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Preface

These proceedings contain a set of papers presented at the PARA 2012 conference
held during June 10-13, 2012, in Helsinki, Finland. It was the 11*"* in the PARA
conference series. The general theme of the PARA conference series is the “State
of the Art in Scientific and Parallel Computing,” and a special theme of the
PARA 2012 conference was “Toward Exascale.”

June in Helsinki means long days. The sun approaches the horizon not before
11 pm, which gives plenty of time for long and interesting discussions. For the
PARA 2012 participants, many of the discussions were likely around this year’s
theme, exascale computing. Exascale supercomputers are predicted to emerge in
6 to 10 years’ time. The path toward this regime of computing has been pretty
clear for more than a decade and implies dramatically increased parallelism in
all levels of the computing systems. We already know how to handle massive
parallelism, but now we are talking about excessively massive parallelism: two
or three orders of magnitude above today’s leading petaflop/s systems. The real
challenge is not just to build a computer system of theoretical exascale perfor-
mance, but rather to be able to devise real-world scientific applications that har-
ness the exaflop/s computing power. This fact was the background for the choice
of the theme for the conference: Addressing the challenges due to exploiting the
ever-increasing parallelism and to the changing balance between the computers’
subsystems performance requires novel, more suitable algorithms, programming
models, performance optimization techniques, and numerical libraries.

The conference itself consisted of a number of selected contributed talks di-
vided into topical parallel sessions, and five thematic minisymposia. These were
accompanied by keynote talks and interactive sessions. In these proceedings,
we have, based on a peer-review process, selected 35 technical full articles for
publication, categorized as follows:

Advances in HPC Applications

Parallel Algorithms

Performance Analysis and Optimization

Applications of Parallel Computing in Industry and Engineering
HPC Interval Methods

In addition to these, three of the topical minisymposia are described by a
corresponding overview article on the minisymposium topic. In order to cover the
state of the art of the field, we have included at the end of the proceedings a set
of extended abstracts that describe some of the conference talks not elaborated
by a full article. These extended abstracts have not been peer-reviewed.

We would like to thank everyone who contributed to the PARA 2012 con-
ference: keynote speakers Jack Dongarra, Bjorn Engquist, and Mark Parsons;
Minisymposium Chairs; presenters of contributed talks; tutorial instructors; all
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attendees; and everyone involved in practical arrangements. Especially all the
authors of these proceedings as well as the numerous reviewers are gratefully
acknowledged.

December 2012 P. Manr}inen
P. Oster
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Computational Physics on Graphics Processing
Units

Ari Harju?2, Topi Siro!?, Filippo Federici Canova?,
Samuli Hakala!', and Teemu Rantalaiho?*

1 COMP Centre of Excellence, Department of Applied Physics,
Aalto University School of Science, Helsinki, Finland
2 Helsinki Institute of Physics, Helsinki, Finland
3 Department of Physics, Tampere University of Technology, Tampere, Finland
4 Department of Physics, University of Helsinki, Helsinki, Finland

Abstract. The use of graphics processing units for scientific compu-
tations is an emerging strategy that can significantly speed up various
algorithms. In this review, we discuss advances made in the field of com-
putational physics, focusing on classical molecular dynamics and quan-
tum simulations for electronic structure calculations using the density
functional theory, wave function techniques and quantum field theory.

Keywords: graphics processing units, computational physics.

1 Introduction

The graphics processing unit (GPU) has been an essential part of personal com-
puters for decades. Their role became much more important in the 90s when
the era of 3D graphics in gaming started. One of the hallmarks of this is the
violent first-person shooting game DOOM by the id Software company, released
in 1993. Wandering around the halls of slaughter, it was hard to imagine these
games leading to any respectable science. However, twenty years after the release
of DOOM, the gaming industry of today is enormous, and the continuous need
for more realistic visualizations has led to a situation where modern GPUs have
tremendous computational power. In terms of theoretical peak performance, they
have far surpassed the central processing units (CPU).

The games started to have real 3D models and hardware acceleration in the
mid 90s, but an important turning point for the scientific use of GPUs for com-
puting was around the first years of this millennium [I], when the widespread
programmability of GPUs was introduced. Combined with the continued in-
crease in computational power as shown in Fig. [[l the GPUs are nowadays a
serious platform for general purpose computing. Also, the memory bandwidth
in GPUs is very impressive. The three main vendors for GPUs, Intel, NVIDIA,
and ATI/AMD, are all actively developing computing on GPUs. At the moment,
none of the technologies listed above dominate the field, but NVIDIA with its
CUDA programming environment is perhaps the current market leader.

P. Manninen and P. Oster (Eds.): PARA 2012, LNCS 7782, pp. 3-E6] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



4 A. Harju et al.

Theoretical
GFLOP/s
3250

3000
NVIDIA GPU Single Predision

2750 == NVIDIA GPU Double Predsion
2500 === |ntel CPU Single Predsion
Intel CPU Dauble Predsion

2250
2000
1750
1500
1250
1000

750
Tesla C2050 Sandly Bricge

500
250 Woodtrest B mﬁzld,/

- -

0 . v C/ Westmere
Sep-FFMHUM4  jun 04 Mar-o7arpertovn oW Aug-12

Fig. 1. Floating point operations (FLOPS) per second for GPUs and CPUs from
NVIDIA and Intel Corporations, figure taken from [2]. The processing power of the
currently best GPU hardware by the AMD Corporation is comparable to NVIDIA at
around 2600 GFLOPS/s.

1.1 The GPU as a Computational Platform

At this point, we have hopefully convinced the reader that GPUs feature a pow-
erful architecture also for general computing, but what makes GPUs different
from the current multi-core CPUs? To understand this, we can start with tradi-
tional graphics processing, where hardware vendors have tried to maximize the
speed at which the pixels on the screen are calculated. These pixels are indepen-
dent primitives that can be processed in parallel, and the number of pixels on
computer displays has increased over the years from the original DOOM resolu-
tion of 320 x 200, corresponding to 64000 pixels, to millions. The most efficient
way to process these primitives is to have a very large number of arithmetic
logical units (ALUs) that are able to perform a high number of operations for
each video frame. The processing is very data-parallel, and one can view this
as performing the same arithmetic operation in parallel for each primitive. Fur-
thermore, as the operation is the same for each primitive, there is no need for
very sophisticated flow control in the GPU and more transistors can be used for
arithmetics, resulting in an enormously efficient hardware for performing parallel
computing that can be classified as “single instruction, multiple data” (SIMD).

Now, for general computing on the GPU, the primitives are no longer the
pixels on the video stream, but can range from matrix elements in linear al-
gebra to physics related cases where the primitives can be particle coordinates
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in classical molecular dynamics or quantum field values. Traditional graphics
processing teaches us that the computation would be efficient when we have a
situation where the same calculation needs to be performed for each member of a
large data set. It is clear that not all problems or algorithms have this structure,
but there are luckily many cases where this applies, and the list of successful
examples is long.

However, there are also limitations on GPU computing. First of all, when
porting a CPU solution of a given problem to the GPU, one might need to
change the algorithm to suit the SIMD approach. Secondly, the communication
from the host part of the computer to the GPU part is limited by the speed
of the PClIe bus coupling the GPU and the host. In practice, this means that
one needs to perform a serious amount of computing on the GPU between the
data transfers before the GPU can actually speed up the overall computation.
Of course, there are also cases where the computation as a whole is done on
GPU, but these cases suffer from the somewhat slower serial processing speed
of the GPU.

Additional challenges in GPU computing include the often substantial pro-
gramming effort to get a working and optimized code. While writing efficient
GPU code has become easier due to libraries and programmer friendly hardware
features, it still requires some specialized thinking. For example, the programmer
has to be familiar with the different kinds of memory on the GPU to know how
and when to use them. Further, things like occupancy of the multiprocessors
(essentially, how full the GPU is) and memory access patterns of the threads are
something one has to consider to reach optimal performance. Fortunately, each
generation of GPUs has alleviated the trouble of utilizing their full potential.
For example, a badly aligned memory access in the first CUDA capable GPUs
from NVIDIA could cripple the performance by drastically reducing the memory
bandwidth, while in the Fermi generation GPUs the requirements for memory
access coalescing are much more forgiving.

2 Molecular Dynamics

Particle dynamics simulation, often simply called Molecular dynamics (MD),
refers to the type of simulation where the behaviour of a complex system is
calculated by integrating the equation of motion of its components within a
given model, and its goal is to observe how some ensemble-averaged properties
of the system originate from the detailed configuration of its constituent particles
(Fig. ).

In its classical formulation, the dynamics of a system of particles is described
by their Newtonian equations:

dzmi
Mi o =) Fy (1)
i

where m; is the particle’s mass, x; its position, and F';; is the interaction between
the ¢-th and j-th particles as provided by the model chosen for the system under
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Fig. 2. Schematic presentation of the atomistic model of a macroscopic system

study. These second order differential equations are then discretised in the time
domain, and integrated step by step until a convergence criterion is satisfied.

The principles behind MD are so simple and general that since its first ap-
pearance in the 70s, it has been applied to a wide range of systems, at very
different scales. For example, MD is the dominant theoretical tool of investiga-
tion in the field of biophysics, where structural changes in proteins [3J456] and
lipid bilayers [7I8] interacting with drugs can be studied, ultimately providing a
better understanding of drug delivery mechanisms.

At larger scales, one of the most famous examples is known as the Millenium
Simulation, where the dynamics of the mass distribution of the universe at the
age of 380000 years was simulated up to the present day [9], giving an estimate
of the age of cosmic objects such as galaxies, black holes and quasars, greatly
improving our understanding of cosmological models and providing a theoretical
comparison to satellite measurements.

Despite the simplicity and elegance of its formulation, MD is not a compu-
tationally easy task and often requires special infrastructure. The main issue is
usually the evaluation of all the interactions F';;, which is the most time consum-
ing procedure of any MD calculation for large systems. Moreover, the processes
under study might have long characteristic time scales, requiring longer simula-
tion time and larger data storage; classical dynamics is chaotic, i.e. the outcome
is affected by the initial conditions, and since these are in principle unknown
and chosen at random, some particular processes of interest might not occur
just because of the specific choice, and the simulation should be repeated several
times. For these reasons, it is important to optimise the evaluation of the forces
as much as possible.

An early attempt to implement MD on the GPU was proposed in 2004 [I0] and
showed promising performance; at that time, general purpose GPU computing
was not yet a well established framework and the N-body problem had to be
formulated as a rendering task: a shader program computed each pair interaction
F;; and stored them as the pixel color values (RBG) in an N x N texture. Then,
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another shader would simply sum these values row-wise to obtain the total force
on each particle and finally integrate their velocities and positions. The method
is called all-pairs calculation, and as the name might suggest, it is quite expensive
as it requires O(N?) force evaluations. The proposed implementation was in no
way optimal since the measured performance was about a tenth of the nominal
value of the device, and it immediately revealed one of the main issues of the
architecture that still persists nowadays: GPUs can have a processing power
exceeding the teraflop, but, at the same time, they are extremely slow at handling
the data to process since a memory read can require hundreds of clock cycles.
The reason for the bad performance was in fact the large amount of memory read
instructions compared to the amount of computation effectively performed on
the fetched data, but despite this limitation, the code still outperformed a CPU
by a factor of 8 because every interaction was computed concurrently. A wide
overview of optimisation strategies to get around the memory latency issues can
be found in Ref. [I1], while, for the less eager to get their hands dirty, a review
of available MD software packages is included in Ref. [12].

In the current GPU programming model, the computation is distributed in
different threads, grouped together as blocks in a grid fashion, and they are
allowed to share data and synchronise throughout the same block; the hardware
also offers one or two levels of cache to enhance data reuse, thus reducing the
amount of memory accesses, without harassing the programmer with manual pre-
fetching. A more recent implementation of the all-pair calculation [13] exploiting
the full power of the GPU can achieve a performance close to the nominal values,
comparable to several CPU nodes.

The present and more mature GPGPU framework allows for more elaborate
kernels to fit in the device, enabling the implementation of computational tricks
developed during the early days of MD [14] that make it possible to integrate N-
body dynamics accurately with much better scaling than O(N?). For example, in
many cases the inter-particle forces are short range, and it would be unnecessary
to evaluate every single interaction F';; since quite many of them would be close
to zero and just be neglected. It is good practice to build lists of neighbours for
each particle in order to speed up the calculation of forces: this also takes an
O(N?) operation, although the list is usually only recalculated every 100-1000
timesteps, depending on the average mobility of the particles. The optimal way
to build neighbour lists is to divide the simulation box in voxels and search for a
partcle’s neighbours only within the adjacent voxels (Fig. Bh), as this procedure
requires only O(N) instructions. Performance can be further improved by sorting
particles depending on the index of the voxel they belong, making neighbouring
particles in space, to a degree, close in memory, thus increasing coalescence
and cache hit rate on GPU systems; such a task can be done with radix count
sort [IBITOII7] in O(N) with excellent performance, and it was shown to be the
winning strategy [18].

Unfortunately, most often the inter-particle interactions are not exclusively
short range and can be significant even at larger distances (electrostatic and
gravitational forces). Therefore, introducing an interaction cut-off leads to the



8 A. Harju et al.

a) b)
(<) P (<]
-7~ (<] (<]
//" \\\ (5}
/ ™\
/ \ | @]
’1 (<] \b @ o)
1
I (<) (]
1 @ ,' e
\ I
\ /
\ (<]
\ / @
\\Q )%
\\§~ . "’//

Fig. 3. Illustration of different space partition methods. In dense systems (a) a regular
grid is preferred, and neighbouring particles can be searched in only a few adjacent
voxels. Sparse systems (b) are better described by hierarchical trees, excluding empty
regions from the computation.

wrong dynamics. For dense systems, such as bulk crystals or liquids, the electro-
static interaction length largely exceeds the size of the simulation space, and in
principle one would have to include the contributions from several periodic im-
ages of the system, although their sum is not always convergent. The preferred
approach consists of calculating the electrostatic potential V(r) generated by
the distribution of point charges p(r) from Poisson’s equation:

VAV (r) = p(r) (2)

The electrostatic potential can be calculated by discretising the charge distri-
bution on a grid, and solving Eq. [ with a fast Fourier transform (FFT), which
has O(MlogM) complexity (where M is the amount of grid points): this ap-
proach is called particle-mesh Ewald (PME). Despite being heavily non-local,
much work has been done to improve the FFT algorithm and make it cache
efficient [T92002TI22)23], so it is possible to achieve a 20-fold speed up over the
standard CPU FFTW or a 5-fold speedup when compared to a highly optimised
MKL implementation. The more recent multilevel summation method (MSM)
[24] uses nested interpolations of progressive smoothing of the electrostatic po-
tential on lattices with different resolutions, offering a good approximation of
the electrostatic O(N?) problem in just O(N) operations. The advantage of this
approach is the simplicity of its parallel implementation, since it requires less
memory communication among the nodes, which leads to a better scaling than
the FFT calculation in PME. The GPU implementation of this method gave a
25-fold speedup over the single CPU [25]. Equation 2 can also be translated into
a linear algebra problem using finite differences, and solved iteratively on multi-
grids [26127] in theoretically O(M) operations. Even though the method initially
requires several iterations to converge, the solution does not change much in one
MD step and can be used as a starting point in the following step, which in turn
will take much fewer iterations.
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On the other hand, for sparse systems such as stars in cosmological simu-
lations, decomposing the computational domain in regular boxes can be quite
harmful because most of the voxels will be empty and some computing power
and memory is wasted there. The optimal way to deal with such a situation is
to subdivide the space hierarchically with an octree [28] (Fig. Bb), where only
the subregions containing particles are further divided and stored. Finding neigh-
bouring particles can be done via a traversal of the tree in O(NlogN) operations.
Octrees are conventionally implemented on the CPU as dynamical data struc-
tures where every node contains reference pointers to its parent and children,
and possibly information regarding its position and content. This method is not
particularly GPU friendly since the data is scattered in memory as well as in the
simulation space. In GPU implementations, the non-empty nodes are stored as
consecutive elements in an array or texture, and they include the indices of the
children nodes [29]. They were proved to give a good acceleration in solving the
N-body problem [I3I30/31]. Long range interactions are then calculated explic-
itly for the near neighbours, while the fast multipole method (FMM) [32l33] can
be used to evaluate contributions from distant particles. The advantage of repre-
senting the system with an octree becomes now more evident: there exists a tree
node containing a collection of distant particles, which can be treated as a single
multipole leading to an overall complexity O(NN). Although the mathematics
required by FMM is quite intensive to evaluate, the algorithms involved have
been developed and extensively optimised for the GPU architecture [34J35J36],
achieving excellent parallel performance even on large clusters [37].

In all the examples shown here, the GPU implementation of the method out-
performed its CPU counterpart: in many cases the speedup is only 4-5 fold when
compared to a highly optimised CPU code, which seems, in a way, a discouraging
result, because implementing an efficient GPU algorithm is quite a difficult task,
requiring knowledge of the target hardware, and the programming model is not
as intuitive as for a regular CPU. To a degree, the very same is true for CPU
programming, where taking into account cache size, network layout, and details
of shared /distributed memory of the target machine when designing a code leads
to higher performance. These implementation difficulties could be eased by de-
veloping better compilers, that check how memory is effectively accessed and
provide higher levels of GPU optimisation on older CPU codes automatically,
hiding the complexity of the hardware specification from the programmer. In
some cases, up to 100 fold speedups were measured, suggesting that the GPU
is far superior. These cases might be unrealistic since the nominal peak perfor-
mance of a GPU is around 5 times bigger than that of a CPU. Therefore, it is
possible that the benchmark is done against a poorly optimised CPU code, and
the speedup is exaggerated. On the other hand, GPUs were also proven to give
good scaling in MPT parallel calculations, as shown in Refs. [31] and [37]. In par-
ticular, the AMBER code was extensively benchmarked in Ref. [38], and it was
shown how just a few GPUs (and even just one) can outperform the same code
running on 1024 CPU cores: the weight of the communication between nodes
exceeds the benefit of having additional CPU cores, while the few GPUs do not
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suffer from this latency and can deliver better performance, although the size of
the computable system becomes limited by the available GPU memory. It has
to be noted how GPU solutions, even offering a modest 4-5 fold speedup, do so
at a lower hardware and running cost than the equivalent in CPUs, and this will
surely make them more appealing in the future. From the wide range of examples
in computational physics, it is clear that the GPU architecture is well suited for
a defined group of problems, such as certain procedures required in MD, while
it fails for others. This point is quite similar to the everlasting dispute between
raytracing and raster graphics: the former can explicitly calculate photorealistic
images in complex scenes, taking its time (CPU), while the latter resorts to ev-
ery trick in the book to get a visually "alright” result as fast as possible (GPU).
It would be best to use both methods to calculate what they are good for, and
this sets a clear view of the future hardware required for scientific computing,
where both simple vector-like processors and larger CPU cores could access the
same memory resources, avoiding data transfer.

3 Density-Functional Theory

Density functional theory (DFT) is a popular method for ab-initio electronic
structure calculations in material physics and quantum chemistry. In the most
commonly used DFT formulation by Kohn and Sham [39], the problem of N
interacting electrons is mapped to one with N non-interacting electrons moving
in an effective potential so that the total electron density is the same as in the
original many-body case [40]. To be more specific, the single-particle Kohn-Sham
orbitals ., (r) are solutions to the equation

Hwn(r) = ann(r)v (3)

where the effective Hamiltonian in atomic units is H = — V2 +vg (r) +veq (r) +
Vge(r). The three last terms in the Hamiltonian define the effective potential, con-
sisting of the Hartree potential vy defined by the Poisson equation Vv (r) =
—4mp(r), the external ionic potential veyt, and the exchange-correlation poten-
tial v, that contains all the complicated many-body physics the Kohn-Sham
formulation partially hides. In practice, the v,. part needs to be approximated.
The electronic charge density p(r) is determined by the Kohn-Sham orbitals as
p(r) =, filti(r)|?, where the f;:s are the orbital occupation numbers.

There are several numerical approaches and approximations for solving the
Kohn-Sham equations. They relate usually to the discretization of the equations
and the treatment of the core electrons (pseudo-potential and all electron meth-
ods). The most common discretization methods in solid state physics are plane
waves, localized orbitals, real space grids and finite elements. Normally, an iter-
ative procedure called self-consistent field (SCF) calculation is used to find the
solution to the eigenproblem starting from an initial guess for the charge density
[41].

Porting an existing DFT code to GPUs generally includes profiling or discov-
ering with some other method the computationally most expensive parts of the
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SCF loop and reimplementing them with GPUs. Depending on the discretiza-
tion methods, the known numerical bottlenecks are vector operations, matrix
products, Fast Fourier Transforms (FFTs) and stencil operations. There are
GPU versions of many of the standard computational libraries (like CUBLAS
for BLAS and CUFFT for FFTW). However, porting a DFT application is not
as simple as replacing the calls to standard libraries with GPU equivalents since
the resulting intermediate data usually gets reused by non standard and less
computationally intensive routines. Attaining high performance on a GPU and
minimizing the slow transfers between the host and the device requires writing
custom kernels and also porting a lot of the non-intensive routines to the GPU.

Gaussian basis functions are a popular choice in quantum chemistry to inves-
tigate electronic structures and their properties. They are used in both DFT and
Hartree-Fock calculations. The known computational bottlenecks are the eval-
uation of the two-electron repulsion integrals (ERIs) and the calculation of the
exchange-correlation potential. Yasuda was the first to use GPUs in the calcula-
tion of the exchange-correlation term [42] and in the evaluation of the Coulomb
potential [43]. The most complete work in this area was done by Ufimtsev et al..
They have used GPUs in ERIs [44/45/46], in complete SCF calculations [47] and
in energy gradients [48]. Compared to the mature GAMESS quantum chemistry
package running on CPUs, they were able to achieve speedups of more than
100 using mixed precision arithmetic in HF SCF calculations. Asadchev et al..
have also done an ERI implementation on GPUs using the uncontracted Rys
quadrature algorithm [49].

The first complete DFT code on GPUs for solid state physics was presented
by Genovese et al.. [50]. They used double precision arithmetic and a Daubechies
wavelet based code called BIGDFT [51]. The basic 3D operations for a wavelet
based code are based on convolutions. They achieved speedups of factor 20 for
some of these operations on a GPU, and a factor of 6 for the whole hybrid code
using NVIDIA Tesla S1070 cards. These results were obtained on a 12-node
hybrid machine.

For solid state physics, plane wave basis sets are the most common choice.
The computational schemes rely heavily on linear algebra operations and fast
Fourier transforms. The Vienna ab initio Simulation Package (VASP) [52] is a
popular code combining plane waves with the projector augmented wave method.
The most time consuming part of optimizing the wave functions given the trial
wave functions and related routines have been ported to GPUs. Speedups of a
factor between 3 and 8 for the blocked Davinson scheme [53] and for the RMM-
DIIS algorithm [54] were achieved in real-world examples with Fermi C2070
cards. Parallel scalability with 16 GPUs was similar to 16 CPUs. Additionally,
Hutchinson et al. have done an implementation of exact-exchange calculations
on GPUs for VASP [55].

Quantum ESPRESSO [56] is a electronic structure code based on plane wave
basis sets and pseudo-potentials (PP). For the GPU version [57], the most com-
putationally expensive parts of the SCF cycle were gradually transferred to run
on GPUs. FFTs were accelerated by CUFFT, LAPACK by MAGMA and other
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routines were replaced by CUDA kernels. GEMM operations were replaced by
the parallel hybrid phiGEMM [58] library. For single node test systems, running
with NVIDIA Tesla C2050, speedups between 5.5 and 7.8 were achieved and for
a 32 node parallel system speedups between 2.5 and 3.5 were observed. Wand
et al. [59] and Jia et al.. [60] have done an implementation for GPU clusters
of a plane wave pseudo-potential code called PEtot. They were able to achieve
speedups of 13 to 22 and parallel scalability up to 256 CPU-GPU computing
units.

GPAW [61] is a density-functional theory (DFT) electronic structure program
package based on the real space grid based projector augmented wave method.
We have used GPUs to speed up most of the computationally intensive parts of
the code: solving the Poisson equation, iterative refinement of the eigenvectors,
subspace diagonalization and orthonormalization of the wave functions. Overall,
we have achieved speedups of up to 15 on large systems and a good parallel
scalability with up to 200 GPUs using NVIDIA Tesla M2070 cards [62].

Octopus [63]64] is a DFT code with an emphasis on the time-dependent
density-functional theory (TDDFT) using real space grids and pseudo-potentials.
Their GPU version uses blocks of Kohn-Sham orbitals as basic data units. Oc-
topus uses GPUs to accelerate both time-propagation and ground state calcu-
lations. Finally, we would like to mention the linear response Tamm-Dancoff
TDDFT implementation [65] done for the GPU-based TeraChem code.

4 Quantum Field Theory

Quantum field theories are currently our best models for fundamental interac-
tions of the natural world (for a brief introduction to quantum field theories —
or QFTs — see for example [66] or [67] and references therein). Common compu-
tational techniques include perturbation theory, which works well in quantum
field theories as long as the couplings are small enough to be considered as per-
turbations to the free theory. Therefore, perturbation theory is the primary tool
used in pure QED, weak nuclear force and high momentum-transfer QCD phe-
nomena, but it breaks up when the coupling constant of the theory (the measure
of the interaction strength) becomes large, such as in low-energy QCD.

