optimized structures. The angle δ
was then picked out and compared to the crystallographic data of TADDOLs.
According to that the angle δ should be close to 270◦. Another property that
makes the structures more stable seemed to be the boat conformation of the
aliphatic six-membered ring, which is perfectly formed if δ is 240◦. The value of
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δ should, consequently, be between 240◦ and 270◦. If the OH groups furthermore
points to the same direction, an intramolecular hydrogen bond forms between
them, and the bridging hydrogen atom falls at the same place as a chelate-
bonded metal ion would be situated. These factors are fulfilled in the triphenyl
conformers: 3PhS3, 3PhR3 and 3PhR7. For the energetically more favourable
conformers, a π − π interaction was formed between the phenyl ring at C7 and
one of the phenyl rings at C9’.

4 Conclusions

The diphenyl 1,4-diol is hardly hindered at all resulting in a wide range of al-
most equally stable conformers. The stability of the other phenylated 1,4-diols is
mainly determined by the ability to form π−π interactions between phenyl rings
and the possibility for the aliphatic six-membered ring to be in boat conforma-
tion, i.e. the torsional angle δ to be between 240◦ and 270◦. The most stable triph-
enyl 1,4-diols according to the DFT calculations: 3PhS3, 3PhR3 and 3PhR7
are also the ones that could work as catalysts. The most stable tetraphenyl 1,4-
diols according to the DFT calculations: 4Ph3–4Ph4 and 4Ph7–4Ph8 also
seems to be possible catalysts. Those conformers of the tetramethyl 1,4-diol
that have the OH groups pointing to the same direction are almost 12 kJ/mol
less stable than the most favourable one, when the entropy contributions are
taken into account. Moreover, they do not have the aliphatic six-membered ring
in the prefered boat conformation.

In MD simulations on the LIGNOLs, the conformations preferred were the
energetically most favourable ones according to quantum chemical DFT calcu-
lations in gas phase, almost irrespective of the dipole moment. The four most
relevant torsional angles α− δ varied quite much in accordance with their sym-
metry. The torsional angle δ defined in Figure 1 was generally more preferred at
the stabilizing value 255◦ than what was seen in the gas phase optimizations. No
strong correlation patterns were found, but in the last simulation of 2Ph9, α
and δ changed simultaneously, while β either initialized a confomational change
or lagged behind. In the hydration studies 2Ph1 and 2Ph2 were found to have
strong hydrogen bonds from O9’, which could be very important for the appli-
cation of these LIGNOLs as metal-binding agents.
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Abstract. In this study we report the load-balancing performance is-
sues that are observed during the petascaling of a space plasma sim-
ulation code developed at the Finnish Meteorological Institute (FMI).
The code models the communication pattern as a hypergraph, and par-
titions the computational grid using the parallel hypergraph partition-
ing scheme (PHG) of the Zoltan partitioning framework. The result of
partitioning determines the distribution of grid cells to processors. It
is observed that the initial partitioning and data distribution phases
take a substantial percentage of the overall computation time. Alter-
native (graph-partitioning-based) schemes that provide better balance
are investigated. Comparisons in terms of effect on running time and
load-balancing quality are presented. Test results on Juelich BlueGene/P
cluster are reported.

Keywords: partitioning, petascaling, space plasma simulation.

1 Introduction

The dynamics of near Earth space environment have gained immense importance
since many mission critical global technological systems depend on spacecraft
that traverse this space and even small dynamical events can cause failures on
the functionalities of these spacecraft. Hence performing accurate space weather
forecasts are of utmost importance. Space weather forecasting is performed by
modeling the electromagnetic plasma system within the near Earth space in-
cluding the ionosphere, magnetosphere, and beyond.

At the Finnish Meteorological Institute (FMI), two simulation models are
being developed to tackle this issue: a magnetohydrodynamic simulation code
for real-time forecasting and a hybrid Vlasov simulation code for very accurate
space weather forecasting. In a hybrid Vlasov model, electrons are modeled as a
fluid and ions as six-dimensional distribution functions in ordinary and velocity
space, enabling the description of plasma without noise.
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Both codes need to exhibit excellent parallel scalability to reach the required
level of performance. The simulation models are designed to run on a paral-
lel grid. In the hybrid-Vlasov code, the parallel grid contains cells in ordinary
space, and each spatial grid cell contains a three-dimensional velocity distribu-
tion function, which is implemented as a simple block-structured grid. A major
bottleneck for this code is the need for efficient load balancing at scale, as the
target is to run it on more than 10.000 cores. For determining the distribution
of spatial cells to processors, the grid uses the PHG partitioning mode of the
Zoltan partitioning framework.

2 Investigations in Jugene

In this study the effects of load balancing tools in the performance of hybrid
Vlasov simulation code have been analyzed in detail. The scalability of the code
itself is also tested to some extent. The reported findings can be listed as follows:

– Porting of the hybrid Vlasov code to Juelich BlueGene/P (Jugene) system is
performed and profiling of the performance of the code up to 104 cores (pre-
vious tests were performed for less than 103 cores due to limited resources)
is achieved to reveal that it successfully scales up to 104 cores.

– Analysis of the load-balancing (partitioning) scheme is performed. It is ob-
served that the time spent on preprocessing constitutes a significant portion
of the overall runtime. Further analysis revealed that when the number of
cores reach to 104, the determinant factor in simulation runtime tends to be
the balancing performance instead of the overall communication cost.

– An alternative load-balancing scheme (based on graph-partitioning), which
is known to have better load balancing performance, is embedded in the
code. Experiments show that the alternative scheme has simulation time
performances that are more scalable than PHG.

We should note here that graph partitioning models cannot exactly model the
communication overheads associated with the communication patterns in the
hybrid Vlasov code and the usage of the hypergraph modeling scheme is more
correct theoretically. However, as a general observation we can state that, al-
though the communication metrics optimized by graph partitioning schemes are
not exact, if the problem domain is regular enough, the error made by graph
partitioning method for estimating the communication overhead of a partition
is more or less the same for all possible partitions in the solutions space. This
property enables the graph partitioning schemes to improve its solutions over
regular computational domains successfully since the error made while moving
through different partitions in the solution space cancel each other. Since the
subject problem domain exhibits such features, we believe that the usage of
graph partitioning tools might yield good results as well and thus investigate
such alternatives.
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(a) Weak Scaling (b) Strong Scaling

Fig. 1. Simulation runtimes of the weak and strong scaling experiments for hybrid
Vlasov code utilizing different partitioning libraries available in Zoltan

Table 1. Communication overheads and balancing performances under weak scaling
experiments for various parallel partitioning libraries that are called within Zoltan

Zoltan (PHG) Zoltan (ParMeTiS) Zoltan (PT-SCOTCH)

# of Total Comp. Comm. Total Comp. Comm. Total Comp. Comm.
cores volume imb.(%) imb.(%) volume imb.(%) imb.(%) volume imb.(%) imb.(%)

1024 70.206 99,9 44,1 78.538 50,0 34,2 77.824 0,1 5,3
2048 143.538 99,9 42,9 161.318 31,3 41,0 159.744 0,1 2,6
4096 289.292 99,9 60,0 327.812 62,5 40,0 323.568 6,2 12,8

3 Experiments

In our experiments, we first compared the performance of calling Zoltan PHG [1]
with the performance of calling ParMeTiS [2] and PT-SCOTCH [3] within Zoltan
in the initial load balancing step of the simulation code to see which of these three
possible partitioning options available in Zoltan is best for this particular code. In
these experiments we measured the weak and strong scaling performance of these
three schemes. In the experiments for weak scaling, 3D grid size is arranged such
that under perfect load balance, each process would have to process 16 spatial
cells, and for strong scaling, total number of spatial cells is set to 16×32×32.
Since the memory in a Jugene node is small, we could only perform weak-scaling
experiments up-to 4K cores with 16 spatial cells per core.

In Table 1, we present the total communication volume, computational im-
balance, and communication imbalance values observed in the weak scaling ex-
periments. As seen in the table, in terms of total communication volume, PHG
performs the best, whereas in terms of communication and computation load
balancing, PT-SCOTCH performs the best. We should note here that strong
scaling experiments provided similar communication and computation balanc-
ing results but are not reported due to space constraints.

As seen in Table 1 and Fig. 1, even though PHG produces lowest overall com-
munication overheads, the graph-based partitioning libraries produce as good
as, if not better, running time results. This is probably due to PHG’s poor
load-balancing performance. After these observations we decided to remove the
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(a) Weak scaling (b) Strong scaling

Fig. 2. Weak scaling simulation runtimes of hybrid Vlasov code using PT-SCOTCH
and Zoltan PHG in preprocessing.

overhead of calling Zoltan for running the PT-SCOTCH library, which has nice
load-balancing features and rewrote the initial load balancing code such that it
calls PT-SCOTCH library directly.