Formulating the quantum field theory on a space-time lattice provides an op-
portunity to study the model non-perturbatively and use computer simulations
to get results for a wide range of phenomena — it enables, for example, one to
compute the hadronic spectrum of QCD (see [68] and references therein) from
first principles and provides solutions for many vital gaps left by the perturba-
tion theory, such as structure functions of composite particles [69], form-factors
[70] and decay-constants [71]. It also enables one to study and test models for
new physics, such as technicolor theories [72] and quantum field theories at fi-
nite temperature [73], [74] or [75]. For an introduction to Lattice QFT, see for
example [70], [T7] or [7§].

Simulating quantum field theories using GPUs is not a completely new idea
and early adopters even used OpenGL (graphics processing library) to program
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the GPUs to solve lattice QCD [79]. The early GPGPU programmers needed
to set up a program that draws two triangles that fill the output texture of
desired size by running a “shader program” that does the actual computation
for each output pixel. In this program, the input data could be then accessed by
fetching pixels’ input texture(s) using the texture units of the GPU. In lattice
QFT, where one typically needs to fetch the nearest neighbor lattice site values,
this actually results in good performance as the texture caches and layouts of
the GPUs have been optimized for local access patterns for filtering purposes.

4.1 Solving QFTs Numerically

The idea behind lattice QFT is based on the discretization of the path integral
solution to expectation values of time-ordered operators in quantum field theo-
ries. First, one divides spacetime into discrete boxes, called the lattice, and places
the fields onto the lattice sites and onto the links between the sites, as shown in
Fig. @ Then, one can simulate nature by creating a set of multiple field config-
urations, called an ensemble, and calculate the values of physical observables by
computing ensemble averages over these states.

Fig. 4. The matter fields ¥(x) live on lattice sites, whereas the gauge fields U, (z) live
on the links connecting the sites. Also depicted are the staples connecting to a single
link variable that are needed in the computation of the gauge field forces.

The set of states is normally produced with the help of a Markov chain and in
the most widely studied QFT, the lattice QCD, the chain is produced by com-
bining a molecular dynamics algorithm together with a Metropolis acceptance
test. Therefore, the typical computational tasks in lattice QFTs are:

1. Refresh generalized momentum variables from a heat bath (Gaussian distri-
bution) once per trajectory.
2. Compute generalized forces for fields for each step
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3. Integrate classical equations of motion for the fields at each step
4. Perform a Metropolis acceptance test at the end of the trajectory in order
to achieve the correct limiting distribution.

In order to reach satisfying statistics, normally thousands of these trajectories need
to be generated and each trajectory is typically composed of 10 to 100 steps. The
force calculation normally involves a matrix inversion, where the matrix indices run
over the entire lattice and it is therefore the heaviest part of the computation. The
matrix arises in simulations with dynamical fermions (normal propagating matter
particles) and the simplest form for the fermion matrix i

Apy = [QTQlsy where

+4

Quy =0ey = Y Syrpa(l+7)Un(2). (4)

p==x1

Here, x is a constant related to the mass(es) of the quark(s), dy, is the Kro-
necker delta function (unit matrix elements), the sum goes over the spacetime
dimensions (i, v, are 4-by-4 constant matrices and U, (z) are the link variable
matrices that carry the force (gluons for example) from one lattice site to the
neighbouring one. In normal QCD they are 3-by-3 complex matrices.

The matrix A in the equation Ar = z, where one solves for the vector r with a
given z, is an almost diagonal sparse matrix with a predefined sparsity pattern. This
fact makes lattice QCD ideal for parallelization, as the amount work done by each
siteis constant. The actual algorithm used in the matrix inversion is normally some
variant of the conjugate gradient algorithm, and therefore one needs fast code to
handle the multiplication of a fermion vector by the fermion matrix.

This procedure is the generation of the lattice configurations which form the
ensemble. Once the set of configurations {U;},i € [1, N] has been generated
with the statistical weight e=5[V:l, where S[U;] is the Euclidean action (action
in imaginary time formulation), the expectation value of an operator F[U] can
be computed simply as

(FUy~ D FUI, (5)

4.2 Existing GPU Solutions to Lattice QFTs

As lattice QFTs are normally easily parallelizable, they fit well into the GPU
programming paradigm, which can be characterized as parallel throughput com-
putation. The conjugate gradient methods perform many fermion matrix vec-
tor multiplications whose arithmetic intensity (ratio of floating point operations
done per byte of memory fetched) is quite low, making memory bandwidth the

! The integration is not done with respect to normal time variable, but through the
Markov chain index- “time”.

2 There are multiple different algorithms for simulating fermions, here we present the
simplest one for illustrative purposes.
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normal bottleneck within a single processor. Parallelization between processors
is done by standard MPI domain decomposition techniques. The conventional
wisdom that this helps due to higher local volume to communication surface
area ratio is actually flawed, as typically the GPU can handle a larger volume in
the same amount of time, hence requiring the MPI-implementation to also take
care of a larger surface area in the same time as with a CPU. In our experience,
GPU adoption is still in some sense in its infancy, as the network implementation
seems to quickly become the bottleneck in the computation and the MPI im-
plementations of running systems seem to have been tailored to meet the needs
of the CPUs of the system. Another aspect of this is that normally the GPUs
are coupled with highly powered CPUs in order to cater for the situation where
the users use the GPUs in just a small part of the program and need a lot of
sequential performance in order to try to keep the serial part of the program
up with the parallel part. The GPU also needs a lot of concurrent threads (in
the order of thousands) to be filled completely with work and therefore good
performance is only achievable with relatively large local lattice sizes.

Typical implementations assign one GPU thread per site, which makes paral-
lelization easy and gives the compiler quite a lot of room to find instruction level
parallelism, but in our experience this can result in a relatively high register pres-
sure: the quantum fields living on the sites have many indices (normally color and
Diracindices) and are therefore vectors or matrices with up to 12 complex numbers
per field per site in the case of quark fields in normal QCD. Higher parallelization
can be achieved by taking advantage of the vector-like parallelism inside a single lat-
tice site, but this may be challenging to implement in those loops where the threads
within a site have to collaborate to produce a result, especially because GPUs im-
pose restrictions on the memory layout of the fields (consecutive threads have to
read consecutive memory locations in order to reach optimal performance [2]). In
a recent paper [80], the authors solve the gauge fizing problem by using overre-
laxation techniques and they report an increase in performance by using multiple
threads per site, although in this case the register pressure problem is even more
pronounced and the effects of register spilling to the L1 cache were not studied.

The lattice QCD community has a history of taking advantage of comput-
ing solutions outside the mainstream: the QCDSP [81] computer was a custom
machine that used digital signal processors to solve QCD with an order of one
teraflop of performance. QCDOC [82] used a custom IMB powerPC-based ASIC
and a multidimensional torus network, which later on evolved into the first ver-
sion of the Blue Gene supercomputers [83]. The APE collaboration has a long
history of custom solutions for lattice QCD and is building custom network solu-
tions for lattice QCD [84]. For example, QCDPAX [85] was a very early parallel
architecture used to study Lattice QCD without dynamical fermions.

Currently, there are various groups using GPUs to do lattice QFT simula-
tions. The first results using GPUs were produced as early as 2006 in a study
that determined the transition temperature of QCD [86]. Standardization efforts
for high precision Lattice QCD libraries are underway and the QUDA library [87]
scales to hundreds of GPUs by using a local Schwarz preconditioning technique,
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effectively eliminating all the GPU-based MPI communications for a significant
portion of the calculation. They employ various optimization techniques, such
as mixed-precision solvers, where parts of the inversion process of the fermion
matrix is done at lower precision of floating point arithmetic and using reduced
representations of the SU3 matrices. Scaling to multiple GPUs can also be im-
proved algorithmically: already a simple (almost standard) clover improvement
[88] term in the fermion action leads to better locality and of course improves
the action of the model as well, taking the lattice formulation closer to the con-
tinuum limit. Domain decomposition and taking advantage of restricted additive
Schwarz (RAS) preconditioning using GPUs was already studied in 2010 in [89],
where the authors get the best performance on a 32% lattice with vanishing over-
lap between the preconditioning domains and three complete RAS iterations
each containing just five iterations to solve the local system of 4 x 322 sites. It
should be noted though that the hardware they used is already old, so optimal
parameters with up-to-date components could slightly differ.

Very soon after starting to work with GPUs on lattice QFTs, one notices the
effects of Amdahl’s law which just points out the fact that there is an upper
bound for the whole program performance improvement related to optimizing
just a portion of the program. It is quite possible that the fermion matrix in-
version takes up 90% of the total computing time, but making this portion of
the code run 10 times faster reveals something odd: now we are spending half of
our time computing forces and doing auxiliary computations and if we optimize
this portion of the code as well, we improve our performance by a factor of al-
most two again — therefore optimizing only the matrix inversion gives us a mere
fivefold performance improvement instead of the promised order of magnitude
improvement. Authors of [90] implemented practically the entire HMC trajec-
tory on the GPU to fight Amdahl’s law and recent work [91] on the QDP++
library implements Just-in- Time compilation to create GPU kernels on the fly
to accommodate any non-performance critical operation over the entire lattice.

Work outside of standard Lattice QCD using GPUs includes the implemen-
tation of the Neuberger-Dirac overlap operator [92], which provides chiral sym-
metry at the expense of a non-local action. Another group uses the Arnoldi
algorithm on a multi-GPU cluster to solve the overlap operator [93] and shows
scaling up to 32 GPUs. Quenched SU2 [94] and later quenched SU2, SU3 and
generic SU(N,) simulations using GPUs are described in [95] and even com-
pact U(1) Polyakov loops using GPUs are studied in [96]. Scalar field theory —
the so-called A¢* model — using AMD GPUs is studied in [97]. The TWQCD
collaboration has also implemented almost the entire HMC trajectory computa-
tion with dynamical Optimal Domain Wall Fermions, which improve the chiral
symmetry of the action [98].

While most of the groups use exclusively NVIDIA’s CUDA-implementation
[2], which offers good reliability, flexibility and stability, there are also some
groups using the OpenCL standard [99]. A recent study [100] showed better
performance on AMD GPUs than on NVIDIA ones using OpenCL, although it
should be noted that the NVIDIA GPUs were consumer variants with reduced
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double precision throughput and that optimization was done for AMD GPUs.
The authors of [90] have implemented both CUDA and OpenCL versions of their
staggered fermions code and they report a slightly higher performance for CUDA
and for NVIDIA cards.

4.3 QFT Summary

All in all, lattice QFT using GPUs is turning from being a promising technol-
ogy to a very viable alternative to traditional CPU-based computing. When
reaching for the very best strong scaling performance — meaning best perfor-
mance for small lattices — single threaded performance does matter if we assume
that the rest of the system scales to remove other bottlenecks (communication,
memory bandwith.) In these cases, it seems that currently the best performance
is achievable through high-end supercomputers, such as the IBM Blue Gene/Q
[101], where the microprocessor architecture is actually starting to resemble more
a GPU than a traditional CPU: the PowerPC A2 chip has 16 in-order cores, each
supporting 4 relatively light weight threads and a crossbar on-chip network. A
17th core runs the OS functions and an 18th core is a spare to improve yields
or take place of a damaged core. This design gives the PowerPC A2 chip sim-
ilar performance to power ratio as an NVIDIA Tesla 2090 GPU, making Blue
Gene/Q computers very efficient. One of the main advantages of using GPUs
(or GPU-like architectures) over traditional serial processors is the increased
performance per watt and the possibility to perform simulations on commodity
hardware.

5 Wave Function Methods

The stochastic techniques based on Markov chains and the Metropolis algorithm
showed great success in the field theory examples above. There are also many-
body wave function methods that use the wave function as the central variable
and use stochastic techniques for the actual numerical work. These quantum
Monte Carlo (QMC) techniques have shown to be very powerful tools for study-
ing electronic structures beyond the mean-field level of for example the density
functional theory. A general overview of QMC can be found from [102]. The sim-
plest form of the QMC algorithms is the variational QMC, where a trial wave
function with free parameters is constructed and the parameters are optimized,
for example, to minimize the total energy [I03]. This simple strategy works
rather well for various different systems, even for strongly interacting particles
in an external magnetic field [104].

There have been some works porting QMC methods to GPUs. In the early
work by Amos G. Anderson et al. [I05], the overall speedup compared to the
CPU was rather modest, from three to six, even if the individual kernels were
up to 30 times faster. More recently, Kenneth P. Esler et al. [106] have ported
the QMCPack simulation code to the Nvidia CUDA GPU platform. Their full
application speedups are typically around 10 to 15 compared to a quad-core



18 A. Harju et al.

Xeon CPU. This speedup is very promising and demonstrates the great potential
GPU computing has for the QMC methods that are perhaps the computational
technologies that are the mainstream in future electronic structure calculations.

There are also many-body wave function methods that are very close to the
quantum chemical methods. One example of these is the full configuration in-
teraction method in chemistry that is termed exact diagonalization (ED) in
physics. The activities in porting the quantum chemistry approaches to GPU
are reviewed in [I07], and we try to remain on the physics side of this unclear
borderline. We omit, for example, works on the coupled cluster method on the
GPU [108]. Furthermore, quantum mechanical transport problems are also not
discussed here [109].

Lattice models [TTOJITI] are important for providing a general understanding
of many central physical concepts like magnetism. Furthermore, realistic ma-
terials can be cast to a lattice model [112]. Few-site models can be calculated
exactly using the ED method. The ED method turns out to be very efficient
on the GPU [113]. In the simplest form of ED, the first step is to construct the
many-body basis and the Hamiltonian matrix in it. Then follows the most time-
consuming part, namely the actual diagonalization of the Hamiltonian matrix.
In many cases, one is mainly interested in the lowest eigenstate and possibly a
few of the lowest excited states. For these, the Lanczos algorithm turns out to
be very suitable [I13]. The basic idea of the Lanczos scheme is to map the huge
but sparse Hamiltonian matrix to a smaller and tridiagonal form in the so-called
Krylov space that is defined by the spanning vectors obtained from a starting
vector |zg) by acting with the Hamiltonian as H™|zg). Now, as the GPU is very
powerful for the matrix-vector product, it is not surprising that high speedups
compared to CPUs can be found[IT3].

6 Outlook

The GPU has made a definite entry into the world of computational physics.
Preliminary studies using emerging technologies will always be done, but the true
litmus test of a new technology is whether studies emerge where the new tech-
nology is actually used to advance science. The increasing frequency of studies
that mention GPUs is a clear indicator of this.

From the point of view of high performance computing in computational
physics, the biggest challenge facing GPUs at the moment is scaling: in the
strong scaling case, as many levels of parallelism as possible inherent in the
problem should be exploited in order to reach the best performance with small
local subsystems. The basic variables of the model are almost always vectors of
some sort, making them an ideal candidate for SIMD type parallelism. This is
often achieved with CPUs with a simple compiler flag, which instructs the com-
piler to look for opportunities to combine independent instructions into vector
operations.

Furthermore, large and therefore interesting problems from a HPC point of
view are typically composed of a large number of similar variables, be it par-
ticles, field values, cells or just entries in an array of numbers, which hints at
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another, higher level of parallelism of the problem that traditionally has been
exploited using MPI, but is a prime candidate for a data parallel algorithm. Also,
algorithmic changes may be necessary to reach the best possible performance:
it may very well be that the best algorithm for CPUs is no longer the best one
for GPUs. A classic example could be the question whether to use lookup tables
of certain variables or recompute them on-the-fly. Typically, on the GPU the
flops are cheap making the recomputation an attractive choice whereas the large
caches of the CPU may make the lookup table a better option.

On the other hand, MPI communication latencies should be minimized and
bandwidth increased to accommodate the faster local solve to help with both
weak and strong scaling. As far as we know, there are very few, if any, groups
taking advantage of GPUDirect v.2 for NVIDIA GPUs [114], which allows direct
GPU-to-GPU communications (the upcoming GPUDirect Support for RDMA
will allow direct communications across network nodes) reducing overhead and
CPU synchronization needs. Even GPUDirect v.1 helps, as then one can share
the pinned memory buffers between Infiniband and GPU cards, removing the
need to do extra local copies of data. The MPI implementations should also be
scaled to fit the needs of the GPUs connected to the node: currently the network
bandwidth between nodes seems to be typically about two orders of magnitude
lower than the memory bandwidth from the GPU to the GPU memory, which
poses a challenge to strong scaling, limiting GPU applicability to situations with
relatively large local problem sizes.

Another, perhaps an even greater challenge, facing GPUs and similar sys-
tems is the ecosystem: Currently a large portion of the developers and system
administrators like to think of GPUs and similar solutions as accelerators — an
accelerator is a component, which is attached to the main processor and used
to speed up certain portions of the code, but as these “accelerators” become
more and more agile with wider support for standard algorithms, the term be-
comes more and more irrelevant as a major part of the entire computation can
be done on the “accelerator” and the original “brains” of the machine, the CPU,
is mainly left there to take care of administrative functions, such as disk 10,
common OS services and control flow of the program.

As single threaded performance has reached a local limit, all types of proces-
sors are seeking more performance out of parallelism: more cores are added and
vector units are broadened. This trend, fueled by the fact that transistor feature
sizes keep on shrinking, hints at some type of convergence in the near future, but
exactly what it will look like is anyone’s best guess. At least in computational
physics, it has been shown already that the scientists are willing to take extra
effort in porting their code to take advantage of massively parallel architectures,
which should allow them to do the same work with less energy and do more
science with the resources allocated to them.

The initial programming effort does raise a concern for productivity: How
much time and effort is one willing to spend to gain a certain amount of added
performance? Obviously, the answer depends on the problem itself, but perhaps
even more on the assumed direction of the industry — a wrong choice may result
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in wasted effort if the chosen solution simply does not exist in five years time.
Fortunately, what seems to be clear at the moment, is the overall direction of
the industry towards higher parallelism, which means that a large portion of the
work needed to parallelize a code for a certain parallel architecture will most
probably be applicable to another parallel architecture as well, reducing the risk
of parallelization beyond the typical MPI level.

The answer to what kind of parallel architectures will prevail the current
turmoil in the industry may depend strongly on consumer behavior, since a
large part of the development costs of these machines are actually subsidized by
the development of the consumer variants of the products. Designing a processor
only for the HPC market is too expensive and a successful product will need a
sister or at least a cousin in the consumer market. This brings us back to DOOM
and other performance-hungry games: it may very well be that the technology
developed for the gamers of today, will be the programming platform for the
scientists of tomorrow.
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Abstract. Many of the most widely used scientifc application software
of today were developed largely during a time when the typical amount of
compute cores was calculated in tens or hundreds. Within a not too dis-
tant future the number of cores will be calculated in at least hundreds of
thousands or even millions. A European collaboration group CRESTA
has recently been working on a set of renowned scientific software to
investigate and develop these codes towards the realm of exascale com-
puting. The codes are ELMFIRE, GROMACS, IFS, HemeLLB, NEK5000,
and OpenFOAM. This paper contains a summary of the strategies for
their development towards exascale and results achieved during the first
year of the collaboration project.

Keywords: Exascale, Science Application Software, Optimization,
Elmfire, Gromacs, IFS, HemeLLB, NEK5000, OpenFOAM.

1 Introduction

Many of the most widely used scientific application software have been sub-
ject to constant development during several decades. This easily results in codes
that have primary structures that are optimized for the typical computer archi-
tecture of the early phase of development. The most dramatic change in high-
performance computers (HPCs) during the last decade has been that the number
of compute cores have risen dramatically. This trend also seems to continue in
the near future. Another modern trend is the introduction of accelerators, like
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GP-GPUs. This trend further complicates the use of legacy software in HPCs.
Very few of the most important application software of today are ready to be
used on the massively parallel architecture of the exascale HPC facilities which
are planned within the next 5-10 years targeted at exascale performance.

Within the EC-funded project CRESTA (Collaborative Research into Ex-
ascale Sytemware, Tools and Applications) [1], a set of six applications codes
are being investigated and optimized with the objective of preparing them for
exascale. The codes are ELMFIRE, GROMACS, IFS, HemeLLB, NEK5000 and
OpenFOAM.

ELMFIRE [2] is a gyro-kinetic particle-in-cell code that simulates movement
and interaction between high-speed particles on a three dimensional grid in torus-
shaped atomic fusion reactors. The particles are held together by an external
magnetic field. The objective is to simulate significant portions of large-scale re-
actors like the Joint European Torus JET [3] or the International Thermonuclear
Experimental Reactor ITER [4].

GROMACS [5] is a molecular dynamics code that is extensively used for simu-
lation of biomolecular systems. It is primarily designed for biochemical molecules
like proteins, lipids and nucleic acids with a large amount of complicated bonded
interactions, but since GROMACS is optimized for fast computing it is also fairly
extensively used for simulating e.g. non-organic polymers.

IFS is the production weather forecasting application used at the European
Centre for Medium Range Weather Forecasts (ECMWTF). The objective is to
develop more reliable 10-day weather forecasts that can be run in an hour or
less using denser grids of measurement values.

HEMELB [9] is ultimately intended to form part of a clinically deployed ex-
ascale virtual physiological human. HemeLB simulates blood flows in empirical
blood vessel geometries. The objective is to develop a clinically useful exascale
tool.

NEKS5000 [§] is an open-source code for the simulation of incompressible flow
in complex geometries. Simulation of turbulent flow is of one of the major ob-
jectives of NEK5000.

OPENFOAM [6] is an open source software for computational fluid dynamics.
The program is a “toolbox” which provides a selection of different solvers as well
as routines for various kinds of analysis, pre- and post-processing. Within the
present project the focus will be on a specialized code for turbine machinery. The
future objective is to be able to simulate a whole hydraulic machine on exascale
architectures [67].

In the following sections we present more detailed descriptions of the exascale
development strategies of the these codes.

2 Exascale Strategies and Development

2.1 ELMFIRE

ELMFIRE is a particle-in-cell code that simulates the movement and interac-
tion between extended charged gyrokinetic particles moving at high speed in



Preparing Scientific Application Software for Exascale Computing 29

a torus-shaped geometry. The particles are confined by a strong external mag-
netic field. ELMFIRE approximates the Coulomb interaction between particles
by solving a global electrostatic field on a grid, using the particle charges as
sources. ELMFIRE then advances particles in time by free streaming along the
magnetic field line and particle drift perpendicular to the magnetic field. Typ-
ically, time steps correspond to 30-50ns real time. Today the time step based
simulation in ELMFIRE can be roughly divided into seven parts: (I) Perform
momentum and energy conserving binary collisions between particles close to
each other, (IT) Using a 4th order Runge-Kutta, calculate particle movements in
continuous space during the time step based on the electric field, (III) Collect
grid cell charge data from the particles for the electrostatic field. (IV) Combine
and split the grid charge data so each processor has a smaller part of it, (V)
Construct a large modified gyro-kinetic Poisson equation based on the data and
solve it in parallel, (VI) Calculate additional movement caused by polarization
drift of particles based on the acquired electric field, (VII) Write diagnostics
output.

The most CPU heavy part of the code presently is calculating particle move-
ments but as each processor is assigned a fixed number of particles this scales
linearly with the number of processors and is therefore not an issue when scaling
to larger systems. The most interesting part is the collection and distribution of
grid cell charge data. In the current version each processor can have its assigned
particles moving in any part of the torus, leading to all processor contributing
charge data to all grid cells in the system. Charge neutrality, a central require-
ment in plasma physics, is achieved by forcing the ion polarization drift and
electron parallel acceleration by the electric field to create such shifts in the
particle positions that each cell charge becomes zero. To accomplish local charge
neutrality, Elmfire uses a modified Poisson equation where the righthand side
source terms are calculated based on the positions of the particles after they have
been moved based on the current electric field. The ion polarization drift and
electron parallel acceleration can be expressed as a movement of a small charge
from a cell to another. However, as the drift and acceleration depend on the new
electric field, part of the charge movement has to be expressed as a function of
the new electric field and therefore included in the lefthand side Poisson matrix.
The effect of the ion polarization drift and the electron parallel acceleration is
limited to the nearby grid cells. Solving the modified Poisson equation gives the
new electric field, which is used to calculate the actual particle movement caused
by the polarization drift and parallel acceleration. The final result, at the end
of the time step, is neutrality in each grid cell. As a consequence each processor
stores the full electrostatic grid data and a huge sparse matrix (# grid cells x
# grid cells) for collecting charge data for the grid cells. The matrix has been
optimized by reducing the second dimension to a constant, which is the num-
ber of cells around a given cell to which charges due to gyrokinetic motion and
polarization drift can be moved from the given cell. This reduces memory usage
significantly but not enough for large-scale simulations. It also introduces an
extra index conversion when gathering the data. Once the grid cell charge data
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has been combined and split among the processors, each processor can construct
its own part of the Poission equation individually. The Poisson equation is then
solved in parallel using PETSc [10]. The solution (the electric potential) is then
distributed to all processors to be used in the next time step. Focus of the initial
work on ELMFIRE will be on basic scalability, mostly related to memory usage.
The version provided for the project does not implement any spatial domain
decomposition that leads to massive memory usage and data duplication. This
currently completely prevents simulations on large grids. The items mentioned
below are what currently have been identified as possible solutions to problems
problems preventing ELMFIRE from scaling to simulations larger than 100 000
processors. It is however expected that we find additional, and more important,
problems once the initial domain decomposition has been done.