Table 2. Communication overheads and balancing performances under weak scaling
experiments for Zoltan PHG and PT-SCOTCH

Zoltan (PHG) PT-SCOTCH

# of Total Comp. Comm. Total Comp. Comm.
cores volume imb.(%) imb.(%) volume imb.(%) imb.(%)

1024 27.726 99,6 76,9 28.672 0,9 14,4
2048 59.608 99,8 92,9 61.440 0,9 6,7
4096 123.294 99,9 73,3 126.976 1,5 6,7
8192 250.718 99,9 26.1 258.048 1,2 6,7

16384 505.008 99,9 93,3 520.192 1,4 6,7

In Fig. 2 we compare the performance results of directly calling PT-SCOTCH
and Zoltan PHG in the preprocessing step of simulation. In the weak-scaling
experiments reported, the number of grid cells per core is fixed to four and in the
strong-scaling experiments the total number of spatial cells is set to 16×32×32.
As seen in Fig. 2(a), as the number of cores reaches to 8K and beyond, PT-
SCOTCH starts to perform considerably better then PHG, probably again due to
its better load-balancing capability as noted in Table 2. We again note here that
strong scaling experiments provided similar communication and computation
balancing results but are not reported due to space constraints. Similarly, as seen
in Fig. 2(b), PT-SCOTCH generally produces better results in strong-scaling
experiments as well.

4 Conclusions

We showed that the hybrid Vlasov simulation code developed at FMI can scale up
to 16K cores. We also showed that by replacing the initial load balancing scheme
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based on Zoltan parallel hypergraph partitioning tool with PT-SCOTCH parallel
graph partitioning tool increases the overall communication volume but still
improves the simulation runtime since PT-SCOTCH produces better balanced
partitions. These results indicate that for the hybrid Vlasov code, minimizing
imbalance is as important as, if not more important than, minimizing the overall
communication volume.
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Abstract. The continually growing demand for increased simulation
complexity introduces the need for scientific software frameworks to par-
allelize simulation tasks. We present our approach for a task graph sched-
uler based on modern programming techniques. The scheduler utilizes the
Message Passing Interface to distribute the tasks among distributed com-
puting nodes. We show that our approach does not only offer a concise
user-level code but also provides a high degree of scalability.

1 Introduction

The ever-growing demand of increased simulation complexity to better model
physical phenomena requires, among other things, the combination of different
simulation components [11]. This combination can be, for example, realized, by
using the output of one tool as an input for another one. From a software point
of view, this problem can be modelled as a task graph [10], which is governed by
a software framework [5]. The individual simulation tools can be seen as vertices
of the task graph, which are therefore executed based on the individual task de-
pendencies. To improve the efficiency and therefore reduce the overall run-time
of the framework, a parallelized approach for the task execution is required. A
high-degree of flexibility is provided by a distributed approach based on the Mes-
sage Passing Interface (MPI), as the execution can be spread among the nodes
of a large-scale cluster environment as well as on the cores of a single worksta-
tion. In general, the distribution of parallelizable tasks among distributed [7] and
shared computing [4] resources is a typical way to improve the overall run-time
performance of a task graph. In this work we investigate a lightweight approach
to implement a scheduler based on modern programming techniques, in partic-
ular, generic [12] and functional [8] programming in C++. By utilizing these
techniques and external libraries we are able to achieve a highly concise user-
level code, by simultaneously obtaining excellent scalability with regard to the
execution performance.

This work is organized as follows: Section 2 introduces our approach and
Section 3 validates the work by depicting performance results.
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2 Our Approach

Our approach for distributing tasks on distributed computing nodes can be split
into three parts. The first part is the mapping of the tasks and the corresponding
dependencies on a graph datastructure; the second, the priorization based on
the task dependences by utilizing a graph algorithm; and the third, the parallel
and distributed execution on the computing nodes by using the Boost MPI
Library [2]. Figure 1 depicts the principle of generating a task-graph and the
parallel execution.

A 

B C 

D E 

F 

B 
A C 

D 
E 

F 

A 
Proc 1 Proc 2 Proc 3

B C 

D E 

F 

Fig. 1. Tasks are associated with vertices (left) and dependencies are related to edges
(middle) in the graph. The tasks are executed on distributed processes according to
their dependencies (right). For example, task B and task C are only executed, when
task A is finished.