(I) Implement a 3D domain decomposition : The version provided for the
project does not implement any spatial decomposition of the particles. Parti-
cles are distributed evenly among processors but the electrostatic grid data is
duplicated in all processors. This prevents scaling to larger electrostatic grids
than approximately 120x150x8 regardless of the number of cores available. For
large scale simulations of e.g. JET or ITER it would be beneficial to be able
to simulate electrostatic grids up to 3000x4000x16 i.e. almost 1500 times larger
than today. An estimate for an ITER simulation is that 640 000 cores would
be needed for 590 billion particles. With the current version this would require
approximately 28TB memory per core. We plan to implement an electrostatic
grid cell based domain decomposition of the code so that each processor can
have particles only inside its own grid cells. This should restrict the grid cell
data needed in each processor to its own grid cells and a few surrounding grid
cells (in order to propagate the particles in time). It should also remove the need
to communicate large amount of data for the charge data with the downside of
having to send particle data between processors in each time step.

(II) Improve load balancing : In the current version load balancing is not a
large problem but it is expected that the 3D domain decomposition will introduce
load-balancing issues, as the particles are not evenly distributed between all grid
cells in the simulation. These need to be investigated and addressed after the
initial domain decomposition has been performed. One approach would be to
dynamically reallocate the electrostatic grid based on the workload, that is, the
size of the grid and the number of particles.

(III) Improve memory usage for binary collisions: ELMFIRE calculates colli-
sions between randomly chosen particles close to each other in each time step. In
order to assess how close particles are to each other, a separate collision grid is
set up. Currently this uses 10 times the memory it really needs. By introducing
data structures that avoids duplications this could be improved.

(IV) Parallelize file writing : File writing in ELMFIRE is presently done by
all processes sending data to process 0, which then writes the data to disk. For
small simulations this is typically not an issue (< 5% of the each time steps goes
to writing diagnostics) but it will likely block large scale simulations and input
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files for visualizations. The file writing needs to be parallelized for ELMFIRE to
scale to ITER sized problems.

2.2 GROMACS

The work in GROMACS is focused on achieving significant improvements for
real applications. Seen from the users side, there are three overall important
objectives in order to advance the state-of-the-art for different applications: (I) to
reduce the computation time per iteration in order to achieve longer simulations,
(II) to improve the capacity to handle larger application systems so that e.g.
mesoscopic phenomena can be simulated, and (III) to improve the accuracy
and statistics for small application systems through massive sampling. All three
aspects are critically important, but they require slightly different approaches.
The wallclock time for a single time-step iteration is already today in the range
of a few milliseconds for some systems, and while there are some possibilities
to improve this further, it is not likely that it can be improved by more than
perhaps down to the order of 0.1 milliseconds. In contrast, handling much larger
systems, i.e. more atoms, is easier (although not trivial) from a parallelization
algorithm point-of-view, but it will involve challenges related to handling of data
when a single master node no longer can control all input and output, both when
starting execution and for checkpointing or output. Finally, for small systems the
main approach will be ensemble techniques to handle thousands of simulations
that each will use thousands of cores. Detailed improvements wiil be as follow:

(I) Benchmarking new GROMACS releases, and GPU coding : GROMACS
version 4.6, which has been developed during the first part of the project, is
currently in the beta stage, and will bring some important new advances in do-
main decomposition and scaling over previous versions. We have developed a
new set of computational kernels that have departed from the classical imple-
mentation with neighbor lists, which will make it much easier to parallelize both
with SIMD and multithreading, and achieve a higher fraction of the hardware
peak floating-point performance. These kernels are also being implemented on
GPUs, and Gromacs 4.6 will use heterogeneous acceleration with some kernels
running on the GPU while other execute simultaneously on the CPU, where the
domain decomposition is also done. It will be an important step to benchmark
all these new kernels on different hardware, in particular large clusters with GPU
co-processors (such as Cray XK6), and in this frame we will also implement sup-
port for the next-generation Nvidia Kepler architecture scheduled for release in
the spring of 2012. These cards in particular will be used on several new Cray
installations.

(II) Multi-grid solvers for efficient PME electrostatics : The vast majority
of biomolecular simulations rely on particle-mesh Ewald (PME) lattice summa-
tion to handle long-range electrostatic interactions. Since this in turn relies on
3D FFTs, the associated all-to-all communication pattern is a major bottle-
neck for scaling. We are developing improved FFT algorithms and communica-
tion patterns, but to improve support for heterogeneous architectures such as
CPU-GPU parallelism on each node, we need to develop algorithms that avoid
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communicating grids over all processors. This can currently be achieved either
through multipole-based [I1], or multigrid-based [I2] methods, and we intend to
investigate both. This part is targeting ” medium size ” parallelization for normal-
size atomic systems (10k-100k cores), and the O(N) algorithms will provide vir-
tually perfect weak scaling, even for systems including long-range electrostatics
(currently this is only true for simple cut-off interactions).

(III) Efficient large-scale I/0 : With the completion of long-range electrostat-
ics algorithms that exhibit O(N) scaling, it should be possible to reach multi-
petascale for normal simulations of very large systems such as virus particles,
complexes of several molecules, or standard material science studies. Typical
simulations of this kind may involve a few hundred million particles. To support
this, we need to rewrite the input/output layer of Gromacs so that a large set of
the I/O tasks participate in reading the data from files to avoid running out of
memory on the master node, and to avoid global communication during start-up.
This will ideally use a minimalistic PGAS-like library that is fully portable (or
even included in the code), so that all I/O code does not have to do explicit com-
munication. We will also implement code for check-pointing and for trajectory
output that supports asynchronous output by sending the data to a subset of
the I/O nodes which then transpose the data, and write it to trajectories while
the simulation continues. This should be decomposed over time-frames rather
than space.

(1V) Task-based parallelism : One of the most significant long-term changes
will be a complete code re-write to support introduction of task-based parallelism
for improved efficiency inside many-core nodes, to enable better simultaneous
utilization of CPUs and GPUs, and to overlap computation and communication
between nodes. Of these, the last item will be particularly critical for increased
scaling, since system size growth means that gradually more time is spent on
communication than computation. At this point we will also investigate the usage
of lower-level communication libraries to improve scaling further. Presently, our
preliminary tests indicate that automated tools such as OpenMP do not provide
sufficiently fine-grained control over the execution, and we might therefore have
to use threads directly unless better alternatives are found.

(V) Ensemble computing and parallel adaptive molecular dynamics : Our main
disruptive long-term path to true exascale performance will be to combine di-
rect domain-decomposition scaling in individual simulations with ensemble ap-
proaches to support simultaneous execution of thousands of coupled simulations.
This will be accomplished by using Markov State Models and kinetic clustering
for parallel adaptive simulation [13]. In contrast to the distributed computing ap-
proach used e.g. in Folding@Home [14], exascale resources will enable extremely
tight coupling between simulations each using 1k-100k cores. This will make it
possible to employ kinetic clustering for slow dynamics (e.g. multi-millisecond
structural transitions in proteins) where even single state transitions will require
petascale-level simulations, and complete mapping of the processes is simply not
possible with todays resources. This will initially be implemented as a separate
layer of code, where our idea is to formulate dynamic data flow networks that
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execute a set of simulations, perform analysis, and based on the result of the
analysis a second generation of simulations is executed. The advantage of this
approach is that the resulting code will be very easy to adapt to other simula-
tion programs (in principle anything that relies on sampling). In particular, this
setup will enable us to achieve exascale performance for typical application sys-
tems. A target setup is a normal membrane protein system with around 250,000
atoms. With the new electrostatics solvers and task parallelism, we expect to
achieve efficient scaling over 1k-10k cores (including heterogeneous CPU-GPU
parallelism), and an ensemble could then typically include 1,000 such simula-
tions, which means efficient use of well over a million cores. Larger systems will
enable us to push this to even larger supercomputers, and approach a billion
cores on future exascale resources.

2.3 IFS

The Integrated Forecasting System (IFS) is the production numerical weather
forecast application at ECMWF. IFS comprise several component suites, namely,
a 10-day deterministic forecast, a four dimension variational analysis (4D-Var),
an ensemble prediction system (EPS) and an ensemble data assimilation system
(ENDA). The use of ensemble methods are well matched to todays HPC systems,
as each ensemble application (model or data assimilation) is independent and
can be sized in resolution and by the number of ensemble members to fill any
supercomputer. However, these ensemble applications are only part of the IFS
production suite and the high resolution deterministic model (referred to as 'TF'S
model” from now on) and 4D-Var analysis applications are equally important in
providing forecasts to ECMWF member states of up to 10 to 15 days ahead.
For the CRESTA project it has been decided to focus on the IFS model to
understand its present limitations and to explore approaches to get it to scale well
on future exascale systems. While the focus is on the IFS model, it is expected
that developments to the model should also improve the performance of the
other IFS suites (EPS, 4D-Var and ENDA) mentioned above. The resolution
of the operational IFS model today is T1279L91 (1279 spectral waves and 91
levels in the atmosphere). For the IFS model, it is paramount that it completes
a 10-day forecast in less than one hour so that forecast products can be delivered
on time to ECMWF member states. The IF'S model is expected to be increased
in resolution over time as shown in Table 1.

Table 1. IFS model: current and future model resolutions

IFS model Envisaged Operational Grid point  Time-step

resolution Implementation spacing (km) (seconds)
T1279L91 2011 16 600
T2047L137 2014-2015 10 450
T3999L200 2023-2024 5 240

T7999L300 2031-2032 2.5 120
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As can be seen in this table, the time-step reduces as the model resolution
increases. In general halving the grid spacing increases the computational cost
by 12, a doubling of cost for each of the horizontal coordinate directions plus
the time-step and only 50 percent more for the vertical. However, in reality the
cost can be greater than this, when some non-linear items are included such as
the Legendre transforms and Fourier transforms. It is clear from this that the
IF'S model from a computational viewpoint can utilize future supercomputers at
Exascale and beyond. What is less clear is whether the IFS model can continue
to run efficiently on such systems and continue to meet the operational target
of one hour when running on 100,000 or more cores which it would have to
do. In a nutshell, TFS is a spectral, semi-implicit, semi-Lagrangian code, where
data exists in 3 spaces, namely, grid-point, Fourier and spectral space. In a sin-
gle time-step data is transposed between these spaces so that the respective
grid-point, Fourier and spectral computations are independent over two of the
three co-ordinate directions in each space. Fourier transforms are performed be-
tween grid-point and Fourier spaces, and Legendre transforms are performed
between Fourier and spectral spaces. A full description of the above IFS par-
allelization scheme is contained in [I5]. The performance of the IFS model has
been well documented over the past 20 years, with many developments to im-
prove performance, with more recent examples described in presentations on
the ECMWF web-site (http://www.ecmwf.int). In recent years focus has turned
to the cost of the Legendre transform, where the computational cost is O(N?)
for the global model, where N denotes the cut-off wave number in the triangu-
lar truncation of the spherical harmonics expansion. This has been addressed
by a Fast Legendre Transform (FLT) development, where the computational
cost is reduced to CL N?LOG(N) where Cy, is a constant and O < N. The
FLT algorithm is described in [T6[I7/18]. While the cost of the Legendre trans-
forms has been addressed, the associated TRMTOM and TRMTOL transpo-
sition routines between Fourier and spectral space are relatively expensive at
T3999 (> 10% of wall time). Today, these transpositions are implemented using
efficient MPI allgatherv collective calls in separate communicator groups, which
can be considered the state of the art for MPI communications. Within the
CRESTA project we plan to address this performance issue by using Fortran90
coarrays to overlap these communications with the computation of the Legendre
transforms, this being done per wave number within an OpenMP parallel region.
If this approach is successful, it could pave the way for other areas in the IFS
where similar communication can be overlapped with computation. The semi-
implicit semi-Lagrangian (SL) scheme in IFS allows the use of a relatively long
time-step as compared with a Eulerian solution. This scheme involves the use
of a halo of data from neighbouring MPI tasks which is needed to compute the
departure-point and mid-point of the wind trajectory for each grid-point ("ar-
rival’ point) in a tasks partition. While the communications in the SL scheme
are relatively local the downside is that the location of the departure point is
not known until run-time and therefore the IFS must assume a worst case geo-
graphic distance for the halo extent computed from a maximum assumed wind
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speed of 400 m/s and the time-step. Today, each task must perform MPI com-
munications for this halo of data before the iterative scheme can execute to
determine the departure-point and mid-point of the wind trajectory. This ap-
proach is clearly non-scaling as the same halo of data must be communicated,
even if a task only has one grid-point (a rather extreme example). To address
this non-scaling issue, the SL scheme will be optimized to use Fortran90 coarrays
to only get grid-columns from neighbouring tasks as and when they are required
in the iterative scheme to compute the departure-point and mid-point of the
trajectory. In IF'S the cost for computing Fourier transforms is Cp NyLOG(Ny),
for each varying length latitude J = 1..N (N as above), where Cp is a constant
and Ny is the number of grid points on latitude J. For optimal performance
of the fourier transforms, full latitudes are statically load-balanced to tasks,
where each task is responsible to computing FFTs for a subset of latitudes and
a subset of atmospheric levels. The heuristic currently used will be reviewed as
part of the CRESTA project and to explore an improved cost function for this
load-balancing problem. The improved scheme should be applicable to all model
resolutions. Based on the above background description of IF'S, we propose the
following schedule of developments within the CRESTA project. It should be
noted that some of these developments will overlap in time.

(I) Coarray kernel : Develop kernel to investigate overlapping computation
and communication using Fortran 2008 coarrays in an OpenMP parallel region.

(II) Ezascale ”Legendre transform” optimization : The IFS transform library
will be optimized to overlap the computation of the Legendre transforms with the
associated communications. These code developments will use the same strategy
as prototyped in the Coarray Kernel, where the Legendre transform computa-
tion and associated coarray communications will execute in the same OpenMP
parallel region. This development will be tested using IFS model resolutions up
to T2047.

(III) FEzascale “Semi-Lagrangian” optimization : Developments to the IFS
semi-Lagrangian scheme to use Fortran 2008 coarrays to improve scalability by
removing the need to perform full halo wide communications.

(IV) Optimization of Fourier latitude load-balancing heuristic : Optimization
of the heuristic used to statically load-balance the distribution of variable length
latitudes in grid-space. An optimal distribution of latitudes is required to load-
balance the cost of performing Fourier transforms as IFS transforms data from
grid to Fourier space.

(V) Development of a future solver for IFS : Research into a new multigrid
solver for extreme scaling of IFS and a replacement of the spectral method. Such
a solver could be initially tested using a shallow water model code and not IFS.
Please note, this development is not part of ECMWEF’s current research plans
and should be considered more speculative.

2.4 HemelLB

The Lattice-Boltzmann method for solution of partial differential equations has
nearly ideal weak scaling properties. The HemeL B code has, consequently, proved
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to have excellent scalability. This has been explicitly proved up to roughly 20,000
cores and it is reasonable to expect good scaling far beyond this number. For
HemeLB to function properly on multi-petascale and exascale and to be useful for
clinical applications a set of libraries and systemware must be able to support the
code. It is not sufficient that these libraries be delivered as research code capable
only of use on specific platforms, each of these must be usable, manageable,
deployable well-engineered, well-tested code.

(I) Visualisation and steering : Support for standard flow field visualisation for
exascale simulations is a prerequisite for HemeLB to work at the exascale. As a
first step, standard tools for flow visualisation, such as COVISE [17] will be linked
to HemeLB in an ad-hoc fashion. However, to move forward, we will need to work
with CRESTA collaborators to define a configuration system (API or DSL) so
that visualisation tools can work with HemeLBs data in-situ, to support co-
visualisation. In order to handle remote visualisation for steering at the exascale,
data-volumes will need to be reduced by in-situ extraction of medically relevant
properties, such as vessel wall stress, so that these smaller datasets can be shared.
As HemeLB will form part of an ecosystem of computational physiology models
within the Virtual Physiological Human, these systems will need to be made
sufficiently configurable so that HemeLB results can be visualised alongside those
of collaborating codes as part of a multiscale simulation.

(II) Pre-processing : HemeLB uses the Parmetis [16] library to achieve domain
decomposition for sparse geometries. Effort will be required within CRESTA to
ensure this library scales appropriately. CRESTA enhanced or developed domain
decomposition tools must support configurable interfaces for application specific
domain decomposition. Later efforts will support continuous dynamic domain
decomposition, in response to both simulation and system variability, including
support for fault-tolerance.

(III) Environments and operating systems : The vision of HemeLB as part
of a clinically deployed exascale virtual physiological human will require usable
environments for exascale deployment and job management. Job management
infrastructure must support remote on-demand access from clinical settings,
and appropriate algorithms for resource sharing must be developed for exas-
cale hardware for this context. Operating system support for applications must
be robust and easy-to-use, supporting multiple interacting applications using
heterogeneous languages and paradigms for multiscale simulation.

Environmental support for auto-tuning of application configuration will be
necessary, and this will require effort to support interaction with HemeLBs
compile-time auto configuration facilities through CMake.

(III) Introspection : HemeLB, as with many other applications, needs to be
aware of its own progress as time passes. This application introspection, if it is
not to be a blocker to exascale performance, will require attention from HemeLB
developers and CRESTA tool effort. This will require not only performance mea-
surement, but also support for report generation, visualisation of the correct-
ness of the lattice-Boltzmann simulation. Within the multiscale VPH context,
HemeLB introspection will need to interact with that of other applications. A
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clear API allowing application developers to discover on-going changes in the
host environment, responding to faults and slow-downs, will be required for per-
formance at Exascale.

2.5 NEKS5000

Nek5000 [8] is an open-source code for the simulation of incompressible flow in
complex geometries. The discretization is based on the spectral-element method
(SEM) that combines the higher-order accuracy from spectral methods with the
geometric flexibility of finite element methods. Nek5000 is written in mixed For-
tran77/C and designed to employ fully large-scale parallelism. The code has a
long history of HPC development. Recently the large-scale simulations were suc-
cessful performed on the Cray XE6 system at PDC, KTH with 32,768 cores [19]
and on the IBM BG/P Eugene with 262,144 cores [20]. An overview of the capa-
bilities and recent developments within the Nekb000 community is given in the
presentation by Paul Fischer, Main developer [20]. Within the CRESTA project,
main focus will be on the development of the following software environment and
tools:

(I) Adaptive refinement : Current version of Nek5000 code uses conformal
grid with uniform order of the spatial interpolations throughout the domain.
The principal way for grid refinement is by global p-refinement, i.e. by increas-
ing the approximation order globally. There are two methods of introducing
adaptive mesh refinement (AMR): adaptive h-refinement, i.e. the splitting of
cells into smaller ones, and adaptive p-refinement, i.e. increasing polynomial or-
der in given element. Giving possibility to resolve particular region of the flow,
AMR makes a challenge as it can have negative .effect on scalability. However,
local refinement, either adaptive or by user intervention, is a desirable feature for
nek5000 which will be crucial for the future scalability of the code, in particular
for the simulation of large-scale problems involving turbulence. In the CRESTA
project we will work on framework of adaptive refinement in h-types. The basic
idea is that the refinements are only used in the regions with significant errors.
Such error estimators can be formulated based on the solution of the adjoint
equations (dual problem) that can be thought as a measure of the sensitivity of
certain observables to the local mesh quality. Such estimators have been devel-
oped at KTH. Though consideration of multiple local observables such as drag,
shedding frequency etc. it is proposed to decide when to divide the element or
switch from lower-order to higher-order (or vice versa).

(II) Alternative discretisation : So far, nek5000 is designed to have a spectral-
element discretization in all directions, either 2D or 3D. For certain cases, in
particular flows in which spatial homogeneity can be assumed in at least one
direction, the SEM discretization could be replaced by a more optimal Fourier-
Galerkin discretization. A substantial gain in performance can be expected for
such flow cases. The algorithmic changes implied by this new discretization, and
in particular the impact on scalability will be studied within CRESTA.

(II1) Hybrid parallelization : In the present state, Nek5000 does not employ any
hybrid approach to parallelization. All communication is handled by MPI, which
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has proven to be very efficient, mainly due to the element structure of the mesh.
However, in the light of alternative discretization that might include an additional
level into the mesh topology, a hybrid approach should be reconsidered.

(IV) Boundary conditions for exascale computing : The definition of bound-
ary conditions requires special attention, especially in cases where large parts of
the domain are in the turbulent state. In particular for exascale computations,
which are aimed at realistic geometries in large domains, a faithful prescription
of boundary conditions is crucial. The challenge is two-fold: First, reflections
in the form of pressure waves need to be avoided at boundaries, and secondly,
proper convective properties need to be maintained as to reduce the upstream
influence of the condition, even in the presence of highly unsteady flow towards
the boundary. Similar issues need to be dealt with at inflow boundaries when
transient turbulent velocity profiles are required: Simply adding random fluc-
tuations to the DNS profiles lacks the temporal and spatial correlation of real
turbulence. The fluctuations must be pre-computed and stored in a database or
computed on the fly from an auxiliary computation. In the framework of exas-
cale simulations, the handling of such unsteady conditions needs to be assessed
and refined.

(V) Pre- and post-processing : In the CRESTA project it is decided to focus
on h-type refinements, so we have to consider simple mechanism of the mesh
generations build into the code. However, only quadrilateral (2D) and hexahe-
dral (3D) elements are used in the types of mesh used in the Nek5000 making the
problem easier. For the real-life and industrial applications, it is necessary to em-
ploy scalable pre-processing tools for complex geometries. Within the CRESTA
collaboration an interface to optimized solutions of meshes with domain decom-
position and load balancing should be created.

(VI) Load balancing : Nek5000 can obtain full scaling with uniform order for
petascale computations. When adaptive mesh refinement is introduced the load
balancing should be carefully considered due to the fact that computation on
different cores begin to differ as a result of varying order of accuracy.

2.6 OpenFOAM

OpenFOAM is an open source application for computational fluid dynamics
(CFD). The program is a 'toolbox’ which provides a selection of different solvers
as well as routines for various kinds of analysis, pre- and post-processing. Open-
FOAM is licenced under the GPL. As such, modifications have been made to
the code by different parties at different times and several versions are in com-
mon use. In this project, we consider the official release from the OpenFOAM
foundation (a not-for profit organisation, wholly owned by OpenCFD Ltd.), and
the release from the OpenFOAM Extend project. It is hoped that any changes
to the code contributed by the CRESTA project could be made available for
inclusion in both distributions, but if there are good reasons to make optimi-
sations or improvements to one particular version, we will do so. For example,
there is code specific to the Extend project for dealing with moving geometries.
If it turns out that this code introduces a performance bottleneck, then this
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would be a valid candidate for optimisation during the project. Since the code
can be used in many different ways, it is challenging to identify ways to enable
the application for exascale systems in general. It is likely that there are some
problems that are much more amenable to large-scale systems, but it is not ob-
vious a priori that there is much to be gained in making simulations of simple
systems (such as Lid-driven Cavity Flow) scale to many more processors than
at present. In conjunction with contacts at OpenCFD Ltd., we have identified a
use-case that is considered a realistic candidate for simulation at exascale. This
specific example, which consists of modelling the flow of air around a motorbike,
is representative of a wider class of problems that could benefit from simula-
tion on exascale systems. There is no published roadmap for the development of
OpenFOAM, so this activity will have to be fairly reactive to any developments
in the releases of the code. Having said that, it is expected that the following
approach will be taken to prepare OpenFOAM for exascale systems:

(I) Benchmarking of the latest version of the code : Version 2.1.0 of Open-
FOAM has been released since the CRESTA project started. There have been
some fairly major changes to the code since version 1, including the incorpo-
ration of parallel mesh generation. Benchmarking and profiling of OpenFOAM
have been undertaken on previous versions, but before we know where to con-
centrate our efforts in optimization for future systems, we need to understand
the impacts of recent changes on the codes performance. In addition to provid-
ing an update of previous results on the performance of OpenFOAM based on
current systems and the newest version of the code, we will adjust parameters
of our profiling runs in order to attempt to measure how the performance would
vary as the ratios of computation, communication and memory access vary. In
addition, we will specifically investigate the I/O performance of the code and
seek to identify how these I/O patterns are likely to change when scaling up to
exascale.

(II) Code analysis of the latest version of the code : In tandem to measuring
the performance of the code, an analysis of the codes structure will be under-
taken in order to, for example: Determine internal interfaces in the code where
alternative solvers, libraries, etc. could be swapped in if it was determined that
these could provide better performance; Determine the parallelisation patterns
currently used in the code and evaluate these with respect to exascale issues such
as fault-tolerance. A simple example of this might be that a synchronous domain-
decomposition might not be intolerant to a process failing, whereas a tracked
task-farm approach might be able to recover from a process failing. (Note that
this is example is illustrative. At present, there is no evidence that either of these
patterns is directly relevant to OpenFOAM.)

(III) Performance analysis of kernels, libraries : In the course of the activities
above, we will have been able to quantitatively measure the characteristics of
the sub-problems solved by libraries and routines used for linear algebra and
meshing. We will then engage with the developers of these libraries and seek
comparisons with the other applications to determine possible optimisations.
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(IV) Iterative performance improvement : Concentrating on those parts of
the code which have been determined to be potential future bottlenecks, we will
use standard optimisation techniques to seek to improve the scaling of the code
(including, for example, overlapping communication and computation, possibly
through the use of more asynchronous communications, investigating the effects
of compiler optimization, changing memory access patterns, introducing further
(hybrid) levels of parallelisation).

(V) Investigation of alternative parallelisation approaches : This is a riskier
approach to improving parallel performance scaling, but potentially has large
rewards, especially if it emerges that future architectures look like they will be
qualitatively different from those of today. With a large code like OpenFOAM,
it is very difficult to make non-incremental changes to the code, but having
gained a good understanding of the codes structure and performance over the
first two years of the project, it is likely that proof-of-concept code could be
written to demonstrate alternative parallelisation patterns that could eventually
be adopted by the codes developers. These will probably involve exposing more
potential parallelism in the problem so that the code can make use of the mil-
lions of cores expected to feature in the machines of the future. Such patterns
could include hybrid message-passing / shared memory approaches, adding task
parallelism, or re-computing certain data to reduce communications.

(VI) Hydraulic machinery : The application of OpenFOAM at the Institute of
Fluid Mechanics and Hydraulic Machinery, University of Stuttgart, is the simu-
lation of the flow in an entire hydraulic turbine using a Large Eddy Simulation
(LES). This means that a great part of the turbulence in the flow will be resolved
in the computation up to very fine turbulent scales. Since the Reynolds number
of this flow is very high this simulation needs very fine computational grids, very
fine time steps and long simulation times. Consequently a very high computa-
tional effort is required. According to a publication of Chapman [22] and Frohlich
[23] the number of vertices in the computational domain can be estimated to
approximately 1000 million for all parts of a hydraulic machine. In order to
do LES for a whole hydraulic machine (including rotor/stator interaction) the
General Grid Interface (GGI) implemented in OpenFOAM is needed. For this
reason the version OpenFOAM-1.6-extend [7] is required. In our knowledge no
work has been done on exascale systems with the OpenFOAM-1.6-extend ver-
sion. GGI was a bottleneck in the OpenFOAM-extend version but due to a new
implementation performs well when running on 512 cores. Further performance
and scale up tests will be carried out to find out if GGI is a possible bottleneck
on exascale systems. In case GGI could be bottleneck on exascale systems, an
upgrade must be carried out. Furthermore, the standard simulation technique
in OpenFOAM for incompressible flows is an implicit time discretization with
a SIMPLE or PISO type pressure-velocity coupling. These algorithms could be
computationally time expensive because of the need to repeatedly solve global
systems of linear equations in an iterative loop. The solution of these global
linear equation systems could be a bottleneck for a LES on very fine grids.
Performance and scale up tests will be carried out in order to identify if the
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algorithms mentioned before are able to get good results, as well as a good
performance with OpenFOAM-extend. If it is not the case, the algorithms will
be changed towards an explicit formulation. A version of the Fractional Step
Method would be proposed to solve the equations. It is well known that the
Fractional Step Method (FSM) is used for Direct Numerical Simulation (DNS)
and LES to enhance the stability of the solution. It is expected, that this method
will reach a higher performance for very large computational grids. To realize
the tests mentioned above two test cases have been prepared at IHS. To check
if the physics is correct quite quickly, we have prepared the ERCOFTAC square
cylinder with about 15 million grid vertices. The ERCOFTAC square cylinder is
a unique test case that is experimentally measured [24]. Furthermore, the final
scope is to compute a whole hydraulic machine and therefore we have as final
test case a whole hydraulic machine.

3 Summary

In summary, the experience so far from the CRESTA project is that exascale
strategies are rather code specific. The rather expected exceptions from this
are parallel I/O and hybrid parallelization. These two seems to be more or less
necessary for all codes with exascale ambitions, but neither of them receive much
emphasis in any of the above application code strategies.

Fault tolerance is another issue that should concern all code to some extent.
This problem has been discussed rather extensively within the HPC community
for some time, but the problem is, more or less, theoretical until hardware faults
begin to occur much more frequently in practice.

Finally, an issue that should concern many scientific applications is the type of
scaling strategy for exascale. These can be crudely divided in three cathegories:
strong, weak and ensemble scaling. For the strong scaling case it is in general
probably impossible to reach exascale, for weak scaling it seems realistic to some
extent, and for the ensemble it is in general possible for any code. This kind of
scaling strategy thinking is likely to become one of the key components of the
practical side of exascale computing in the future: How to first maximize strong
scaling, then weak scaling, and thereafter to find the optimal way to govern
a large set of simultaneous large parallel computations in order to maximize
the scientific output. Finally, there must also be a stratgey on how to handle
the massive data output from such an exersice. Of these, the first two parts
have been rather well taken care of already as they are key components of code
optimization on smaller computers. The latter two become important on multi-
petaflop or exaflop scale.
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1 Introduction

This article gives an overview of the DECI (Distributed European Computing
Initiative) Minisymposium held within the PARA 2012 conference taking the
form of a short set of articles for each of the talks presented. The work presented
here was carried out under either the DEISA (receiving funding through the
EU FP7 project RI-22291) or PRACE-2IP (receiving funding from the EU FP7
Programme (FP7/2007-2013) under grant agreement no RI-283493) projects.

2 How Strong Are Materials? (Alava?)

2.1 Introduction

Large-scale simulations of fracture models were done to resolve the question of
how strong are materials. We investigated systematically [I] the behaviour of two
dimensional lattice models - the so-called random fuse networks - by varying the
system size and the disorder present in the “material”. This class of models [2]
simplifies continuum fracture by putting it into a lattice, and doing a scalar
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approximation of elasticity; it is known that qualitatively this is not essential
and the resulting speedup is important. For the same reason the simulations are
tried in two dimensions instead of three.

These results, combined with theoretical advances made to explain them,
establish the fundamental basis of the strength of brittle materials in the presence
of heterogeneities - in other words for anything which is hard and something
other than a pure single crystal. The main efforts in the DEISA part consisted
of porting the simulation software to the KTH Ekman-cluster and running it.
The numerical effort is to solve a series of mechanical equilibria - which amounts
to a damage mechanics study - the evolution of the scalar fracture model by
rank-I updates. These work only in 2D, so extensions to 3D systems are much
tougher. The original version was written at ORNL by Phani Nukala and the
current version is an adaptation of a serial version from Cornell to the DEISA
HPC environment.

The main issue is to produce massive amounts of data from “fracture experi-
ments” on systems that evolve to the fracture point with accumulating damage.
This then produces empirical probability distributions of strength (the peak or
maximum stress along the stress-strain curve). These are illustrated in Fig. [l
The crucial question now becomes, what is the physical mechanism underlying
the observed distributions? We found out that the “disordered materials” under
study evolve with damage accumulation such that finally two crack populations
exist: the original one, and a set of larger ones from crack coalescence. Both of
these have an exponential shape.

The mathematics of the problem has been postulated to be “simply” the
statistics of extremes. This assumes that the systems (as in laboratory samples)
can be split into independent sub volumes, and that these “representative ele-
ments” have the same microscopic detail or physics irrespective of the system
size. Such limiting distributions arise from a rescaling procedure, which in physics
is well known as “renormalization”. Thus we expect the strength distributions
to scale with system size so as to converge to one of the limiting distributions
of extreme statistics. Engineers have traditionally used the Weibull one of these
to describe fracture. However, we discovered by the very high quality data ob-
tained, up to 10° samples for a given case (disorder, system size) that this is
not true. Duxbury, Beale, and Leath argued in the 1980s that the limiting one
should actually be the Gumbel one. Our simulations show this to be correct,
but even more importantly they allow us to capture the tail-behaviour of the
extreme statistics of the problem. In other words, as is the case for the Gaussian
or normal distribution for finite samples (finite “N”) the tails of the probabil-
ity distribution do not follow the asymptotic form, since the convergence does
not apply there yet. We were able to establish this thanks to the numerical
results, and moreover to obtain motivated by this discovery several important
estimates of the deviations, in particular in the important low-strength tail of
the distribution.
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Fig.1. Testing the weakest link hypothesis. Comparing the survival probability for a
L? network (solid lines) with that predicted by the weakest link hypothesis or renor-
malization, S /2, (dotted lines) for one strength of material disorder. Note the excellent
agreement even for moderate system sizes.
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Fig. 2. Testing the Duxbury-Beale-Leath distribution of failure stresses. A collapse of
the strength distribution for different system sizes at the same disorder as in Fig. [I}
such that the DBL form would collapse onto a straight line.
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3 Dynamics of Black Holes (Cardoso?)

3.1 Introduction

The two-body problem in General Relativity has been an outstanding problem
since Einstein’s original formulation of the theory, which was solved satisfacto-
rily only recently; in 2005 several groups were able to numerically solve Ein-
stein’s equations and generically evolve black hole (BH) binaries for the first
time [I]. This breakthrough paved the way for an exciting journey into funda-
mental physics, astrophysics, high energy physics and particle physics [2]. The
PRACE/DECI project of the Lisbon group aimed at substantially advancing the
state-of-the-art in several aspects.

3.2 Astrophysics

Stellar-mass or supermassive BHs are an important component of most galaxies.
They are thought to interact (at significant rates) in two-body processes, mak-
ing them the most attractive source of gravitational waves to be observed with
interferometers such as LIGO, VIRGO, TAMA, etc. There has been significant
effort and progress in understanding the inspiral and merger of equal-mass BHs;
unfortunately, the more realistic case of extreme mass ratio binaries is technically
challenging due to the large number of scales in the problem. We have partially
solved this problem by considering the head-on collisions of highly unequal mass
BH binaries [3]. In Fig. Bl we show waveforms (Newman-Penrose scalar ;) for
the full nonlinear problem, together with a perturbative, point particle (PP)
calculation [4]. The overall good agreement for waveforms demonstrates that
numerical techniques are capable of bridging the gap between linear analysis
and the fully non-linear regime of general relativity. For more details we refer
the reader to Ref. [3].

3.3 Fundamental Physics

The ability to collide BHs at arbitrary speed opens up the possibility to test
the Cosmic Censorship Conjecture (CCC): are black holes always the outcome
of such collisions or can one form naked singularities? In particular BHs spin
slowly, with angular momentum J satisfying the constraint Je/(GM?) < 1.
where G is Newton’s constant, c¢ is the light speed and M the BH’s mass. The
high energy, finite-impact collision of two BHs is a prime candidate to give rise
to an object other than a BH, potentially violating the CCC. Are BHs destroyed
in high-energy collisions? Our results show a fascinating outcome: potentially
hazardous (for the CCC) collisions radiate their excess angular momentum in
zoom-whirl orbits before merging. In other words, BHs that approach each other
with too large an angular momentum, zoom out while radiating this excess and
are then “allowed” to merge. This is indicated in Fig.[dl The CCC is not violated
[516].
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Fig. 3. (Color online) Waveforms for head-on collisions of two BHs with masses M1, M>
and mass ratio ¢ = M1 /M2 = 1/100, with n = M1M2/M2. We have decomposed the
waveform in spin-2 spherical harmonics. The modes are shown for [ = 2 (upper panel)
and | = 3 (lower panel), for two different initial separations. Also shown is the waveform
in the PP limit (black solid lines). Taken from [3].
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Fig. 4. Puncture trajectories of two BHs thrown at each other with v = 75%c. Here
we show the trajecotry of a single BH, for a scattering orbit (b[= 3.40M] > bscat), &
prompt merger (b[= 3.34M] < b*) and a nonprompt merger (b* < b[= 3.39M] < bscat )-
Taken from Ref. [6]. The zoom-whirl orbits typically radiated excess angular momentum
before merger.

3.4 High Energy Physics

The high-energy processes described above are directly relevant for many HEP
scenarios, including TeV-scale gravity and the gauge/gravity scenarios. In the
former, BHs can be created from point particle collisions in accelerator
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experiments. The ATLAS team at CERN is actively looking for BH signatures
from such events [2]; one crucial input for these searches is the production cross-
section, i.e, the critical impact parameter to produce a BH. This calculation re-
quires the full nonlinear numerical evolution of Einstein’s equations. Preliminary
results in four-dimensional asymptotically flat spacetime yield bgcat ~ 2.5(M /v)
[7/506]. The total gravitational radiation released in such collisions can go up
to 35% of the CM energy or higher, making these the most (radiative-)efficient
processes known to mankind. The extension of these results to higher dimensions
is on-going [SIOIT0].

3.5 Particle Physics

Finally, an unexpected mechanism of using dynamical BHs to study particle
physics was recently uncovered. Rotating BHs display an interesting effect known
as “superradiance,” whereby an incident beam of light gets scattered with higher
amplitude. This happens at the expense of the hole’s kinetic energy: after the
reflection, the BH spin decreases. If the scattered wave is massive, the entire
setup produces a “black hole bomb”: the scattered and amplified beam gets re-
sent into the BH by a mass term. This leads to an exponential energy extraction
cascade from the BH, that would extract energy from the black hole very quickly.
Therefore the very existence of such particles is constrained by the observation
of spinning black holes. Supermassive BHs can be used to measure the mass
of extremely light particles to unprecedented levels and rule out the existence
of new exotic particles, perhaps constraining the nature of dark matter. With
this technique we have succeeded in constraining the mass of the photon to
unprecedented levels: the mass must be smaller than 1072% eV, or one hundred
times better than the current bound [ITJT2]. To put this in context, this mass
is one hundred billion billion times smaller than the present constraint on the
neutrino mass (~2eV).
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4 Framework to Run Ensemble Climate Simulations

(Asif?)
4.1 Introduction

A typical climate forecast experiment is a run of a climate model having variable
range of forecast length from a few months to a few years. Such an experiment
may have one or more than one start-dates and every start-date may comprise of
single or many members. The full length of forecasting period for the experiment
could be divided into number of chunks of fixed forecast length by exploiting the
model restart options. Furthermore, in the context of computing operations,
every chunk could have two big sections; a parallel section where the actual
model run would be performed and a serial section for performing other necessary
operations like post-processing of the model output, archiving the model output
and cleaning the disk space for the smooth proceeding of the experiment.

START DATE MEMBER JOB
Parallel Serial
19601101 () O—{T _Sm [}——{TPost J—{IClean [}
TS65TI0T = {T_sm [} Post [J—{TClemn [}
5701101 {(I_sm 1] ¢ [ Pot [ ~{[Clem]]

(—{T Sim T} {T"Post T}—+{T Clean ]

20051101 T Sm T Post [T Clean T]

Fig. 5. Sample experiment setup

Fig. Blshows a sample experiment where ten start-dates and five members are
under consideration and each start-date and member is being run for ten years.
Many EC-Earth partners run simulations (Sim) using 10 chunks of one year
forecast length, with accompanying post-processing (Post) and cleaning (Clean)
jobs. In this fashion, the experiment will be made of 50 independent simulations,
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each submitting 30 jobs (10 Sim, 10 Post and 10 Clean) with specific dependen-
cies between them. In short, there is high need of a system to automate such
types of typical experiments in order to optimize the utilization of computing
resources.

4.2 Autosubmit

1C3 has developed Autosubmit, which is a tool to manage and monitor climate
forecasting experiments by using supercomputers remotely. It is designed with
the following goals:

Supercomputer-independent framework to perform experiments
Efficient utilization of available computing resources on supercomputers
User-friendly interface to start, stop and monitor experiments

Auto restarting the experiment or some part of experiment

Ability to reproduce the completed experiments

G 0=

The current version of Autosubmit has an object-oriented design and uses Python
as its programming language and SQLite as a database. Autosubmit acts as a
wrapper over the queuing system of a supercomputer remotely via ssh. So far,
queuing systems such as PBS, SGE and SLURM has been tested with it. In an
experiment, as a first step Autosubmit creates the entire sequence of jobs and
thereafter submits and monitors the jobs one by one after resolving dependencies
among them until the end of sequence.

The development of Autosubmit is quite relevant compared with other similar
tools such as SMS and ecFLOW (developed at ECMWF). The main idea is to
increase the portability and improve the interactions with other systems/tools
such as PRACE/ENES tools (e.g. SAGA) and METAFOR (e.g. CIM).

4.3 Wrapping Exercise

Currently supercomputing centres are increasing their computing capacity such
as number of cores, etc. Meanwhile, the rules to make use of those resources
are also becoming more strict. For example running the model on a supercom-
puter where the minimum scalability is restricted (e.g. PRACE Tier-0 machines:
8,192 cores at JUGENE, 4,096 at SuperMUC, HERMIT and MareNostrum with
2,048 minimum number of cores, or US DOE INCITE project: 60,000 cores at
Oak Ridge Leadership Computing Facility (OLCF)). Hence, as it is difficult to
scale the current version of EC-Earth beyond a few hundred cores there is a
need to adopt some mechanism to deal with minimum scalability restrictions on
supercomputers.

Therefore, in order to provide a solution to the climate community for the
restricted scalability issue, a job wrapping exercise has been made using Lindgren
(PDC supercomputer) where several jobs are wrapped at the same time by using
python threading techniques. Say for example, 10 jobs of 346 cores each could
be run as a big single job of 3460 cores.
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4.4 Future Work

Future Autosubmit will be a flexible platform, released under GNU/GPL license,
prepared for running multi-model and multi-jobs in Tier-0 and Tier-1 machines:

— Explore options to implement wrapper to ensemble simulation jobs (this
piece of work will be done by IC3 under IS-ENES2)

— Integration of HPCs using SAGA (Simple API for Grid Applications)

— BLISS-SAGA (a light-weight implementation for Python) comply with OGF
(Open Grid Forum) standards (how to interact with the middleware)

— A number of adaptors are already implemented, to support different grid
and cloud computing backends SAGA provides units to compose high-level
functionality across distinct distributed systems (e.g. submit jobs from same
experiment to different platforms)

— Documenting experiments on simplified METAFOR standards by using re-
lational databases (MySQL)

— Designing a web front-end for experiment creation and monitoring (Django)

— Storing user-defined job dependency tree in XML Scheme file

— Installation package and open source license.

5 CP2K in PRACE (Carter', Bethune! and Statford')

5.1 Introduction

This short article summarises work undertaken during various different activities
within PRACE, and the work is described in more detail in [I]. The article
includes a very brief introduction to CP2K[2], and a brief discussion of CP2K
as an archetypal mixed-mode code. It then describes some of the work done to
introduce mixed-mode parallelisation into the code, and presents some results.
It concludes with a mention of ongoing work.

CP2K performs atomistic and molecular simulations of solid state, liquid,
molecular and biological systems. It is a Density Functional Theory code with
support for both classical and empirical potentials. The code is freely available,
and is GPL licensed.

5.2 A Mixed-Mode Strategy

The code was originally parallelised with MPI only. OpenMP has been incre-
mentally added to the code to introduce mixed-mode parallelism. The idea is to
use OpenMP to parallelise those areas of the code that consume the most CPU
time. Setting up parallel regions is relatively cheap, allowing the creation of
micro-parallel regions. There are various different strategies for communication
between processes within a mixed-mode code. CP2K adopts what is arguably the
cleanest approach, and the safest to implement, whereby MPI communication
takes place only outside parallel regions.
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The decision to introduce OpenMP to CP2K was motivated by a desire to
improve both performance and scaling. Performance of the code was expected
to improve for the following reasons: First, using a mixed-mode approach should
reduce the impact of those algorithms that scale poorly with the number of MPI
tasks. For example, when using 1" threads, the switchover point from where it is
necessary to use a less efficient 2D-decomposed FFT (as opposed to a more effi-
cient 1D version) is increased by a factor of T'. Second, better load balancing is to
be expected. Existing MPI load balancing algorithms do a coarse load-balance.
Finer-grained balance can then be achieved over OpenMP threads. Finally, there
should be a significant reduction in the number of messages. This was particu-
larly true on pre-Gemini networks, and the less sophisticated networks found on
standard clusters. For all-to-all communications, the message count should be
reduced by a factor of T2.

As an example of some of the optimisation work on CP2K undertaken in
PRACE, it was found that the calculation of the core Hamiltonian matrix could
take a significant amount of time for certain calculations, particularly those
with large basis sets. There was no existing OpenMP in this part of the code,
so adding OpenMP to this part of the code was tried, motivated by the obser-
vations described above. The main change to the code was the introduction of
a parallel region around a loop over all particles in a neighbour list: DO WHILE
(neighbor list iterate(nl iterator)==0).

A challenge in such a parallelisation is determining the breakdown between
shared and private variables. The choice as to which class the variables fall into
was determined through inspection of the code. The code uses an iterator object
to iterate over a fairly complex data structure, so it is difficult to tell a priori to
what extent the iterations of the loop are independent. From examining output
from instrumented test runs, and again through inspection of the code, it was
determined that it was possible to break down the iterations of the loop into
independent tasks, each corresponding to one or more iterations of the original
loop.

The approach was to introduce a new data structure to hold the data describ-
ing a task and to iterate over the original data structure in serial, building an
array of tasks. A parallel region was introduced around a new loop which loops
over the independent tasks. In fact, the tasks are not completely independent,
as they all update a shared array containing forces between particles.

The performance of the resulting code (for a representative input) is shown
in Fig. [0l In general, performance only improves when using a small number of
threads, but in this case at least, this is an improvement over the original MPI-
only version. Considerable improvements were also made to other parts of the
code. OpenMP was added for 11 cross-correlation functionals and improvements
were made to a further 6. All twenty-six now use OpenMP. For the functionals to
which OpenMP was added the efficiency was over 95% on a single NUMA region
and up to 92% on the entire node. Also, three new grid-reduction strategies were
implemented for a key ‘collocate’ kernel. The best result was a ~ 50% speedup
over the existing version when running on 24 threads. A further inefficiency was
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Fig. 6. Performance comparisons of original and modified code (left) 16 MPI processes,
varying number of threads; (right) 512 total cores,varying number of MPI processes
and threads. System: HECToR. Benchamrk: molopt. Details in [IJ.

identified in memory re-use, giving a ~ 400% speedup for the routine as a whole.
Details are available in [IJ.
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6 Synthetic Seismograms for a Synthetic Earth — Joint
Modeling of Mantle Flow, Mineral Physics and 3D
Seismic Wave Propagation (Schuberth?®)

6.1 Introduction

Section [6lis a shortened and modified version of [I]. Long-standing questions in
the study of Earth’s deep interior are about the origin of seismic heterogeneity
and the nature of flow in the mantle. Understanding the dynamic behaviour is
important as the flow drives plate tectonics and controls the way the Earth looses
its heat. Thus, it is a crucial factor in tectonic modelling or in simulations of the
geodynamo and the thermal evolution of the Earth. A better understanding of
these aspects is also of great societal importance. For example, the continuous
drift of tectonic plates relative to each other results in a build up of stress at the
plate boundaries. This stress can eventually exceed the yield stress of rock thus
leading to (often disastrous) earthquakes.
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In order to improve conceptual models of mantle flow, the major challenges
today are to efficiently mine the wealth of information contained in seismic wave-
forms (which are our main source of information on Earth’s deep interior) and
to constrain the relative contributions of thermal anomalies and compositional
variations to the observed seismic heterogeneity. High expectations to gain new
insight currently lie within numerical simulations of wave propagation through
complex three-dimensional structures. Modern computational tools for seismic
wave propagation incorporate a large range of physical phenomena and are able
to produce synthetic datasets that show a complexity comparable to real ob-
servations. Also, computing whole waveform synthetic seismograms at relevant
frequencies became feasible on a routine basis in recent years thanks to rapidly
growing computational resources. However, it has long been not clear how to
introduce geodynamic considerations into seismological forward simulations in
an efficient and consistent manner, and how to benefit from expensive large-scale
simulations for our understanding of deep Earth structure and dynamics. This
was the motivation to develop a novel method, in which we generate synthetic
3D mantle structures based on dynamic flow calculations that serve as input
models in the simulation of seismic wave propagation.

Here, we present the results of this new multi-disciplinary approach that com-
bines forward modelling techniques from geodynamics, mineral physics and seis-
mology. The thermal state of Earth’s mantle at present-day geologic time is
predicted by 3D high-resolution mantle circulation models using a finite-element
method. The temperature field is then mapped to seismic velocities. For this
task, we take advantage of recent progress in describing the state of dynamic
Earth models in terms of elastic properties through thermodynamically self-
consistent models of mantle mineralogy. The predicted seismic structures are
then implemented in a spectral element code for the simulation of 3D global
wave propagation [2]. Using state-of-the-art techniques to solve the wave equa-
tion in 3D heterogeneous media, this approach allows us to capture the full
physics of wave propagation.

Both the geodynamic as well as the seismic simulations require large-scale
high-performance calculations. The computational resources provided through
the DECI-5 call offered by DEISA allowed for the first time to simulate seismic
wave propagation in synthetic Earths; that is, we are now able to compute syn-
thetic seismograms completely independent of seismic observations. This means
that we can test geodynamic hypotheses directly against seismic observations,
which may serve as a complementary tool to tomographic inversions. More specif-
ically, it is for the first time possible to study frequency-dependent waveform
effects, such as wavefront healing and focusing/defocusing in mantle structures
with realistic length-scales; that is, in a physically consistent manner.

6.2 Results

One specific question that we addressed with our joint forward modelling ap-
proach is the origin of two large regions of strongly reduced seismic velocities in
the lowermost mantle (the so-called African and Pacific superplumes). Several
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Fig. 7. Snapshots of the three-dimensional wavefield in one of our geodynamic models.
3D global wave propagation was simulated for an earthquake in the Fiji Islands region
using a spectral element technique. The wavefield is depicted by green and magenta
colours together with the shear wave velocity variations in the model, for which vertical
cross-sections and iso-surfaces are shown on a blue to brownish colour scale ranging
from -2% to 2%. Surface topography is also shown for parts of the globe for geographic
reference [Schuberth et al., 2012].
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seismological observations are typically taken as an indication that the super-
plumes are being caused by large-scale compositional variations and that they
are piles of material with higher density than normal mantle rock. However, a
large number of recent geodynamic, mineralogical and also seismological studies
argue for a strong thermal gradient across the core-mantle boundary (CMB)
that might provide an alternative explanation through the resulting large lateral
temperature variations. We tested the hypothesis whether the presence of such
a strong thermal gradient in isochemical whole mantle flow is compatible with
geophysical observations.