We utilize the Boost Graph Library (BGL) for the graph datastructure and
the graph algorithms [1]. Each task is associated with a vertex in the graph,
whereas the dependencies are mapped to edges connecting the respective ver-
tices. Our implementation is based on the list scheduling technique, which re-
quires a sequential list of prioritized tasks [9]. This priorization is computed by
the BGL implementation of the topological sort graph algorithm [6]. Accord-
ing to the list scheduling approach, this prioritized list is traversed and every
task is checked, whether it can be executed. This traversal is repeated until all
tasks have been processed. In general, we utilize the generic and functional pro-
gramming techniques. The generic programming paradigm is used to achieve a
highly versatile and extendable implementation. The functional style allows to
provide an intuitive user-level code and is applied by utilizing the Boost Phoenix
Library (BPL) [3]. The utilization ot these programming paradigms enables to
implement the following concise user-level code, which depicts the scheduling
traversal of the prioritized tasks.

1 std::for_each (prioritized .begin(), prioritized .end(),

2 if_(is_executable )[ execute(arg1 ,ref(process_manager ))]);

The set of prioritized tasks (prioritized) is traversed. if (is executable)[..]

checks if a task is ready for execution, which is done by testing the state of the
immediate predecessors. If so, execute(..) tries to assign the task to a process
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Fig. 2. An exemplary task graph is shown containing a maximum of 11 parallelizable
tasks (task 2-12).
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Fig. 3. Left: The scaling for different task problem sizes is depicted based on a task
graph with dependencies. The scaling efficiency for 10 cores is improved from 68% for
a problem size of 700 to 80% for a problem size of 1000. Right: The scaling for a task
problem size of 850 is shown based on a task graph without dependencies. A scaling
efficiency of 91% is achieved for 60 cores.

by utilizing a process manager facility. Note that arg1 and ref(..) are BPL
expressions which enable access to the traversal object and the reference to an
existing object, respectively.

3 Performance

In this section we present the scalability of our approach. Each task computes
the dense matrix-matrix product for different problem sizes to model a compu-
tational load. Note that in this work we do not investigate the data transfer
between the individual tasks, as we solely focus on the scheduling and the exe-
cution of the tasks. Our approach is evaluated based on two different test cases.
First, we evaluate the speedup of a task graph with various dependencies. For
this investigation we basically use the same graph layout as depicted in Figure 2.
However, instead of a maximum number of 11 tasks on the second level of the
graph, we use a problem offering a maximum number of 100 parallelizable tasks.
Furthermore, we investigate different problem sizes with respect to the dense
matrix-matrix product. The scalability is investigated for up to 10 cores. The
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hardware environment for this investigation consists of three workstations, two
AMD Phenom II X4 965 with 8 GB of memory, and one INTEL i7 960 with
12 GB of memory, connected by a gigabit Ethernet network. Figure 3a depicts
the gained performance results. A scaling efficiency of 68% for a problem size
of 700 is improved to 80% for a problem size of 1000. Second, we investigate
the speedup for 600 tasks without task dependencies, to investigate the optimal
parallelization capabilities. This hardware environment is based on our comput-
ing cluster, where the nodes offer four six-core AMD Opteron 8435, 128 GB of
system memory, and an Infiniband DDR network connection each. Figure 3b
shows the speedup for this test. A scaling efficiency of around 91% for 60 cores
is achieved.

4 Conclusion

Our approach based on modern programming techniques provides not only con-
cise user-level code but also offers excellent scalability for up to 60 cores. Fur-
thermore, the scalability improves for larger problems, which underlines the suit-
ability of our scheduling approach for large-scale simulations.

Acknowledgments. This work has been supported by the European Research
Council through the grant #247056 MOSILSPIN. Karl Rupp gratefully acknowl-
edges support by the Graduate School PDETech at the TU Wien.
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Starý, J. 375
Statford, Kevin 43
Sypniewska-Kaminska, Grazyna 473
Szyszka, Barbara 518

Tcheverda, Vladimir A. 153
Thies, Jonas 545
Timonen, Jussi 434
Toivanen, Jari 265
Toivanen, Jukka I. 434
Turan, Erhan 361, 375
Turk, Ata 558

von Alfthan, Sebastian 297, 558

Weinbub, Josef 548, 563
Weinzierl, Tobias 43
Westerholm, J. 27
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