We have computed the 3D seismic wavefield and synthetic seismograms for a
total of 17 earthquakes distributed evenly over the globe. To obtain the necessary
numerical accuracy for the period range of interest (i.e., down to a shortest
period of 10s), we used a spectral element mesh with around 1.3 billion grid
points and 3.7 billion degrees of freedom distributed on 486 compute cores of the
supercomputing facility HLRB2 of the Leibniz Supercomputing Centre (LRZ).
The wavefield of each earthquake was “recorded” by a very large number of
virtual seismic stations in order to achieve a relatively homogeneous illumination
of our model even with a low number of seismic sources. From the synthetic
seismograms, we obtained ~350,000 traveltimes each for compressional (P) and
shear (S) waves by an automated cross-correlation measurement technique.

The results from our full wavefield simulations demonstrate that P- and S-
wave traveltime variations in our geodynamic model are compatible with the
observed seismic data: The standard deviation of P-wave traveltime variations

Standard deviation of P- and S—wave traveltime variations
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Fig. 8. Comparison of the standard deviation (SMAD = scaled median average devi-
ation) of traveltime variations in our geodynamic model to that of the observations.
Intermediate and light shaded areas show the range of values inferred from the data [2].
Blue lines: simulated P-wave traveltime variations. Red lines: same for S-waves. Solid
and dashed lines show SMAD curves for two different measurement techniques [3].
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stays almost constant with depth in the mantle, while that of the S-wave trav-
eltimes increases strongly towards the CMB (cf. Fig. Bl). Most important, the
standard deviations of our synthetic P- and S-wave traveltimes do not only show
different trends with depth, but are also matching those of the observations well
in terms of their magnitude. This is a remarkable result, as it shows that iso-
chemical whole mantle flow with strong core heating and a pyrolite composition
can be reconciled with seismic observations. While this finding does not neces-
sarily mean that there is no chemical heterogeneity present in the lower mantle,
it shows that complex large-scale variations in chemical composition are not
required by the dataset studied here.
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7 A Case Study for the Deployment of CFD Simulation
Components to the Grid(Weinzierl®)

10 is predicted to become a major challenge on exascale computers [I]. The 10
facilities of future computer generations will not scale with the increasing com-
pute power, the increasing number of cores [I|2I3/4], and the increasing com-
plexity and data richness of exascale simulations. Already today, loading data to
the supercomputer and downstreaming data from the simulation code requires
significant time. Already today it is thus possible to study and tackle the 10
challenge and to study strategies of how to avoid I0-bound applications [3].
With DEISA, the deployment of CFD simulations, for example due to Grid in-
terfaces, is straightforward and the information where insight is computed can,
theoretically, be hidden, Our work studies how to get the data to and from a
Grid-like environment.

For the solution of partial differential equations with mesh-based methods, one
approach is, on the one hand, to generate the meshes and, hence, study data in-
situ. On the other hand, it is natural to examine approaches of downstreaming
only data really of interest to the scientists. Analogous to the more science per flop
[5], the aim here is more insight per megabyte. The latter comprises traditionally
in-situ visualisation and postprocessing, but it also induces use of all 10 facilities
efficiently and reduction of the memory footprint of the streamed data.

In the present DEISA project, we study, on the methodological side, the im-
pact of octree-based mesh to the IO challenge. Our generalised octree approach
embeds the computational domain into a unit hypersquare and divides equidis-
tantly this hypersquare into k pieces along each coordinate axis. Let d be the
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dimension. Then the result are k¢ new subcubes and we can continue recursively
while we decide independently for each subcube whether to continue or not. The
spacetree generalising the octree idea beyond bipartition yields a cascade of
adaptive Cartesian grids that are very simple both to encode and to generate in-
situ. While spacetree-based approaches look back to a long tradition in computer
graphics, they attract a lot of attention in particular for mesh generation and
management on supercomputers (e.g., [6I7IROTOTTIT2TITATHIR]).

In-situ visualisation and postprocessing is beyond the scope of the present
DEISA project, and it also is a misfit to the traditional batch processing. How-
ever, it turns out that the spacetree method is nevertheless advantageous for
the IO output. We propose not to downstream all the simulation data, but to
replace the fire-and-forget data flow with a demand-driven approch: The user—
in our example a simplified fluid-structure interaction code—specifies the region
of interest; typically around the structure in this case. There might be multiple
regions of interest formalised by queries. A query comprises the spatial region of
interest, which subset of data (only pressure values in CFD, e.g.) are relevant,
and in which resolution the data shall be downstreamed [L6]—it describes a reg-
ular Cartesian grid. Furthermore, we augment each query with an identifier to
which software component on which computer aims to postprocess these data
[17].

The queries are distributed among the spacetree. Now, the multiresolution
tessellation pays off: queries can be decomposed along any domain decompo-
sition, they can be mapped to a spacetree refinement level corresponding to
the query resolution, and the mapping of spacetree-associated data to a query
is trivial due to the simplicity of the grids used. Queries befilled by different
compute nodes due to a domain decomposition can be merged directly on the
supercomputer again, before they are sent back to the postprocessing device.
This way, we deliver exclusively data that is of relevance, we deliver data in the
required resolution and accuracy, and we provide low overhead answers—there
is no simpler data structure than a Cartesian grid.

Such an approach can be tailored to the 10 topology of a supercomputer.
Queries decompose along the domain decomposition, i.e. each compute node
might befill only subparts of a query answer. While we do merge these subparts
on the supercomputer, we ensure that the data is merged such that each merging
node has an I0 node exclusively (if possible) i.e. answers to multiple queries do
not compete for 10 resources. Furthermore, not all data merges have necessarily
to happen on the supercomputer—it might pay off to merge some subqueries,
send incomplete answers to the postprocessing nodes, and to merge the results
there. Such a dataflow scenario is advantageous if the individual fragments sent
back can be sent due to multiple IO devices. First experiments reveal that with
a tailoring to the IO topology and architecture as well as a demand-driven data
flow that streams exclusively the data required, one can even make a great step
towards on-the-fly visualisation of supercomputer simulations.

The octree paradigm’s multiscale mesh representation furthermore enables
the data management to exploit smoothness and multiscale properties of any
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data streamed. Following ideas of full approximation storage ([19], e.g.), any
data mapped onto a spacetree can be induced to any level of the tree: if a so-
lution on a fine adaptive Cartesian grid is given, simple induction, i.e. copying
data from fine grids to coarser within the tree, yields multiple solution resolu-
tions. It then is straightforward to switch from a nodal data representation to a
hierarchical one. Data is not stored as-is, but we suggest to store on each level
only the difference to the coarser levels: the hierarchical surplus [20021]. While
there are multiple advantages of such a storage schemes, the interesting property
for 10 streaming is that the gain in accuracy per level usually is limited and can
be analysed. Typically, only few bits of the hierarchical surplus carry relevant
additional information compared to coarser resolutions. It is thus straightfor-
ward, to hold only these bits, i.e. not to work with full double precision but with
restricted accuracy [22].
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Abstract. We present an implementation of parallel GPU-accelerated
GPAW, a density-functional theory (DFT) code based on grid based
projector-augmented wave method. GPAW is suitable for large scale elec-
tronic structure calculations and capable of scaling to thousands of cores.
We have accelerated the most computationally intensive components of
the program with CUDA. We will provide performance and scaling anal-
ysis of our multi-GPU-accelerated code staring from small systems up
to systems with thousands of atoms running on GPU clusters. We have
achieved up to 15 times speed-ups on large systems.

Keywords: electronic structure calculations, density functional theory,
graphics processing units.

1 Introduction

Various electronic structure calculations are a large consumer of supercomput-
ing resources around the world. Density functional theory (DFT) is a popular
method for ab-initio electronic structure calculations in material physics and
quantum chemistry. There exists several program packages and codes intended
for these kinds of simulations. We have implemented an accelerated version of the
GPAW code using multiple graphics processing units (GPUs). GPAW [1],12] is a
DFT program package based on the projector augmented wave (PAW) method.
It is suitable for large scale parallel simulations and it is used by several research
groups world wide. Time-depended density-functional theory is implemented in
the linear response and in the time propagation schemes. In this paper we de-
scribe the work done in implementing the most computationally intensive rou-
tines in GPAW with GPUs. We also present and analyze the performance of our
implementation.

A modern GPU is an efficient stream processor suitable for parallel compu-
tations. In the last few years the usage of GPUs in scientific calculations and
in high performance computing has increased considerably. In a recent Top500
list [3] (11/2012) 62 out of the top 500 supercomputers in the world used ac-
celerators or co-processors with 50 of these employing NVIDIA GPUs. Several
computer codes in physics and chemistry have already been modified or written
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from scratch to take advantage of GPUs. More information on the use of GPUs
in computational physics can be found for example in a review paper by Harju
et al. [4].

In DFT simulations numerical approximations are needed. They relate to the
treatment of the core electrons and to the discretization of the equations. The
most common discretization methods are localized orbitals, plane waves, real
space grids and finite elements. Normally an iterative minimization procedure
is used to find the solution to the problem starting from an initial guess [5].
Depending on the discretization method, the known numerical bottlenecks are
vector operations, matrix products, stencil operations and fast Fourier trans-
forms. These computationally intensive parts are prime targets for GPU accel-
eration. However in order to attain high performance is it usually also necessary
to implement GPU versions of a lot of the non-intensive routines.

Previously GPUs have been used in DFT calculations based on Gaussian type
orbitals |6-10], wavelet basis sets [11], plane waves |12-16] and to some extent
real space grids [17]. But to our knowledge this is the first DFT implementation
running on large GPU clusters using real-space grids and the PAW method.

2 Overview of GPAW

We will give only a short overview on GPAW and the PAW [18] method. Atomic
units are used in all equations. We use the DFT formulation introduced by
Kohn and Sham [19], where the problem of interacting electrons is mapped to
one with non-interacting electrons moving in an effective potential so that the
total electron density is the same as in the original many-body problem [20].
The single-particle Kohn-Sham (KS) wave functions ¢, (r) are solutions to the
equation

Hpn(r) = entn(r), (1)
where the Hamiltonian is H = —éVQ + v (r) + Vext(T) + vze(r). The last
three terms in the Hamiltonian define the effective potential, consisting of the
Hartree potential vy defined by the Poisson equation VZvy(r) = —dmp(r),

external ionic potential v.,; and the exchange-correlation potential v,.. The
exchange-correlation potential contains all the complicated electron interactions
that the KS formulation hides and in practical calculations it is approximated.
The electronic charge density p(r) is determined by the wave functions p(r) =
>, filhi(r)|?, where the f;:s are the orbital occupation numbers.

PAW method is based on a linear transformation 7 between smooth valence
pseudo wave functions 1, and all electron Kohn-Sham wave functions 1,,. Core
states of the atoms ¢¢(r) are frozen. The transformation operator T can be
constructed from the atom centered all electron wave functions ¢ (r), the cor-
responding smooth partial waves ¢¢(r) and the projector functions p¢(r). The
transformation is exact with infinite number of partial waves and projector func-
tions. In practical calculations one or two functions per angular momentum
channel are usually enough.
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In PAW formalism KS wave functions can be expressed as
Un(r) = Gu(r) + 3 (Vi(r = Ra) = 03(r — Ra)) (2)

where ¢¢ and 9¢ are the all electron and the smooth continuation of the wave
function ), inside the augmentation region of the atom a at position R,. The
functions ¢ and ¢¢ may be expressed in terms of projector functions and atom

centered wave functions
w= Prdi(r) (3)
J

= Z P??j(;? (’l") (4)

where the expansion coefficient in terms of projector functions are Py = (P; |zzn>
Similarly we can construct the all-electron (AE) density in terms of smooth
part and atom-centered corrections.

n(r) =i(r) + ) (n°(r) — a%(r)) ()

The pseudo electron density is defined as
() =Y faldu(r)]? + D fc(r) (6)

where f,, are the occupation numbers and n¢ is a smooth pseudo core density.
With the atomic density matrix

D3, i, = Y (ulB2,) fn (%, | 0n) (7)

n

the all electron density inside the augmentation sphere is expressed as

= > D, i, (r)et, (r) + ni(r) (8)

11,12

and its smooth counterpart as

=Y Di i, 0 (1), (r) + it (r) 9)

11,12

An iterative procedure called Self-Consistent Field (SCF) calculation is used
to find the solution to the eigenproblem (Il) starting from an initial guess for
the charge density. In GPAW the most time consuming parts of a single SCF-
iteration are: solving the Poisson equation, iterative refinement of eigenvectors,
subspace diagonalization and orthonormalization of wave functions.
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The Hartree potential is obtained from the electron density by solving the
Poisson equation using a multigrid algorithm [21]. Tterative updating of the
eigenvectors is done with the residual minimization method — direct inversion in
iterative subspace (RMM-DIIS) |22, 23]. Basically, at each step the wave func-
tions are updated with the residuals.

Ry = (H — €,8)¢n, (10)

The convergence of this iteration is accelerated with the use of preconditioned
residuals by solving approximately a Poisson equation ;VQR,L = R, with a
multi-grid method [24]. A subspace diagonalization and the orthonormalization
of eigenvectors is performed at each step.

GPAW uses uniform real space grids to discretize the KS equations. Wave
functions (1, ), potentials (vh,¢) and densities (pg) are represented by their
values at grid (G) points. Derivatives and Laplacians (Lgg-) are calculated using
finite difference stencils. A coarse grid is used for wave functions and a fine grid
for potentials and densities. A radial grid is used for the projector functions
defined inside the augmentation sphere. The discretized Hamiltonian in PAW
formalism is defined as

Hge = —;LGG’ +vesrdcar + ZP?IGHZQP?QGH (11)
21,12
where pj; are the discretized projector functions and H¢ ; the PAW non-local
atomic Hamiltonian contributions.
Subspace diagonalization requires applying the Hamiltonian operator to the
wave functions and diagonalizing the resulting smaller Hamiltonian matrix.

Hnn’ = Z '(/JnG Z HGG"(/JH’G’ = Z '(/JnG(Hq?b)n’G (12)
G G’ G
The wave functions are then multiplied by the matrix of eigenvectors

Ve =D A tbwe. (13)

In orthonormalization an overlap matrix is constructed by applying overlap op-
erator to the wave functions

Snn’ = ZG: ¢nG ; SGG"(/JH'G’ . (14)

This is then Cholesky decomposed and multiplied with the wave functions to
obtain orthonormal wave functions

Uha =Y Lyhbwe. (15)

Both the subspace diagonalization and orthonormalization also involve integrals
of projector functions multiplied by the wave functions and addition of projector
function multiplied by a matrix to the wave functions.
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3 GPU Implementation

A NVIDIA Fermi [25] GPU architecture consists of several streaming multipro-
cessors, each with its own set of CUDA cores. Each core has a fully pipelined
integer arithmetic logic unit (ALU) and floating point unit (FPU) supporting
both single and double precision floating point arithmetic. All multiprocessors
have small amount of local memory and have an access to the global memory.
Local memory is split between L1 cache and shared memory, which can be used
as a user-managed cache. A global L2 cache is shared by all multiprocessors.
High global memory latency is masked by executing thousands of threads con-
currently. Local memory and registers are partitioned among currently executing
threads.

GPAW is implemented using Python programming language with extensions
written in C for the performance critical parts. Our GPU accelerated version
uses the PyCUDA |26] toolkit to enable the use of GPU in Python code and
several custom CUDA kernels [27] to speed up the GPAW C-extensions. We have
used GPUs to speed up most of the performance critical parts of SCF iteration.
All of our calculations use double precision arithmetic.

The Poisson equation is solved on a fine grid using a multigrid solver. The
basic operations are: finite difference stencils for the Laplace operator and re-
striction and interpolation operations between coarser and finer grids. We have
implemented CUDA kernels for all these operations and the entire Poisson solver
is done with GPUs.

The 3D finite difference kernel processes the grid slice-by-slice |28]. We define
global memory read redundancy as the ratio between output points written to
and input points read from global memory. Global memory read redundancy
is reduced by performing the calculations from shared memory. Each YZ-slice
of the grid is divided into 2D thread blocks. Each thread reads one grid point
from global memory to shared memory. Also data required for the stencil halos
is added to shared memory. Each thread then calculates the finite difference
operator for one grid point. For the YZ-slice data is read from the shared memory.
Data required for the X-axis calculations is stored in registers for each thread.
The working slice is then moved along the X-axis of grid to completely process
the grid. Our implementation automatically generates custom CUDA kernels for
each order-k stencils from a single C source code base. This is done to minimize
the shared memory and register consumption and to completely unroll all the
inner loops required for the finite difference operation. For small grids we also
divide the grid into concurrent slices along the X-axis of grid to increase the
number of threads performing calculations at the same time even though it
hurts the overall read redundancy.

Figure [Ml shows a performance comparison between CPU and GPU version of
3rd order finite difference operation for different grid sizes. The GPU used in
testing was NVIDIA Tesla M2070 which has double precision performance of 515
GFLOPS and maximum memory bandwidth of 150 GB/s. The CPU used was
Intel Xeon X5650 with six cores each with double precision performance of 10.64
(12.24 in turbo mode) GFLOPS and memory bandwidth of 32 GB/s. A single
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Fig. 1. The performance comparison of a 3rd order finite difference operator. GPU:
NVIDIA Tesla M2070 CPU: Intel Xeon X5650 using a single core.

CPU core was used in the tests. For large grid sizes the GPU version of the code
is over 40 times faster. The peak output performance for the kernel is around
1975 Mpoints/s. Ignoring boundary effects and using 16x8 thread blocks, the 3rd
order finite difference operator (with 19 input elements for every output value)
has global memory read redundancy of 2.1250. For each output value one global
memory write and 2.1250 reads are performed, resulting in around 49 GB/s
peak bandwidth usage for the whole kernel. For each output value 37 floating
point operations are performed, which means that kernel has peak floating point
performance at around 73 GFLOPS. Clearly for large grids the finite difference
kernel is memory bandwidth bound.

For the restriction and interpolation operations we use similar strategy as
for finite difference operations. Calculations are performed using combination of
shared memory and registers. Figure[2]shows a performance comparison between
CPU and GPU versions of the restriction and the interpolation operations for
different grid sizes. All operations support real and complex grids and finite
and periodic boundary conditions. The restriction, interpolation and the finite
difference kernels all have the same problem: the output bandwidth for small grid
sizes is much worse than for large grids. This can cause performance issues with
multigrid methods. Also, in practical GPAW calculations one generally wants
to use coarser grid sizes to speed up the calculations and to decrease memory
consumption.
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Fig. 2. The performance comparison of interpolation and restriction operators. GPU:
NVIDIA Tesla M2070 CPU: Intel Xeon X5650 using a single core.
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To avoid any slow and unnecessary transfers between the GPU and the host
computer, during the SCF-iteration all the wave functions are stored in the
GPU memory and the operations involving them are performed using the GPU.
The iterative updating of the eigenvectors (RMM-DIIS algorithm) is performed
entirely on GPUs. Most of the basic linear algebra operations are done with
NVIDIA’s CUBLAS library. Since large part of the operations is performed on
all of the wave functions, we have implemented blocking versions of most of our
kernels which allow us to update a block of eigenvectors simultaneously on a
GPU. These include custom versions of several of the level 1 BLAS routines. For
example, we have a implemented a custom blocking dot product using a GPU
optimized parallel reduction sum kernel. The preconditioner uses same basic
operations as the Poisson solver, but we use blocking versions of the restriction,
the interpolation and the finite difference kernels. Figure [ shows the effect of
different block sizes on the operations used by the preconditioner. Especially on
small grid sizes the use of blocking increases the performance considerably.

3rd Order Finite Difference Kernel Interpolation Kernel
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Fig. 3. The effect of different block sizes on the 3rd order finite difference, the inter-
polation and the restriction kernels on two small grid sizes

The most time consuming parts of subspace diagonalization and orthonormal-
ization are matrix-matrix multiplications which are performed with CUBLAS on
GPU. Also, the Hamiltonian operator and the overlap operator are applied to
the wave functions on GPU. For the integrals of projector functions multiplied
by the wave functions and addition of projector function multiplied by a matrix
to the wave functions we have developed several custom CUDA kernels which
perform blocking parallel integrations and additions between the projector func-
tions defined on a dense radial grids and wave functions defined on coarse grids.
We use GPU also for some smaller operations, like the calculation of the electron
density from the wave functions.
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The high-level parallelization of the code is done with MPI (Message Passing
Interface). Our GPU version supports multiple GPUs using domain decompo-
sition of the real space grid or by parallelizing over k-points. For k-points the
parallelization is almost trivial since the wave functions in different k-points
don’t interact numerically with each other. However, usually in periodic systems
with several hundred atoms or more only one k-point is needed.

Domain decomposition for the finite difference stencils and restriction and in-
tegration operations involves communication with the nearest neighbor domains.
In the GPU version this requires data movement from the device memory to the
main memory, transferring the data to the destination node using MPI and mov-
ing the data from main memory to the device memory in the destination node.
We have implemented several different approaches to speed up this process which
involve overlapping receives, sends, memory transfers and computations in the
middle part of the grids and blocking of several wave functions and boundary
regions into few large transfers. These are used depending on the grid and the
transfer sizes.

4 Performance Evaluation

We evaluated the performance and scalability of our code by comparing the
ground state DFT calculation times between the GPU and the CPU versions
of the code. For benchmarking purposed only a fixed number of SCF iterations
(usually 10) were calculated for each system and an average time for a single
SCF iteration was used to compare the performance. For small systems testing
was performed with Vuori cluster at CSC, which has 7 GPU nodes connected
to an Infiniband network. Each node has two Intel Xeon X5650 processors and
two GPU cards, either NVIDIA Tesla M2050 or M2070. All calculations were
performed using double precision floating point accuracy and the same number
of CPU cores as GPU cards were used in testing.

For the serial performance we used two simple test systems: the fullerene
molecule Cgg and 95 atom bulk silicon Sigs. The results are shown in Tables [II
and 2l The overall speed-ups for these systems were 7.7 for the silicon one and
8.3 for the fullerene. However the speed-ups for the individual GPU accelerated
parts were much higher ranging from 7.7 to 20. The reason for this is that about
one third of the time in the GPU accelerated version is taken by routines which
don’t have GPU implementations yet. A large chunk of that time is taken by
the calculation of the exchange-correlation potential.

We tested the parallel scalability the our multi-GPU code with a carbon
nanotube system. The scalability was tested in a weak sense meaning that we
attempted to keep the problem size per MPI task constant when the number of
tasks was increased. The length of the carbon nanotube was increased concur-
rently with the MPI tasks. The size of the system varied form one MPI task,
80 atoms and 320 valence electrons to 12 tasks, 320 atoms and 1280 valence
electrons. The performance of the CPU and GPU versions of the code and the
achieved speed-ups are demonstrated in Figure @l The same number of CPU
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Table 1. Bulk silicon with 95 atoms with periodic boundary conditions, 360 bands
and 1 k-point. Times are in seconds per one SCF iteration. Grid size: 56x56x80 CPU:
Intel Xeon X5650 using a single core GPU: NVIDIA Tesla M2070.

Sios CPU (s) GPU (s) Speed-up
Poisson solver 1.8 0.13 14
Orthonormalization 23 3.0 7.7
Precondition 9.4 0.77 12
RMM-DIIS other 32 3.2 10
Subspace diag. 23 2.1 11
Other 2.7 2.7 1.0
Total (SCF-iter) 93 13 7.7

Table 2. Fullerene molecule Cgp with 240 electronic states. Times are in seconds per
one SCF iteration. Grid size: 84x84x84 CPU: Intel Xeon X5650 using a single core
GPU: NVIDIA Tesla M2070.

Ceo CPU (s) GPU (s) Speed-up
Poisson Solver 13 0.64 20
Orthonormalization 11 1.2 9.2
Precondition 16 0.99 16
RMM-DIIS other 8.1 0.6 13
Subspace Diag. 22 2.1 10
Other 3.5 3.2 1.1
Total (SCF-iter) 76 9.1 8.3

cores and GPUs were used in all the tests. The weak scaling efficiency of the
multi-GPU code is very good. The largest speed-up was observed with 12 GPUs.

A larger test for weak scaling was performed with CURIE supercomputer
based in France, which has a large hybrid GPU partition with 144 nodes con-
nected to an Infiniband network. Each node has two Intel Xeon E5640 processors
and two NVIDIA Tesla M2090 GPU cards. Bulk silicon with periodic bound-
ary conditions was selected as a test system. Again the number of atoms in
the test system was increased concurrently with the MPI tasks. The size of the
system varied form one MPI task, 95 atoms and 380 valence electrons (grid
size: 80x56x56) to 192 tasks, 320 atoms and 6908 valence electrons (grid size:
164x164x164). The largest system requires about 1TB of memory for calcula-
tions. The performance, speed-ups and scaling behavior of the CPU and GPU
versions of the code is demonstrated in Figure[Bl Again, the scalability and the
performance of the multi-GPU code seems to be very good and consistent even
on massive systems using 192 GPUs. The achieved speed-ups varied from 10 to
15.8.
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Carbon Nanotube CPU vs. GPU
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Fig. 4. Upper figure: The weak scaling performance of the CPU and GPU versions of
the code using carbon nanotubes. A third degree polynomial is fitted to the figure,
since the largest chunk of the total time is taken by matrix-matrix multiplications.
Lower figure: The achieved speed-ups with GPUs. Equal number of GPUs and CPU
cores were used in all the tests. CPU: Intel Xeon X5650 GPU: NVIDIA Tesla M2070.
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Bulk Silicon CPU vs. GPU
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E5640 GPU: NVIDIA Tesla M2090.
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5 Conclusions

We have provided an electronic structure calculation code capable of running
on large GPU clusters. We have accelerated with GPUs most of the numeri-
cally intensive parts in DFT GPAW calculations: solving the Poisson equation,
subspace diagonalization, the RMM-DIIS algorithm and orthonormalization of
the wave functions. High performance was achieved by carefully optimizing the
CUDA kernels and minimizing the data transfers between the GPU and the host
computer. For the serial version of the code we observed speed-ups between 7.7
and 8.3. The performance could be improved by implementing more routines
using GPUs.

Multiple GPUs and nodes can be utilized with MPI using domain decom-
position or by parallelizing over k-points. Our parallel implementation overlaps
computations and data transfers between different GPUs. With the parallel ver-
sion of the code we were able to get significant speed-ups (up to 15 times) in
ground state DFT calculations using multiple GPUs when compared to equal
number of CPU cores. Also, an excellent weak scaling efficiency for the multi-
GPU code was achieved in the tested systems running up to 192 GPU cards.
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Abstract. In recent years the evolution of software architectures led
to the rising prominence of the Service Oriented Architecture (SOA)
concept. The services can be deployed in distributed environments and
executed on different hardware and software platforms. In the paper a
configurable and flexible environment, allowing composition, deployment
and execution of composite services, which can be applied in the wide
range of SOA-based systems is presented. It supports service semantic
description, composition and the distribution of service requests guaran-
teeing services quality, especially efficient allocating communication and
computational resources to services. We present an unified approach,
which assumes the semantic description of Web service functionalities
with an XML-based language - Smart Service Description Language
which provides similar features to that of OWL-S or WSDL, however, it
was designed to support services execution and monitoring. These unique
features allow to design a service execution engine, compatible with the
underlying execution environment and providing support for service QoS
guarantees.

Keywords: Service Oriented Architecture, service composition, service
request distribution, service security.

1 Introduction

In recent years the evolution of software architectures led to the rising promi-
nence of the Service Oriented Architecture (SOA) concept. This architecture
paradigm facilitates building flexible service systems. The services can be de-
ployed in distributed environments, executed on different hardware and software
platforms, reused and composed into composite services.

Service composition and execution were addressed in numerous works [6].
Many approaches [7] require a well-defined business process to compose a com-
posite service. Semantic analysis of user requirements, service discovery (meeting
the functional requirements) and the selection of specific services against non-
functional requirements (i.e. execution time, cost, security) are common issues in
service composition. However, there many disadvantages in the solutions devel-
oped so far, which prevent their successful introduction to the market. In many
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cases only one aspect of service composition is considered. For example the work
[10] focuses on services selection based only on one functional requirement at
a time. Other works show that non-functional requirements are considered to
be of a key importance, however approaches still ignore the aspect of building
a proper structure of a composite service which is a key to optimization of i.e.
execution time.

Various methods for services selection or composite service QoS-based opti-
mization were presented. However, those solutions are not widely used by other
researchers. Some of them propose complete end-to-end composition tools in-
troducing a concept of two-staged composition: logical composition stage to
prune the set of candidate services and then composing an abstract work-flow.
METEOR-S [I] presents a likewise concept of binding web services to an ab-
stract process and selecting services fulfilling the QoS requirements. Notions of
building complete composition frameworks are also clear in SWORD [L3], which
was one of the initial attempts to use planning to compose web services. How-
ever, it should be noted that the proposed approaches are closed and do not
support incorporations of other methods and algorithms. On the other hand, an
extensible framework-based approach is what is currently needed in SOA field in
order to create composition approaches that are fitted to different domains and
problems characteristic for them. An approach to service composition described
below was developed in order to be compatible with this assumption.

The paper is organized as follows. Section 2 briefly describes the architecture of
developed and implemented environment. Description of Service Composer and
Work-flow Engine which are responsible for service composition and execution
control are presented in section 3. In the section 4 components responsible for
service execution at the lowermost level are presented. Section 5 describes the
Validation Unit, it covers the presentation of the general idea as well as some
its implementation details. Finally, section 6 outlines the work and discusses the
further works.

2 The General Architecture of Proposed Environment

The architecture of proposed environment is presented in the figure I It is
composed of a number of independent modules providing separate functionalities
and interacting with each other using specified interfaces. Its components are
responsible for service composition and execution control provided by Service
Composer and Work-flow Engine, service execution and monitoring performed
by: Broker, Facade, Controller, Virtualizer, and Validation unit responsible for
secure execution of services. The main components of design and implemented
environment are as follows:

— Broker - handles user requests and distribute them to proper instances of
services. The decision is taken using information about current loading of
available communication and computation resources. Functional and non-
functional requirements are taken into consideration. It also performs inter-
nal requests to coordinate the operation of the system components as well
as obtain some necessary information.
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— Facade - supports communication with components behind it, and collects
necessary information for the Broker. It also provides special services for the
Broker to test current state of processing environment (e.g. characteristic of
communication links).

— Controller - manages all components behind the Facade. It is responsible for
control processing according to capabilities of the environment and current
state of it. It can also route the requests to the services independently, taking
into account computational resource utilization and performs decision to
start/stop another instance of service.

— Virtualizer - offers the access to hypervisor commands. Uses libvirt to exe-
cute commands which gives the environment independence from particular
hypervisor.

— Service Composer - is responsible for composite service composition.

— Work-flow Engine - governs the process of services execution and the dynamic
interpretation of requirements leading to service execution.

— Validation unit - provides the value of security level which is an important
non-functional requirement used by Service Composer. More specifically re-
turns a security level which is equal to the current anomaly level of the

service.
Monitoring data
|
|
| internal request
|
|Composite service internal request/
request i responce
handle
service service request
Service request request Faca
Compos Broker de | reseonce
er service service service request
responce responce =
\ J e o/ service responce

Fig. 1. The architecture of developed and implemented environment

Above specified modules interact using two interfaces. Internal communication is
XML-RPC based, for components behind the Facade, and uses SOAP messages
for communication between Broker and Facade. This allows flexibly manage dis-
tributed computational resources as well. Interaction with external components
is based on Broker services with SOAP messages.

3 Service Composer and Work-Flow Engine

This section presents a general composition scenario and indicates that each
of its stages could be performed using different methods; one could use differ-
ent semantic selection methods when searching for services; finally, optimization
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techniques could be used to produce the composite service fulfilling the non-
functional requirements [I4]. All these led to designing a composition framework
with an flexible architecture that would allow composition service designers to
incorporate various approaches, test them and deploy in a form of service en-
abled composition tools. This approach is fully consistent with the assumptions
of the SOA paradigm and stems from our previous experiences with service
composition frameworks [I5]. It consists of Service Composer, equipped with
a front-end Web interface allowing a business client to define his domain by
connecting to external service and knowledge repositories and Work-flow En-
gine. Both are service-based and can be called from an external application
through SOAP protocol. The composite services are described in SSDL (Smart
Service Description Language) which is proposed as a solution allowing simple
description of composite service execution schemes, supporting functional and
non-functional description of services. Its functionality includes the Web Service
Description Language (WSDL), but offers important extensions. A definition of
SSDL node types contains all basic data types which allow for the functional and
non-functional description of a service. Fach SSDL node, is used to describe a
basic functionality requirement for a service has several important sections used
during service selection, composition and the final execution plan optimization:

— physical description - used by every type of input and output data for a
specific Web Service,

— functional description - used to semantically describe the capabilities of a
service, expressed in terms of domain ontology concepts,

— non-functional description - used to describe non-functional parameters of a
service such as: time, cost, availability and others; non-functional parameters
that can be requested for composition purpose are not limited in any way -
external validation can be performed using, e.g. user defined ontology and
rules.

To compose a composite service means to find a set of atomic services and
bind them together so that they, as a new service, fulfil all functional and non-
functional requirements. Typically automated composition process requires a
semantic query and consists of three stages: building of a composite service struc-
ture, building of a composite service scenario, and finding an optimal execution
plan of a composite service. Each of the composition stages could be performed
using different methods. In order to provide a flexible approach to composition
tasks, the Service Composer is a composite service itself and is built up from
the services responsible for selection, data flow control and QoS optimization of
the atomic services which take part in a composite service execution plan. The
services of the Service Composer (semantic filters used for service selection, or
QoS assessment services) may use different strategies and algorithms. The result
of the composition process is a composite service plan which is passed to the
Work-flow Engine.

Execution engines which support the process-driven composite service exe-
cution were described in [12], while the engine support for execution of BPEL-
defined processes was proposed in [4] [5]. These solutions, however, assumed a
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fixed architecture of the service framework, which was based on certain devices
and did not allow the reconfiguration of execution engine.

After the composition of the composite service is completed, the service is
executed by the SSDL execution engine (Work-flow Engine). It assumes engine-
as-a-service approach, and offers an execution engine as a configurable composite
service. It has a built-in SSDL language interpreter and supports dynamic inter-
pretation of service description files, service configuration, and execution control.
The Work-flow Engine is implemented as a lightweight virtual machine which
may be duplicated and migrated upon decision taken on the SOA infrastructure
level. The core feature distinguishing Work-flow Engine from other execution
engines is its focus on composition mechanism and, together with the expressive
nature of SSDL language it interprets, ability to configure its own behaviour.

The Work-flow Engine can be configured to interpret and execute different kinds
of node classes defined in SSDL. SSDL is executed by the Work-flow Engine in two
phases. First, in the initialisation phase performs validation of the SSDL service ex-
ecution request and can run external services transforming the whole input SSDL.
Then, the engine executes each of the nodes of the SSDL by sending requests to
the Broker (processing phase). The Work-flow Engine architecture allows also for
further extension of its capabilities. For example both in the initialisation and the
processing phase chosen actions, can be performed by appropriate external Web
services indicated by the Work-flow Engine configuration.

The main role of the Work-flow Engine is to govern the process of services ex-
ecution. Actions focused on the SSDL and performed in the preprocessing phase
could be internal methods or, in configuration-driven approach, composite web
services. Based on this fundamental engine model, other phases could be added
to further personalize the behaviour and expand engine functionalities. This
should ultimately lead to further extensibility of the engine, incorporating vari-
ous composite service definitions as modules and various behaviours depending
on chosen events.

The key components of the Workflow Engine as a composite service, along
their functionalities are presented in the figure 2l Work-flow Engine is imple-
mented in Java and supports multi-threading to process multiple service execu-
tion plans at the same time. It is capable of executing composite services defined
in SSDL but it can also automatically generate web interfaces to composite ser-
vices stored inside the engine, broadcasting as those services. In this mode the
Execution Engine can emulate any composite service defined in SSDL. As a re-
sult of multi-threading, single execution engine could act as multiple services or
in extreme case, multiple engines could act as atomic services - hiding composite
services behind a layer of abstraction. For optimization purposes not only the
Work-flow Engine could be maintained in various localizations but also it can
delegate parts of its composite service to other instances of execution engine.

The scenario for using presented framework to compose and execute services
assumes the following three phases:
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Fig. 2. The Execution Engine scheme and basic functionalities

— Requirement definition - using Service Composer module interface operator
defines requirements for a composite service, which have a form of directed
graph, where nodes and links represent service requirements and the data
flow, respectively,

— Service composition - the requirements graph is processed by the Service
Composer, which executes composition algorithm and produces a composite
service graph which may be edited or checked by the operator. A composite
service graph is stored in the SSDL format and may be passed directly to
the Workflow Engine when execution is needed,

— Service Execution Work-flow Engine send the service execution request to
Broker in order to execute the service.

The basic workflow starts with the business process query, complemented by its
associated non-functional requirements (cost, security, time constraints, etc.). It
is possible to define the business process in the GUI of Service Composer or
to translate it from Aris BPM format via dedicated translation service which is
also provided as a part of presented environment. Future translation services (for
example from BPMN format etc.) are under development. The result of process
translation or its definition using Service Composer GUI has the same result it
is a composite service requirement graph which is stored in SSDL format.

In order to compose a composite service responsible for business process
execution, the requirements graph is read by the Service Composer and the
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composition process starts. The requirements graph is processed by the Service
Composer, which executes composition algorithm and produces a composite ser-
vice graph which may be edited or checked by the operator. The GUI of the
Service Composer is implemented in JavaScript and may be viewed from any
Web browser. It supports access to the service repository, domain anthologies
and provides a graphical view of any composite service or business process repre-
sented in SSDL. Figure B presents an example of composite service (responsible
for processing video monitoring data streams). The Service Composer GUI al-
lows editing and detailed inspection of the graph of any composite service. Any
changes being made are directly written in SSDL file, which supports the oper-
ator in controlling and altering the composition results. The composite service
graph contains all the atomic services and represents the dataflows between
them. Again, a composite service graph is stored in the SSDL format and may
be passed directly to the Work-flow Engine when execution is needed.
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Fig. 3. The graph of an exemplary composite service (dataflow view)

In order to execute a composite service, its definition in SSDL is passed to the
Work-flow Engine which communicates with the Broker and registers the ser-
vice. From this point on, the service may be executed by the Work-flow Engine,
which interprets the SSDL definitions of composite services and maintains the
non-functional parameters. The framework also allows the use of external exe-
cution engines (in this scenario, the Work-flow Engine serves as an SSDL-driven
interface for them). In the course of execution, the Work-flow Engine calls the
atomic services via the Broker, which distributes calls to the chosen instances of
services.
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4 Request Distribution Manager Components

Broker, Facade, Virtualizer and Controller together create so called Request
Distribution Manager (RDM) that is responsible for atomic service execution
at the lowermost level. The architecture of RDM resolves the problem with
traditional software lack of flexibility. Software composition and distribution in
the traditional form, where applications are not open enough to follow rapidly
changing needs of business, had to be replaced with something more flexible.
The idea to compose the processes from services publicly or privately available,
mix and match them as needed, easily connect to business partners, seems like
the best way to solve it.

The RDM receives from Work-flow Engine request for service execution and
takes decision where requested service will be executed in the distributed envi-
ronment taken into consideration current loading of available communication as
well as computation resources. Request for service execution is send by Work-
flow engine or any other client which, used defined for RDM (Broker) interface in
form of SOAP message. It means that RDM delivers to clients access to services
available in used distributed environment. Clients see available services at Bro-
ker localization and don’t know where service is located and that services may
be multiplied. From the client’s point of view, services are described at Service
Repository using WSDL standard, and are accessible using standard SOAP calls
and its physical location is hidden from the client.

The module of RDM that as the first received service request is Broker,
which acts as service delivery component. It distributes requests for services
to known service processing resources. The Broker collects data about instances
of atomic services based on measured or calculated values of non-functional pa-
rameters. To make allocation decision the Broker estimates completion time of
service execution and data (request/response) transfer time with use of adaptive
models of execution systems and communication links, built as a fuzzy-neural
controllers. However Broker distinguishes individual processing resources, simul-
taneously coordinates activities with Controller, and passes requests on. Each
and every request is redirected to proper service instance based on the values of
non-functional parameters of the requested service. Proper instance of service is
either found from the working and available ones or the new one is started to
serve the request. Such an approach gives the possibility to serve clients requests
and manage resource virtualization and utilization automatically with minimal
manual interaction.

The Facade supports communication between Broker and components inside
the execution system. The Facade collects and delivers some essential informa-
tion necessary to control request distribution. It accepts an interprets defined
SOAP messages of internal services used to support request distribution and
service virtualization. For standard service requests the Facade processes header
section of SOAP messages. It completes especially defined section with essential
data of service execution, currently real completion time of service execution.
Virtualizer for virtualization management used an open source toolkit libvirt. It
offers the virtualization API supporting most of existing hypervisors.
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Controller tasks is to prevent the system from taking virtual sprawl route,
which is pointed as one of the biggest challenges in virtualization. The data com-
ing from monitoring could be used to determine the service instances which are
not used and can be stopped. It also determine the need to increase or decrease
the amount of memory assigned to particular virtual machine. Furthermore Con-
troller shall understand service importance automatically starting the services
which require constant accessibility. Handling the request by the Controller can
lead to one of four situations. There is a running service instance which can
perform it and it will be returned as the target to which the SOAP request
shall be forwarded. All running instances of requested service do not satisfied
non-functional requirements from the request.Then the new service instance is
started. There is no running service, but there is an image which satisfies the
conditions. In such a case the image will be instantiated and it will be used as
the one to perform the request. Last possibility is the lack of proper service and
image in which case the error will be thrown and finally returned as a SOAP
Fault message to the client.

Below an example how the RDM can be used when services are provided by
an application that is built using client-server architecture is presented. The ap-
plication that provides services is multi-user application, moreover services can
be provided by the number of application instances available at different loca-
tions at the same time. The application is equipped with own monitoring system
that presents to the service administrator information about current loading for
each running application instance. Additionally application monitoring system
is able to predict how more users can used the application instance also. The
screenshot of application monitoring system is presented in figure @ The upper
view presents the loading of selected by service administrator server and lower
prediction how many more service requests can be provided by instance of appli-
cation running on the specified server. When application is not able to provide
service for some user because of application overloading, the request is store in
the queue or the message that system is not able to provide the service for user
is generated. Then to solve this problem service administrator starts manually
the new instance of application and redirect all request from the queue.

Using RDM solves the problem the necessity of service administrator actions
when the services are overloaded. Design and implemented Broker can works in
two modes, the first when all actions related to the service requests are mainte-
nance directly by the Broker and the second one when the Broker works in the
BaaS mode (Broker as a Service). When Broker works in the BaaS mode, the
IP address of service is return as response for service request. Then, the client
is able to use the service directly.

Figure [ presents the scenario for service request processing when available
service instances are close to overloading. The client send the request to Broker
that woks in the BaaS mode. Using the monitoring data related to current load-
ing of communications lines and available in the distributed environment servers
takes decision about the localization of Computer Centre where the new instance
of service should be started. Then the request is send to Facade of chosen by the
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Broker Computer Centre. It is then the responsibility of the Facade to get the
details about the localization of the new created instance of service (IP address)
and forwarding the message with this information to Broker. Then the answer
is sent back by Broker to the client and the client can use new created instance
of requested service.
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5 Service Execution Monitoring and Validation

Each IT system must be verifiable secure, especially wherever sensitive data is
handled. As a result, there are natural tendency to validate systems security
level. The main idea of SOA based system validation presented in this paper is
that while the atomic service security level has been evaluated also the composite
service can be validated using some formal operators taken from Subjective Logic
and execution plan defined in SSDL [§].

The Broker collects and provides to Validation unit module data about in-
stances of atomic services. These data are values of non-functional parameters
of registered services instances. Some of them, e.g. completion time of service
execution and data volume (request/response), are used by Validation unit to
validate security level of executed services while the others are used to estimate
values of non-functional parameters and to pass them to Service Composer. Ser-
vice Composer uses actualized values of service non-functional parameters to
prepare the execution plan for next users’ request corresponding to the current
status of execution environment and users’ SLA [3]. Another task of Validation
unit is validation of security level of executed services. Values of non-functional
parameters obtained from Broker are used to obtain useful information about
system deviations from normal state. Validation unit uses anomaly detection
which must pre-process them to reduce the probability of misinterpretation and
false-positive alarms. The general idea of security level validation is that Valida-
tion unit creates time series related to features describing the executed service
behaviour [9]. Time series is a sequence of data points, measured typically at
successive times, spaced at (often uniform) time intervals and analysed to detect
anomalies. Anomaly in time series data are points that significantly deviate from
the normal pattern of the data sequence and are related to security breaches.
The evaluated level of observed anomaly in executed services is also passed to
Service Composer. Service Composer module uses this information to prepare
execution plan of composite services in regard to security level requirements.

5.1 Implementation Issues of the Validation Unit

The Validation unit has been designed and implemented in accordance with the
service oriented paradigm. This means that the Validation unit is fully operable
and independent service which takes as an input a sequence of numerical values
comprising time series and which returns a value supposed to be the security
level of the monitored object. There are also two modes of operation of the
Validation unit. The first one is dedicated to validation of the single instance of
a service. The second one allows validating all available services simultaneously.
However this second mode of operation is nothing more than the concurrently
executed validation for each service available in Request Distribution Manager.

As Broker provides the list of currently available services the user of the
Validation unit may deliberately select one service that will be validated (in
second mode of operation no selection step is needed all instances of all available
services will be validated by default). When a service has been selected the
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Validation unit starts to send SOAP requests to the Broker. The Validation unit
requests the Broker for the relevant execution information corresponding to the
selected service. As it has been described in earlier sections, the Broker returns
values of several non-functional parameters of registered services instances, e.g.
completion time of service execution and data volume (request/response). These
requests are generated periodically with the predefined time interval. As a result,
the Validation unit creates corresponding time series describing the changes in
parameter values of the observed object.

The implemented method of time series analysis checks for anomalies in be-
havioural features of executed services, e.g., abnormally high input data volume
or long execution time can denote some type of DoS (Denial of Service) attacks
against a service. The time series analysis is performed by the Validation unit in
three steps. In the feature selection step, a relevant behavioural features is se-
lected e.g., the Validation unit can decide to compute the number of transmitted
bytes by a service during successive time windows. In the parameter estimation
step, historical (training) data on the selected feature values are compared with
the current feature value to learn how indicative the feature is of possible anoma-
lies. A model of a service behaviour is constructed by iterating these two steps.
The last step is detection of anomalies, as indicated by large discrepancy between
the statistics of the selected feature values and baseline statistics derived from
training data. This is done, among others, by noticing the periodicity in suc-
cessive feature values and selecting a characteristic period to capture significant
correlations between them. The anomaly detection algorithm takes a multidi-
mensional view upon the time series of feature values (Figure [l); this is known
to better capture trends and seasonal changes on various time-scales [2]. Let the
time series of our feature values be

X = (1,0, ..0) (1)

where x; is the number of received bytes in a subsequent time window. Two
types of time sub-series derived from X are also analysed by the Validation
unit, namely Xp and Xp, with

1 P-1 1 T—1
Xp, = P kz_% Xip, X7 = T kz_o Xi—kp (2)

where P and T are averaging intervals (P corresponds to the characteristic period
of X). That is, Xp and X1 represent the series of current averages of the feature
values over, respectively, the last characteristic period and a number of recent
characteristic periods given a fixed time shift with respect to the period start.
For the time series Xp and X7, exponential moving averages are computed as

Xpi=Xpim1t+ws(x—Xpj—1), Xryg=Xrj—1+ws* (@ — Xrj—1)  (3)

whereas standard deviations over appropriate averaging intervals are computed
as

T-1
1 1
oP1= | p | Z (xj — Xpy)?,0r) = T ;(fl—kp — X1)? (4)
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where w is an empirically adjusted smoothing coefficient. Finally, local deviations
are expressed as

dpyp=lar—Xpy |,0r0 = 1 — X1 | (5)

Using the above quantities, one can estimate an anomaly level (if any) accom-
panying the observation of x; as

a; = \/(5P,Z/UP7Z')2 + <6T7l/O-T,Z‘)2/3\/2 (6)

unless it exceeds 1, in which case a; = 1. When the current feature value is close
to average, the anomaly level is close to 0, whereas the local differences exceeds
three times the corresponding standard deviations then the Validation unit will
return maximum anomaly level. The anomalies detected in service execution are
used to assign a security level to a service. In the implemented approach, the
security level is simply equal to the current anomaly level of a service.

The information about anomaly level is returned by the Validation unit to the
Service Composer (in a form of corresponding SOAP message). Service Com-
poser using up to date information about service behaviour and so about its
security level can perform two following tasks. The first task is a verification of a
correspondence between non-functional user requirements concerning composite
service security level and the current security level. The second task is performed
when there are found discrepancies between expected and real security levels.
Then, the Service Composer performs a new composition which uses the cur-
rent security levels returned by the Validation unit. To achieve its goals and to
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Fig. 7. Visualization of the service execution history

provide the value of up to date security level, the Validation unit starts to send
SOAP requests to the Broker. In response to the Validation unit request, Broker
returns values of parameters describing execution of service instances within a
given period of time: IP address of the service caller, executed service ID (name),
execution starting time, execution ending time, input data size (in bytes), output
data size (in bytes). This type of requests are generated periodically with the
predefined time interval. Using collected information, the Validation unit creates
time series describing the changes in parameter values of the executed services.
After that the Validation unit computes a set of statistics which are used to
detect abrupt changes and to evaluate security level of the monitored services.
The information about anomaly level is returned by the Validation unit to the
Service Composer (in a form of corresponding SOAP message).

The selection of the service for which the security level is calculated as well
as the values required by anomaly detection algorithm can be set using user
friendly web interface. The same interface provides information about the de-
tected anomalies and visualizes the services execution history (Figure [).

6 Conclusions and Future Work

Presented approach offers a set of unique tools and techniques which provide in-
tegrated approach to service composition, execution and QoS monitoring. Origi-
nally developed service description language allows to include QoS requirements
and execution-related parameters in service description, which is directly used
by the Work-flow Engine. All the parameters are measured during service exe-
cution and may be used when needed by the Service Composer, which feature
forms feedback between composition and service execution. Our framework is
extensible in terms of adding new algorithms and techniques for service compo-
sition, prediction of resource consumption, etc. The results of first experiments
with developed framework are very promising.
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Abstract. We describe recent development work on the core-collapse
supernova code CHIMERA. CHIMERA has consumed more than 100
million cpu-hours on Oak Ridge Leadership Computing Facility (OLCF)
platforms in the past 3 years, ranking it among the most important ap-
plications at the OLCF (1). Most of the work described has been focused
on exploiting the multicore nature of the current platform (Jaguar) via,
e.g., multithreading using OpenMP. In addition, we have begun a major
effort to marshal the computational power of GPUs with CHIMERA.
The impending upgrade of Jaguar to Titan — a 20+ PF machine with an
NVIDIA GPU on many nodes — makes this work essential.

Keywords: OpenMP, GPU, OpenACC, supernovae, stellar astrophysics.

1 Introduction

1.1 Overview of the Core-Collapse Supernova Problem

Core-collapse supernovae (CCSN) are among the most energetic events in the
Universe, releasing 10°® erg (1047 Joules) of energy on timescales of a few tens
of seconds. They produce and disseminate many of the elements heavier than
helium, making life as we know it possible. They mark the birth of neutron stars
and black holes and in recent years, it has become apparent that core-collapse
supernovae from massive progenitors are associated with long gamma-ray bursts.
(2;13; 4)

As the name suggests, core-collapse supernovae are initiated by the collapse
of the iron cores of massive stars at the ends of their lives. The collapse proceeds
to ultrahigh densities, in excess of the densities of nucleons in the nucleus of
an atom (super-nuclear densities). The inner core becomes incompressible under
these extremes, bounces, and, acting like a piston, launches a shock wave into the
outer stellar core. This shock wave will ultimately propagate through the stellar
layers beyond the core and completely disrupt the star in an explosion. However,
in all realistic simulations to date, the shock stalls in the outer core, losing energy
as it plows through the still infalling material. Exactly how the shock is revived
is unknown. This is the central question in core-collapse supernova theory.

P. Manninen and P. Oster (Eds.): PARA 2012, LNCS 7782, pp. 92-[[06] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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Evidence has accumulated indicating that multidimensional effects play an
important and perhaps essential role in the mechanism. On the observational
side, spectropolarimetry, the large average pulsar velocities, and the morphology
of highly resolved images of SN 1987A all suggest that anisotropy develops very
early on in the explosion [e.g., see (§) and (6) for reviews and references]. On
the theoretical side, analyses of immediate post-bounce core profiles given by
computer simulations show that a variety of fluid instabilities are present and
may play a role in the explosion mechanism.

Supernova simulations must be carried out in two, and preferably three, spa-
tial dimensions for these reasons and others. In addition, 3 x 10°3 ergs of energy
is released by the core in neutrinos of all flavors, and their interaction with the
stellar core and mantle will either power the explosion itself or play a major
role in the explosion dynamics. An inaccurate treatment of neutrino transport
can qualitatively change the results of a simulation. Since neutrinos can origi-
nate deep within the core, where neutrino mean free paths are small compared
with other relevant length scales, and propagate out to regions where the re-
verse is true, the transport scheme must be accurate in both regimes plus the
all-important intermediate regime where the critical neutrino energy deposition
occurs.The nuclear abundances must be evolved in regions where nuclear statis-
tical equilibrium (NSE) cannot be maintained. This will enable the potentially
observable products of nucleosynthesis to be followed and the energy released by
nuclear burning to be fed back into the computation of the explosion dynamics.
Finally, general relativistic effects must be incorporated, as they influence the
size of the neutrino heated region, the rate of matter advection through this
region, and the neutrino luminosities and RMS energies (7). To meet all these
requirements, we and our collaborators have developed the CHIMERA code over
the past several years (8).

1.2 The CHIMERA Code

CHIMERA can well be described as a “chimera” of three, separate, rather ma-
ture codes. The codes are tightly coupled in a single executable through a set of
interface routines. The primary code modules are designed to evolve the stellar
gas hydrodynamics (VH1), the “ray-by-ray-plus” neutrino transport (MGFLD-
TRANS), and the thermonuclear kinetics (XNET). These three “heads” are
augmented by a sophisticated equation of state for nuclear matter (e.g. LS-EOS
(9)) and a self-gravity solver capable of an approximation to general-relativistic
gravity. All of the constituent parts of CHIMERA are written in FORTRAN:
MGFLD-TRANS and the LS-EOS are primarily FORTRAN-77, while VH1 and
XNET, and all of the associated driver and data-management routines, are writ-
ten in FORTRAN 90.

The hydrodynamics is directionally split, and the ray-by-ray transport and the
thermonuclear kinetics solve occur after the radial sweep occurs, when all the
necessary data for those modules is local to a processor (see Figure[Il). The indi-
vidual modules are algorithmically coupled in an operator split approach. This
approach is well-motivated, as the characteristic time scales for each module
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are widely disparate. Specifically, during the radial sweep of the hydrodynam-
ics, the neutrino transport and the thermonuclear burning are computed along
each radial ray, using only data that is local to that ray and, therefore, local to
the current process. This combination of directionally-split hydrodynamics and
operator-split local physics provides the backdrop for the communication and
computation patterns found in CHIMERA. Hydrodynamic sweeps are made on
“pencils” along one direction of a logically Cartesian mesh. Then, a data trans-
pose (via MPT ALLTOALLs across sub communicators on the mesh) is per-
formed to switch the sense of the sweeps to one of the orthogonal directions,
followed by the next sweep. This procedure can be interleaved in various ways
within the operator-split scheme, but a canonical hydro timestep would have
sweeps like X-Y-Z-Z-Y-X, i.e. a sweep in the “X-direction” (or, e.g. radius), fol-
lowed by a 'Y sweep, followed by a Z sweep, followed by a reverse of that sequence.
This decomposition is necessary for the ray-by-ray neutrino transport, as it al-
lows a single “ray” to be resident on a processor at some point in a timestep.
This makes the neutrino transport solve a wholly local computation, requiring
no communication. Additionally, as the nuclear kinetic equations do not couple
neighboring spatial cells, no off-node communication is required for the XNET
module. Typical spatial resolutions for the hydrodynamics are 512 radial zones
and 64 and 128 zones in the 6 and ¢ directions.

——CGD

Hydro Y () sweep

][

Hydro Z ( ) sweep

Data transpos

Each
processor
has 1 ray

of data
local at this
stage

Hydro X () sweep.

transport along ray

nuclear burning on
zone of ray

Data transpost

Fig. 1. Schematic CHIMERA flowchart

The hydrodynamics module in CHIMERA is a modified version of the PPM
code VH-1, which has been widely used in astrophysical fluid dynamics simula-
tions and as an important benchmark code for a variety of platforms. VH-1 is
a Lagrangian remap implementation of the Piecewise Parabolic Method (PPM)
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(10). Being third order in space (for equal zoning) and second order in time, the
code is well suited for resolving shocks, composition discontinuities, etc. with
modest grid requirements. To avoid the odd-even decoupling and carbuncle phe-
nomenon for shocks aligned parallel to a coordinate axis we have employed the
local oscillation filter method of Sutherland et al. (2003) which subjects only a
minimal amount of the computational domain to additional diffusion. We have
also found it necessary to incorporate the geometry corrections of (11) in the
hydrodynamics module to avoid spurious oscillations along the coordinate axes.
Redshift and time dilation corrections are included in both the hydrodynamics
and neutrino transport (to be described later). A moving radial grid option,
where the radial grid follows the average radial motion of the fluid, makes it
possible for the core infall phase to be followed with good resolution.

Ideally, neutrino transport would be implemented with full multidimensional
Boltzmann transport. As a compromise between accuracy and computational
intensity, we employ a “ray-by-ray-plus” approximation (cf. (12)) for neutrino
transport, whereby the lateral effects of neutrinos such as lateral pressure gradi-
ents (in optically thick conditions), neutrino advection, and velocity corrections
are taken into account, but transport is performed only in the radial direction.

The neutrino opacities employed for the simulations are the “standard” ones
described in (13), with the isoenergetic scattering of nucleons replaced by the
more complete formalism of (14), which includes nucleon blocking, recoil, and
relativistic effects, and with the addition of nucleon—nucleon bremsstrahlung (15)
with the kernel reduced by a factor of five in accordance with the results of (16).
Typical energy-space resolutions for the neutrino transport are 20 geometrically
spaced groups spanning the range from 5 MeV to 300 MeV.

The equation of state (EOS) of (9) is currently employed for matter at high
densities. For regions not in NSE, an EOS with a nuclear component consist-
ing of 14 alpha-particle nuclei (*He to %°Zn), protons, neutrons, and an ironlike
nucleus is used. An electron-positron EOS with arbitrary degeneracy and de-
gree of relativity spans the entire density-temperature regime of interest. The
nuclear composition in the non-NSE regions is evolved by the thermonuclear re-
action network of (17). This is a fully implicit general purpose reaction network;
however, currently we have implemented only a so-called a-network, i.e. only
reactions linking the 14 alpha nuclei from “He to %°Zn are used. Because the
a-network neglects reaction flows involving neutron-rich nuclei, it provides only
estimates of the energy generation rates for nuclear burning stages encountered
in the supernova (£50% for oxygen burning and +10x for silicon burning) (18).

2 The Need for Hybridization

Many modern codes in use today rely wholly on domain decomposition via MPI
for parallelization. New hybrid multicore architectures will demand that this level
of parallelism be augmented with SMP-like and vector- like parallelism. Rather,
those operations that are performed serially in the MPI-only code will need to be
parallelized via a threading mechanism or, perhaps, local MPI communicators
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on the node, and those operations within the implied loop nests will profit from
vector-like parallelization via the GPU’s. This discovery or, perhaps in some
case, the rediscovery of hierarchical levels of parallelism in current codes will
form the heart of a successful programming model on modern platforms, like the
newly-installed Titan at Oak Ridge National Laboratory.

2.1 Titan: The First Petascale Hybrid Platform

Titan, a hybrid Cray XK6 system, is the third generation of major capability
computing systems at the Department of Energy (DOE) Office of Sciences Oak
Ridge Leadership Computing Facility (OLCF) located at the Oak Ridge National
Laboratory (ORNL). It is an upgrade of the existing Jaguar system first installed
at the OLCF in 2008. The initial upgrade from Cray XT5 to Cray XK6 compute
nodes was accepted in February 2012 and consists of 18,688 compute nodes
for a total of 299,008 AMD Opteron 6274 “Interlagos” processor cores and 960
NVIDIA X2090 ”Fermi” GPUs. The peak performance of the Opteron cores is
2.63 PFLOPS and the peak performance of the GPUs is 638 TFLOPS. In late
2012, the 960 NVIDIA X2090 processors will be removed and replaced with at
least 14,592 of NVIDIAs next generation ” Kepler” processors with a total system
peak performance in excess of 20 PFLOPS.

Compute Nodes. Each of the hybrid compute nodes in Titan consists of
one AMD Series 6200 16-core Opteron processor and one NVIDIA Tesla GPU.
The GPU and CPUs are connected by a PCI Express Gen 2.0 bus with an 8
GB/second data transfer rate.

The x86 portion of the Titan nodes contain Opterons built of two Interlagos
dies per socket. Each of these incorporates four processor groups called Bulldozer
modules. Each Bulldozer module contains two independent integer unit cores
which share a 256-bit floating point unit, a 2 MB L2 cache, and instruction
fetch. A single core can make use of the entire floating point unit with 256-bit
AVX instructions.

The four Bulldozer modules share a memory controller and 8MB L3 data
cache. The processor die incorporating the four Bulldozer modules is config-
ured with two DDR3 synchronous dynamic random access memory channels
and multiple HT'3 links. It is important to note here that each Titan node there-
fore contains 2 NUMA domains, defined by the Interlagos dies on each socket.
Memory operations across dies traverse the multiple HT3 links between the dies
in a socket (19).

The Tesla Kepler GK 110 GPU is composed of groups of streaming multi-
processors (SMX). Each SMX contains 192 single precision streaming processors
called CUDA cores. Each CUDA core has pipelined floating point and integer
arithmetic logic units. Kepler builds on the previous generation of NVIDA Tesla
Fermi GPUs with the same IEEE 754-2008-compliant single and double preci-
sion arithmetic, including the fused multiply add operation. A Kepler GK110
GPU has between 13 and 15 SMX units and six 64-bit memory controllers.
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In addition to the six fold increase in the number of CUDA cores per SMX
compared to the Fermi’s 32 CUDA cores per SMs, Kepler GPUs have the abil-
ity allow connections from multiple CUDA streams, multiple MPI processes, or
multiple threads within a process. This is accomplished though NVIDIA’s Hy-
perQ which provides 32 work queues between the host and the GPU, compared
to Fermi’s single work queue.

Each of Kepler SMXs has one cache of 64 KB on chip memory that can be
configured as 48 KB of shared memory with 16 KB of L1 cache, or as 16 KB
of shared memory with 48 KB of L1 cache or as a 32KB/32KB split between
shared memory and L1 Cache. In addition, each SMX has a 48KB read-only
data cache. The Kepler GPU also has 1536 KB of dedicated L2 cache memory.

Interconnect. One of the key differences between the Cray XK6 and prior
generation XT systems is the Gemini interconnect (20) . Instead of a SeaStar
ASIC for each node, each Gemini custom ASIC connects two nodes to the 3-
D torus interconnect. All of the cables and backplane interconnections between
node boards are the same for SeaStar and Gemini based system. The only dif-
ference is the mezzanine card on the node boards. The mezzanine card is a
separate printed circuit board that attaches to the base XK6 node board and
contains either the SeaStar or Gemini ASIC along with any support circuitry and
the interconnections between the SeaStar or Gemini chips. This feature allowed
ORNL to upgrade from an XT5/SeaStar system to an XK6/Gemini system while
reusing the cabinets, cables, and backplanes.

2.2 Computational Cost of Nuclear Kinetics

Extending the nuclear network approximation from a simplified 14-species a-
network to one including 150 species substantially improves upon prior treat-
ments within CHIMERA by extending the capability of the network to track a
broad variety of particle captures. Complete nucleosynthesis calculation — e.g. of
the r-process — can then be obtained using many thousands of species via post-
processing, where a thermodynamic profile is generated using tracer particles
throughout the star.

Simplified networks fail to accurately describe both the composition and en-
ergy distribution of supernovae ejecta as directly observed. This deficiency has
been recognized for some time, leading to the development of post-processing
schemes to obtain detailed abundances. In post-processing, a thermodynamic
profile generated by tracer particles from an earlier full simulation (including a
reduced nuclear network and the associated neutrino transport) is used to evolve
a larger nuclear network. A major limitation of this approach is the accuracy
of the rate of nuclear energy released by the smaller in-situ network within the
hydrodynamics. Since the nucleosynthesis depends on the thermodynamic con-
ditions, and consequently the nuclear energy generation, a feedback exists that
cannot be captured with post-processing, significantly affecting the abundances
of species such as 44Ti 57Fe, 8Ni and %°Zn (21). Another principal limitation of
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the a-network model is the inability to follow the effects of electron or neutrino
capture in neutronization, wherein an electron and proton combine to form a
neutron and release neutrinos. This causes the electron fraction (Y, = %), and,
concomitantly, the electron pressure, to be miscalculated. Lastly, post-processing
is not capable of capturing the observed mixing of the chemical elements due to
the lack of coupling to the hydrodynamics.

A network size of approximately 150 is the next logical step in nucleosynthesis
calculations (see Figure [2]), as it encompasses a significant fraction of elemental
abundances and energy-producing reactions important to the core-collapse prob-
lem, allowing proper neutronization and a much more accurate rate of nuclear
energy generation. Post-processing can then be used to analyze the nucleosyn-
thesis of many-thousand species nuclear networks with post-processing.

14 isolopes

150 isotopes

Abundance

Fig. 2. a-network isotope abundances are represented in the figure, along with the
expanded 150-species nuclear network resulting from a constant thermodynamic profile.
One can see that this larger network encompasses a large portion of the more heavily
populated species. Of particular note is the exclusion of the three most abundant species
in the a-network, protons, >*Fe, and 5®Ni.

The fully implicit nature of XNet (the nuclear burning module of CHIMERA)
necessitates the choice of a suitable integration scheme. Previous work (22) has
shown the simple first-order backward Euler method to be most efficient in
advancing nuclear abundances within the constraints of the CCSN problem.
With this scheme, nuclear abundances, y, are evolved by some change, Ay, of
the system over a timestep, At, according to

Yni1 = ¥n + Ay. (1)

This is done using the Newton-Raphson method, based on the Taylor series ex-
pansion of yn 41 = yn+/f(yn+1) about a known f(yn). This reduces to iteratively
solving the N2 dense matrix equation Ax = b in the form
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( e 3) Ay = f(ya). 2)

where J is the Jacobian of f (¥n)- Iteration continues until the solution converges
according to mass conservation or some more stringent abundance conservation
test, the choice of which depends upon the desired accuracy. Each iteration
requires computing the full set of abundance derivatives, calculating all reac-
tion rates, evaluating the Jacobian, evaluating the right-hand side, and then
performing one matrix decomposition and backsubstitution. Complicating the
computation itself is indirect memory addressing and loop carried dependencies
associated with building the Jacobian. Double-precision REALS are required for
the calculation, as the approach to equilibrium at various stages of the burning
can lead to the near-cancellation of large fluxes.

With the computational time to evolve the network using a dense matrix solution
with packages such as LAPACK being O(N?) (23), moving from an a-network
to a more realistic 150-species network can make the nucleosynthesis computa-
tion more expensive than the neutrino transport. Initial analysis reveals that
increasing the number of species from 14 to 150 more than doubles the cost
of a CHIMERA simulation without further development. In order to prevent
the computational cost from limiting the scope of our studies, we must incorpo-
rate recent advancements in programming interfaces and computational archi-
tectures, specifically shared-memory parallelism (OpenMP) and general purpose
graphical accelerators (GPGPUs). All of the comparisons made below are to a
strictly serial, but fairly highly vectorized version of XNET used in CHIMERA
to this point. Compiler-generated SSE instructions have been shown (via PAPI)
to increase the the speed of XNET from 21% of theoretical peak to more than
67% of peak. This is the baseline from which we measure subsequent perfor-
mance below. We note that the availability of new AVX instructions might lead
to even better vectorization on the CPU, but, at present, require some recoding
for the Bulldozer architecture (i.e. on Titan).

2.3 Thread Scheduling

The advent of multicore processors presents an opportunity for another layer of
parallelism in CHIMERA. By taking advantage of the shared-memory property
of multiple processing cores on a single chip, we can extend the level of parallel
computation within CHIMERA. To do this, we assign parallelizable loops over
radial zones being executed by a single MPI task to multiple threads with the
OpenMP API. Load balance is achieved by specifying a proper scheduling policy
for the manner in which work is divided among the threads. The options available
for this policy in OpenMP are static, dynamic, or guided. Additional options
allow for the compiler or runtime system to delegate work among the threads.
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2.4 Core Affinity

It is also important to consider how the parallelization scheme maps to the
computer architecture (i.e. core affinity). With the CRAY XK6, we have found
that the optimal scheme for nuclear burning is to place four threads per MPI
task, with these threads spread across two Bulldozer modules on two NUMA
domains. One crucial aspect associated with choosing the number of OpenMP
threads per MPI task is the relative “threadedness” of CHIMERA outside of
nuclear burning. Here we investigate an optimal parallelization scheme based on
the performance of one CHIMERA module-the nuclear burning network—which

is subject to change in response to future updates to OpenMP implementation
in CHIMERA.

2.5 OpenMP Summary

We consider the maximum nuclear burning time over a typical portion of a 1D
simulation using a 150-species nuclear reaction network. The simulation time is
chosen such that the nuclear burning is typical, i.e., after core bounce when the
temperature is high. This allows us to make a simple, but effective, compari-
son between different scheduling schemes, the number of threads per task, and
their mapping to the hardware architecture. We studied four- and eight-thread

Chimera runs with 150-species network using OpenMP threading

No. of Threads: 1 (black), 4 (red), & (blue)
NUM mains: 1 (solid), 2 (dashed)
*4-threads w/ 1-thread per bulldozer module {grey)

(Nuc Burntime)/(Tatal Run Time) x 100

10 _I||".\_;- T P T R T R Ty v e

0
220000 220500 221000 221500 222000 222500 223000 223500 224000
Cycle

Fig. 3. Time spent in nuclear burning computation is plotted as a percentage of total
CHIMERA time for a 150-species realistic network. The x-axis is cycle number (i.e.
hydrodynamic time step number) from the benchmark simulation. The percentage of
time dedicated to nuclear burning increases from zero as the simulation is restarted
from an intermediate state. The final, asymptotic values for each computation would
be typical of a long-running simulation.
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Chimera network timing with OpenMP

Networks: alpha {red), sn150 (blue)
NUMA Domains: 1 (circle), 2 (triangle)
PCN (unique symbol)

Factor of Speedup from 1-Thread

Number of Threads

Fig. 4. Speedup of a CHIMERA simulation computation is plotted for an a-network
and 150-species realistic network for different OpenMP configurations. The product of
the number of MPI tasks and the number of OpenMP threads is held constant in each
case.

performance across different NUMA domains and Bulldozer module affinities.
The results are summarized in Figures [3 and [l

This comparison clearly shows that the optimal core affinity is to schedule four
threads per MPI task on two Bulldozer modules from separate NUMA domains.
This configuration reduces time spent in nuclear burning from ~ 60 percent of
the total CHIMERA runtime to ~ 8 percent of the total CHIMERA runtime.
This equates to a factor of speedup from single thread performance of ~ 6 in
runtime for an entire CHIMERA simulation.

3 GPU Parallelization

3.1 XNet

In addition to OpenMP, GPUs offer another avenue to exploit parallelism in
CHIMERA. In an effort to remove the false serialization produced by launching
GPU kernels from separate CPU threads (present in CUDA versions earlier than
5.0), we investigate GPU performance from a single thread per MPI task.

We surveyed the FORTRAN compilers of CRAY and PGI using the default
level-two optimization settings. More aggressive optimization did not improve
the computation time for any of the tested compilers. Three different acceler-
ated linear algebra packages were tested and compared for the decomposition and
backsubstitution: CULA, LibSci Accelerator (LibSciACC), and MAGMA. When
possible, a host-interface was compared against device-interface implementation.
The host-interface requires no modification to existing code. In this scheme, de-
vice memory is managed by the library routine. With the device-interface ap-
proach, code must be adapted to manage the device memory manually, either
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directly with CUDA or by a high-level compiler directives API. In this study,
we tested OpenACC and CUDA to build the matrix and right-hand-side for the
device-interface decomposition and backsubstitution. Nuclear reaction networks
of 14, 150, 365, 1072, and 2184 species were tested for each setup. All configu-
rations were compared to the fastest vectorized implementation of XNet using
CRAY LibSci LAPACK routines and the Cray Compiling Environment.

In all test cases, the nucleosynthesis was performed in a post-processing fash-
ion with a standalone version of XNet using a representative CCSN thermody-
namic profile (Iﬂ) with typical initial abundances found in CCSN conditions.

Network Size
10 100 1000 10000

1.000E-01

1.000E-02
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Time/Iteration [s]
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Fig. 5. Host-interface (H.I.) to device-interface (D.I.) comparison for CULA. The total
computation time per N-R iteration is plotted and subdivided into time spent building
the Jacobian (Build) and solving the matrix equation Ax = b (Solve).

The first GPU-optimized linear algebra package surveyed was EM Photonics’
CULA with the PGI programming environment. The host-interface was tested
by calling the function CULA DGESV and involved no modification to the code
itself. The device-interface was also implemented using the PGI compiler with
the CULA DEVICE DGESV routine. This implementation required managing
the device memory with a combination of compiler directives and CUDA Fortran.
The CULA package did not recognize device memory addresses passed with the
OpenACC directive host data use device, so we were unable to test its capability
with the Cray compiler. Instead, the Jacobian and right-hand side were declared
as CUDA device type variables and assigned directly to the GPU, allowing for
more efficient memory management via fewer host-device data transfers. Figure
summarizes these results.

The second set of linear algebra packages tested was the Cray XK6 optimized
cuBLAS and LAPACK routines—collectively referred to as LibSci Accelerator
(LibSciACC). These results are shown in Figure[fl The routines in this library
package do not contain an explicit host-interface, but for comparison, we can
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Fig. 6. Host-interface (H.I.) to device-interface (D.I.) comparison for LibSciACC. The
total computation time per N-R iteration is plotted and subdivided into time spent
building the Jacobian (Build) and solving the matrix equation Ax = b (Solve).

emulate the behavior with a device-interface implementation in which we copy
the Jacobian and right-hand side to the device immediately prior to the de-
composition with OpenACC. The decomposition is forced to be computed on
the accelerator with DGETRFE ACC and DGETRS ACC. We extend the direc-
tives to compute abundance derivatives, evaluate the Jacobian, and build the
right-hand side for the device-interface comparison. PGI’s current adaptation of
OpenACC does not include a directive clause to pass device memory addresses
to library routines, so only the Cray compiler was tested for LibSciACC.

By comparing Figures Bl and B we see that the method of emulating a
host-interface with LibSci Accelerator matches the behavior of the CULA host-
interface. In both cases, the matrix solve dominates the time for the computa-
tion, especially for larger networks. For smaller networks, we see that building
the Jacobian on the device has a non-negligible impact on the computation. As
the network size grows, the performance of the GPU in building the Jacobian
approaches that of the serial code in the host-interface. For CULA dense and
LibSci Accelerator, the host-interface approach performs slightly better than the
device-interface approach with the exception of very large networks (i.e. greater
than 2000 species), at least with current Fermi GPU kernel queuing.

MAGMA-Matrix Algebra on GPU and Multicore Architectures—is a collection
of linear algebra libraries developed by the Innovative Computing Laboratory
at the University of Tennessee. MAGMA was developed with NVIDIA’s native
CUDA C programming language, which presents some complications when in-
terfacing with the Fortran-coded XNet. We were unable to perform a successful
test case using the device-interface MAGMA routines, but did have some suc-
cess with the host-interface for both the Cray and PGI compilers. These results
are shown in Figure [l We note that there is little difference in the compilers
themselves when directives are not used.
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Fig. 7. Compiler comparison between implementations of the MAGMA host-interface
routines for the matrix solve.

3.2 GPU Summary

We achieve the best performance when we use the LibSciACC routines with a
host-interface memory management scheme, though there appears to be only a
small amount of variability between all configurations. In this implementation,
device memory is managed with OpenACC immediately prior to the matrix solve
by copying the Jacobian and right-hand side to the GPU. Even in the best-case
scenario, the small problem size prevents us from seeing a gain in performance.
With the upcoming capability associated with CUDA 5.0 and the Kepler GK110
GPU, this constraint will be somewhat ameliorated by Hyper-Q technology. This
will allow us to launch multiple nuclear module kernels simultaneously on the
GPU, each corresponding to a different spatial zone in the CHIMERA domain
decomposition.
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Steering and In-situ Visualization
for Simulation of Seismic Wave Propagation
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Abstract. Simulation of large scale seismic wave propagation is an im-
portant tool in seismology for efficient strong motion analysis and risk
mitigation. Being particularly CPU-consuming, this three-dimensional
problem has been early ported on graphics cards to improve the per-
formance by several order of magnitude. Scientific visualization of data
produced by these simulations is essential for a good comprehension of
the physical phenomena involved. In the same time, post-petascale ar-
chitectures demonstrates that the I/O turn to become a major perfor-
mance bottleneck. This situation is worsened with GPU-based systems
because of the gap between I/O bandwidth and computational capabil-
ities. In this paper, we introduce a prototype of computational steering
and in-situ visualization suitable for seismic wave propagation on hybrid
architecture. We detail the overall architecture of the system we set up
and comment on the parallel performance measured.

Keywords: computational steering, in-situ visualization, GPU, seismic
wave propagation.

1 Introduction

One of the most widely used techniques for the numerical simulation of seismic
wave propagation is the finite-difference method because of its simplicity and
numerical efficiency. Most of the parallel implementations routinely used in the
scientific community are based on cluster architectures and rely on the MPI li-
brary with a good parallel efficiency on tens of thousands cores. Other approaches
are focused on the exploitation of Graphics Processing Unit (GPU) with signi-
ficant acceleration in comparison with classical CPU implementation [I]. These
improvements lead to an inflation of the amount of data produced and prevent
from the use of naive approach to dump the data on storage systems. In these
cases, I/O turn to become the major bottleneck which limits the performance of
the simulation. A classical strategy is to restrict the amount of data that would
be saved. A sub-sampling is generally preformed in time or in space with the
limitation for the scientist of missing possible localized phenomena.

P. Manninen and P. Oster (Eds.): PARA 2012, LNCS 7782, pp. 107-[[T4] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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As [2], we believe that in-situ visualization and computational steering provide
a valuable solution for the scientist in order to interact with the simulation and
explore the three-dimensional domain of computation. Unfortunately current
existing solutions like [3l4] are not suitable for GPU applications as they assume
that data are directly accessible on the host. One of the key of the efficiency of
GPU codes is that all data have to remain in the graphic card memory in order
to maintain their performance as the memory transfers between host (CPU) and
device (GPU) are in general very expensive.

We therefore introduce a simple strategy suitable for hybrid applications that
allows us to interact with the Ondes3D software package developed for earth-
quake modeling [5].

2 Seismic Wave Modeling on Hybrid Architectures

2.1 Governing Equations

The seismic wave equation in the case of an elastic linear material is given in
three dimensions by

o 2] 2] 2]
Py Vz = amgxx+8yazy+azazz+fz
o _ 0 2] o
PotVy = 92%yx T 9y Tuy T 5,0y2 + 1y (1)
0 ) 0 0
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oty = B gyVz T 9, Vy
) _ ) )
ot 0wz 7M(BZ,UI+ Bacvz)
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v and o represent the velocity and stress field respectively and f denotes a known
external source force. p is the material density, A and p are the elastic coefficients
known as Lamé parameters.

2.2 Description of the Numerical Scheme

The dominant numerical scheme to solve the above equations is certainly the
explicit finite-difference method. It has been introduced in [6] for a second-order
spatial approximation and has been extended in [7] to consider a fourth-order ac-
curate stencil in space and a second-order stencil in time. One of the key features
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Fig. 1. Elementary 3D cell of the staggered grid and distribution of the stress (o) and
the velocity (v) components

of this scheme is the introduction of a staggered-grid [8] for the discretization of
the seismic wave equation.

For classical collocated methods over a regular Cartesian grid, all the un-
knowns are evaluated at the same location, whereas the staggered grid leads to
a shift of the derivatives by half a grid cell. The use of a staggered grid improves
the overall quality of the scheme (in terms of numerical dissipation and stabil-
ity), especially in the case of strong material heterogeneity. Figure [l shows the
elementary 3D cell and the distribution of the stress and velocity components.
Exponents i, j, k indicate the spatial direction with (0¥* = o(iAs, jAs, kAs),
As corresponds to the space step and At to the time step. The off-diagonal stress
tensor components are shifted in space by half an interval in two directions and
the velocity components are shifted both in time and in space by a time step
and by half a space time.

2.3 Implementation on Hybrid Architectures

In recent years, GPU computing has been extensively used to accelerate appli-
cations in various computational domains and the scientific literatures on this
topic is abundant. Regarding the finite-differences method, several applications
have been ported to GPUs as early as 2004 [9/10], particularly for seismic wave
modelling [ITI].

These seismic applications were mainly based on the acoustic case that is
less complex in terms of number of unknowns. The Ondes3D code implements
the full three-dimensional elastic wave equation with CPML absorbing condi-
tions [I2]. The high reading redundancy (13/1) coming from the fourth-order
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stencil used in space makes GPU a very efficient architecture for such memory-
bound applications. An average speedup of a factor 20 [I3] has been measured
in our case. The implementation relies on algorithms introduced in [I], with the
additional use of texture fetching in CUDA to compensate for the lack of shared
memory on the graphics card, and with the use of message passing (MPI) when
several GPUs are used in parallel.

3 Steering Environment

3.1 Server Implementation

The server is composed of the hybrid simulation code with an additional MPI
process called master node. This master node is synchronized with the time loop
of simulation nodes, but does not compute the simulation. It launches a TCP
server in a thread to communicate with the client, broadcast the requests and
events received from the client to the computing nodes. Finally, it receives the
data from the computing nodes, assembles them, and notifies the TCP server
of their availability. Figure 2 described the server communications. The master

[ MPI_COMM_WORLD

|
I

Kernel 1 external points
l extract MPI buffers

MPI_Isend / MPI_Irecv
Kernel 1 internal points

| update with MPI buffers
| Kernel 2 external points

extract MPI buffers MPI_Isend / MPI_lrecv
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-
E | MPI_Wait |
E MPI_lrecv : async fecv K .
of visualizdtion fata Extract visualization data (VP Wait] |
H | MPI_Isend : send vi |
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' on previous ’ime ktep Time loop |
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H Read'requests [] run on GPU l
H from T(fP sdrver

' |:| run on CPU

v

Fig. 2. Sequence diagram of the simulation server
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node is synchronized with the time loop to ensure coherency between requests
and responses. The use of the MPI library greatly facilitates synchronization and
fast communication with the computation nodes. The use of a specialized thread
for the TCP server allows to run asynchronously with the simulation. This way
it can answer to the client’s request without delay. To limit the amount of data
transferred, we extract the data of interest at each time step on a cutting plane.
This plane can be oriented and moved by the user with 6 degrees of freedom.
Data are extracted on the computing nodes with CUDA kernels and sent to the
master node at each time step. Data transmission from the computing nodes to
the master node is done via MPI asynchronous communications.

3.2 Client Implementation

The visualization client connects on the server using TCP and transmits the
events and user requests like flow control instructions (pause, play, record,
rewind, restart) or the coordinates of the visualization plan. It enquires for new
available data based on polling mechanisms at each render loop iteration (see
Figure [B]). Therefore the client receives the assembled raw data (eg. speed, dis-
placement or acceleration), the timestep and visualization plan coordinates. The
client copies the raw data in its graphic memory, computes it with a CUDA ker-
nel to fill a Vertex Buffer Object (VBO) and then renders it using OpenGL
library. In order to guarantee the coherency of the workflow, the visualization
plane displayed corresponds to the data received and not to the place sent to
the server. This causes a slight time shift between the moment the user starts
to move the plane and the moment it actually moves.

Client Server Simulation

cmd: start, event: plane coord /

cmd: start, event: plane coord

cmd: getData, event: plane coord

no data available event : plane coord

cmd: getData, event: plane coord

<
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Fig. 3. The client continuously poll the server for new data to display
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3.3 Experiments

Each computing node of our experimental setup is composed of a video card
NVIDIA GeForce 8800 GTX installed in a quad-processor dual-core 64-bit AMD
Opteron 2.8 GHz with 8 gigabytes of RAM memory. The 8800 GTX card has 16
multiprocessors, i.e., 128 cores, and 768 megabytes of memory. The bandwidth
for the memory transfers is 86.4 gigabytes per second, with a memory bus width
of 384 bits. This configuration is not up-to-date but it corresponds to a six nodes
computing cluster that drives a virtual reality workbench (i.e Holobench from
Barco). The nodes are interconnected with a Myrinet network. This architecture
provides a good opportunity to evaluate our client/server steering environment
along with a large display facility. Standard experiments have also been carried
out on most recent configurations, particularly on workstation, in order to eval-
uate the performance of our methodology in a 1x1 configuration. We wrote two
versions of the client depending on the targeted architecture (see Figured]). The
first one is based on QT and is suitable for standard Workstation. The other one
is designed for the virtual reality workbench. We use VR Juggler [14] to manage
multiple screens and interaction devices (6DOF wand, keyboard).

We use a 3D geological model of size 24000 m x 24000 m x 21000 m discretized
using a grid of 240 x 240 x 210 points, i.e., with grid cells of size 100 m in the
three spatial directions. The Ondes3D code is running on four graphics cards.
The model is heterogeneous and composed of two horizontal elastic layers in
contact. We take a time step of 8 ms and we simulate a total of 1000 time steps,
i.e., a total duration of 8 s. CPML absorbing layers of a thickness of ten grid
points are implemented on all the edges of the grid except the free surface.

First remark is that the communications are perfectly overlapped for large
enough models (a few hundred of megabytes). This is coming from the ratio be-
tween the data exchanged (two-dimensional) compared with the computational
domain (three-dimensional). This overlap also comes from the assembly of data
received at the previous iteration for the master node. Thus, during the sim-
ulation, we visualize the data calculated at the previous time step. When the
simulation is paused by the user at time step T, the computation actually stops
at time step TH+1.

We have measured the additional cost coming from in-situ visualization and
the overhead is less than 3%. This is mainly due to the extraction kernels that in-
terpolate the data with the cutting plane. Another limitation for the performance
is coming from the MPI broadcasts from the master node. This extra-cost of 3%
represents the upper-bound of the overhead when the size of the computational
domain is varying. Considering our experimental architecture, any extrapolation
on large scale configuration is difficult as the number of servers, the number of
clients and the size of the computational domain will have a significant impact
on the performance.
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Fig. 4. Screenshot of our client implementation. Visualization of a run on twelve mil-
lions of grid points on four graphics cards. In green, the MPI border and in red the
absorbing boundary conditions (CPML).

4 Conclusion

A steering environment suitable for GPU applications has been proposed. We
have demontrated the efficiency of our methodology based on the standard elas-
todynamic equations on a cluster with four computing GPU. The overhead com-
ing from the steering is an average of 3% mainly coming from the extraction
of the relevant data. We believe that this kind of approach is a possible way
to consider future exascale simulations with huge amount of data available for
post-processing.

Significant efforts should be provided in the near future to enhance the scala-
bility of our methodology, for instance by introducing more asynchronism in the
workflow. Hierarchical patterns could also be considered for the gathering of the
data. The relevant filters required to analyze the data should also be adapted
on graphics card (i.e isosurface extraction).
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Abstract. In this paper we present PCJ - a new library for parallel
computations in Java. The PCJ library implements partitioned global
address space approach. It hides communication details and therefore it
is easy to use and allows for fast development of parallel programs. With
the PCJ user can focus on implementation of the algorithm rather than
on thread or network programming. The design details with examples of
usage for basic operations are described. We also present evaluation of the
performance of the PCJ communication on the state of art hardware such
as cluster with gigabit interconnect. The results show good performance
and scalability when compared to native MPI implementations.

1 Introduction

Changes in hardware are associated with interest in new programming languages
which have not been traditionally considered for use in high performance com-
puting. A good example is Java with its increasing performance and paralleliza-
tion tools such as Java Concurrency which has been introduced in Java SE 5
and improved in Java SE 6 [I]. The parallelization tools available for Java do
not limit to threads and include solutions based on various implementations of
the MPI library [2], distributed Java Virtual Machine [3] and solutions based on
Remote Method Invocation (RMI) []. Such solutions are based on the exter-
nal communication libraries written in other languages. This causes number of
problems in terms of usability, scalability and performance.

In our work, we present a new approach motivated by the partitioned global
address space (PGAS) approach [5] represented by Co-Array Fortran [6], Unified
Parallel C [7] or Titanium (a scientific computing dialect of Java) [§]. PGAS
languages are becoming popular because they offer programming abstractions
similar to shared memory.

Titanium defines new language constructs and has to use dedicated compiler.
Other solutions developed for Java are mostly wrappers to the communications
libraries such as MPI and depend on the libraries written in C. Such solutions
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have significant disadvantages for the users, in particular they are not easy to
use.

Our approach has been designed and implemented as the Java library called
PCJ (Parallel Computations in Java) [I1I9]. Compared to Titanium, PCJ is not
using extensions to the language which would require to use dedicated com-
piler to preprocess code. It much betters suits needs of the Java programmers.
The PCJ offers methods for partitioning work, synchronizing tasks, getting and
putting values in means of asynchronous one-sided communication. The library
provides methods for broadcasting, creating groups of tasks, and monitoring
changes of the variables. The PCJ library is created to help develop parallel ap-
plications which require significant amounts of memory, bandwidth or processing
power.

In this paper we evaluate the performance of the PCJ using a relevant subset
of Java Grande Forum Benchmark Suite tests [10] executed on the cluster with
gigabit interconnection. The results are compared with analogous tests using the
MPI library written in C.

2 Library Description

The PCJ [I1] has been developed from scratch using the newest version of Java
SE 7. Usage of a newest version of Java increases the performance, prolongs
the library life and, in the future, helps to move to more recent versions of Java.
Java SE 7 implements Sockets Direct Protocol (SDP) which can increase network
performance over Infiniband connections.

In the design of the PCJ we stress compliance to the Java standards. The
PCJ has the form of Java library which can be used without any modification
of the language. The programmer does not have to use extensions and libraries
which are not part of the standard Java distribution.

The PCJ library is built based on some fundamental assumptions presented
below.

2.1 PCJ Fundamentals

In the PCJ library each task runs its own calculations and has its own local
memory. By default, the variables are stored and accessed locally. Some variables
can be shared between tasks, so in the PCJ they are called shared variables.
One task is intended to be the Manager which starts calculations on other
tasks. It takes responsibility for setting unique identification to tasks, creating
and assigning tasks into groups and synchronizing tasks within a group. The
Manager is running on the main JVM — one which starts the PCJ. The remaining
tasks are used for calculations. Since the manager is not CPU intensive, it can
be run on the same physical node as one of the tasks used in the calculations.
All variables, which are shareable, are stored in a special Storage class. Each
task has one and only one Storage instance. Each shared variable should have
a special annotation @Shared with share-name of that variable. The class can
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become the Storage by extending pl.umk.mat.pcj.storage.StorageAbstract
class. An example of the Storage class definition is viewable in the Listing [l

13 public class BcastStorage extends StorageAbstract {

14

15 @Shared ( ) // variable identifier
16 private double[] array;
17 }

Listing 1. Example Storage class

There is also a start point class. This class should implement the pl.umk-
.mat.pcj.StartPoint interface. It indicates, that the class should contain the
public void main() method. This method is executed after initializing the
PCJ, as a starting point like public static void main(String[] args)
method in the normal execution. Listing [2] shows an example definition of Start-
Point class.

14 public class Bcast implements StartPoint {

15

16 @0verride

17 public void main() {

18 System.out.println(

19 + PCJ.myNode ());
20 }

21 }

Listing 2. Example StartPoint class

2.2 Protocol

The network communication is performed using New IO classes (java.nio.*).
Sockets are represented as channels, communication is nonblocking and uses
32 MB buffers (ByteBuffer). The size of the buffer has been experimentally
optimized to that value (see Figure[Il). Network requests (e.g. read, connection)
are processed by the Selector thread running in the loop. There is a dedicated
queue used to store data to be transmitted. If data is available the Selector is
notified to write data.

All tasks are connected to each other and to the Manager. Every get or put
request can be accomplished in a direct connection without using any other task.

Transmitting message to all tasks (eg. sync, broadcast) uses the binary tree
structure of the tasks. The Manager sends a message to the first task (with
nodeld = global node id = 0). Then this node sends information to its two
children (nodelId*241 and nodeld*2+ 2). Those nodes are sending message to
its own children, and so on. That allows to achieve communication complexity
of O(nlogn).

In the PCJ protocol each message consists of four integers (int) and serial-
ized data (byte[]). The integers are: type of message, its identifier, handshake
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number and number of objects to be transmitted. The data to be transmitted
depends on the type of the message. For example for synchronization command
it is a single integer - an identifier of the group to be synchronized.

During initialization, the newly created task connects to the Manager to in-
form about the successful start and to receive its unique global node id. Other,
already connected tasks get information about the new one. The task that in the
calculations receives information about a new task welcomes it by connecting
to its listening address and obtaining its global node id. Information about new
client is sent using tree structure presented before.

Every task that has finished initialization waits for all other tasks to connect
to the Manager. When all tasks are connected, the Manager sends the signal to
start the calculations. This is performed by broadcasting a dedicated message
over the tree structure of tasks. The task that receives the message, runs the
public void main() method from the start point class.

The tasks can be grouped to simplify the code and optimize data exchange.
Working with all tasks and with a group of tasks is identical from the user point
of view.

Joining the group works similarly to the initialization. The task sends the
message to join a specified group, using its distinguished name, to the Manager.
The Manager checks if the group already exists and then the task receives its
group node id. All tasks in that group are notified, using the tree structure of
tasks, about the new task in the group. Then the group members welcome the
new task by sending their global node id and associated group node id. If a task
sends request to join a non-existing group the Manager simply creates it. Of
course, tasks can be members of many groups.

Synchronization, also known as barrier, works in a similar way to the proce-
dure used to start calculations. Each task in the group is supposed to call the
sync method. Upon calling this method the task sends an appropriate message to
the Manager and pauses the current thread until the Manager receives messages
from all tasks. Then the Manager broadcast a message to continue calculations
using previously described tree structure of tasks.

There are methods for synchronizing all tasks, group of tasks or to synchronize
tasks not associated to the groups. The synchronization of tasks, even without
creating a group, is a way to get synchronous put and get methods.

Data exchange between tasks works in asynchronous way. For sending a value
to other task the put method is used. While receiving a value from another task,
the get method is used. The other task does not interrupt its calculations when
one task performs put or get operation.

A source task, task that puts value, creates a message with a variable name
and a new variable value and sends it to a destination task. The destination
task puts the new value to its Storage space. In put method the receiver can
monitor attempts of modification of a variable using the monitor and the waitFor
methods.

The get method is analogous to the put. First of all, a receiving task, creates
a message with a variable name to get, sends it to a sending task and waits until
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value is received. The sending task creates a reply message with desired variable
name and value from its Storage space and sends it to the receiving task. After
that, the receiving task returns received value and continue calculations.

Broadcast is performed in asynchronous way by putting a value to all tasks
in a group. The message broadcast uses the tree structure of tasks.

3 Examples

3.1 Deploying PCJ

Starting up the calculations using the PCJ is displayed in Listing Bl A config-
uration of nodes and manager bind addresses are read from XML file. Then
deployment of calculation on nodes is performed.

12 public static void main(String[] args) throws Throwable {

13 Configuration conf = Configuration

14 .parse (new File(args[1]));
15

16 NodeInfo[] nodes = conf.getNodes ()

17 .toArray (new NodeInfo [0]);
18 ManagerInfo [] managers = conf.getManagers ()

19 .toArray (new ManagerInfo [0]);
20

21 PCJ.deploy(Bcast.class, // StartPoint

22 BcastStorage.class, // storage

23 managers, // managers

24 nodes) ; // nodes info

25 }

Listing 3. Example of deploying PCJ

3.2 Join to Groups

Listing M shows how to create groups. In the example, tasks are divided into two
groups - group0 contains tasks with even global node id, groupl contains tasks
with odd global node id.

21 /*

22 * All nodes in calculations joins to:

23 * - groupO -- when node id for task is even

24 * - groupl -- when node id for task is odd

25 */

26 Group g = PCJ.join( + (PCJ.myNode () % 2));
27 PCJ.sync ) ;

Listing 4. Example of joining to groups
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3.3 Getting Value

When one task needs value from another task, the PCJ offers a mechanism to
synchronize two or more tasks without implicit group creation. After synchro-
nization, the first task can asynchronously get value of variable calling get ()
method. A sample source code for that problem is shown on Listing [l

29 if (PCJ.myNode () == 3) {

30 /* place calculated value to Storage */
31 PCJ.getStorage () .put ("impact", impact);
32

33 /* synchronize tasks: current and with id = 2 */
34 PCJ.syncWith (2);

35 } else if (PCJ.myNode() == 2) {

36 /* the same synchronizing as above */

37 PCJ.syncWith(new int [1{2, 3});

38

39 /* asynchronous get value of variable */
40 impact = PCJ.get ("impact", 3);

a1}

Listing 5. Example of synchronizing two tasks and getting value

3.4 Synchronize and Broadcast

The example for synchronizing all tasks, broadcasting a new value of array arr
from task O to all tasks and monitoring of a variable by all nodes is available in
Listing

20 PCJ.monitor ("arr"); // tell to monitor

21 // variable "arr"

22

23 PCJ.sync () ; // synchronize all tasks
24

25 if (PCJ.myNode() == 0) { // if node id equals O
26 PCJ.broadcast ("arr", // broadcast new value
27 new double[]{2.71828, 3.14159});

28 }

29

30 PCJ.waitFor ("arr"); // wait for modification
31 // of variable "arr"

Listing 6. Example of synchronizing, broadcasting value from node 0 and monitoring
a variable

4 Scaling and Performance

In order to evaluate the PCJ we have run selected Java Grande Forum Bench-
mark Suite tests [10]. They address communication efficiency: PingPong, Bcast,
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Barrier and RayTracer benchmark. The selected codes use constructions that
could be found in real life applications.

Tests were run in the time limit (10 seconds) and the limit of main loop
repetitions (1000000 repetitions), whatever comes first.

We have compared the results for the PCJ (running on 64-bit Java Virtual
Machine, Oracle version 1.7.0 03) with the results collected using the benchmarks
written in C or C++ (Raytracing). The codes used for comparison were based
on the same algorithm as used in Java implementation and prepared by the
authors. The arrays and tables definitions and allocations were optimized to
obtain efficient code. We have used different compilers and MPI libraries as
presented in the Table [l Compilations were performed with -02 parameter. All
tests have been run on a cluster built of 64-bit Intel Xeon X5660 Processors with
six cores at 2800 MHz. The nodes are equipped with 2 such processors, 24 GB
RAM and Gigabit Ethernet.

Table 1. Versions of compilers and MPI libraries used in the benchmarks

MPICH gee (GCC) 4.1.2 20080704 (Red Hat 4.1.2-52) MPICH2 1.4.1pl
OpenMPI gee (GCC) 4.1.2 20080704 (Red Hat 4.1.2-52) OpenMPIT 1.4.2

PGI pgec 11.3-0 64-bit target on x86-64 Linux built-in
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Fig. 1. Speed of PingPong with various size of array of double. The data for PCJ is
presented for different size of the buffer.

The first test performed was PingPong. It is based on sending an array of
doubles between two tasks, counting all the data sent. The results are presented
in the Figure [ for the different sizes of the buffer used in the PCJ. For the
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buffers larger that 1MB, the performance is similar and can compete with the
solutions written in C that have been optimized for many years. Smaller buffer
sizes can decrease performance.

30000 M -=-MPICH2
‘& Open MPI

—=PGl
=-PCJ

25000
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Speed [barriers/s]
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Fig. 2. Speed of performing barrier operation depending on the number of tasks

The Barrier test counts the number of barrier operations between all tasks
used. Figure Plshows results for the test. The PCJ speed compared to the Open-
MPI results is low and it should be improved. Although scaling of the PCJ is
good which is promising and shows room for improvements.

In the Figure[Blwe present the result of the Bceast test. It relays on broadcasting
to all tasks messages that consist of array of doubles of the specified size and
counting data sent by the first one. We present tests for the different array
sizes: 21 and 172072 double elements because there is high correlation between
the array size and maximum speed. The results for larger array sizes are very
competitive in comparison to the MPI results. For small data — the PCJ speed
oscillates around the 4600 B/s and this part of the PCJ should be improved.
This effect has the same origin as low barrier efficiency. For the large arrays
results are improving.

RayTracer is the final test presented here. It measures the performance of
3D ray tracing of the scene rendered at a resolution of NxN pixels. The Reduce
operation has not been implemented yet. The Reduce can be known from the
MPI and is one of the required operation for this benchmark. The PCJ version of
the RayTracer test contains a simple, naive method to do the Reduce operation.
Because of the complex structure types used in original Java source code, the
MPI version of RayTracer was rewritten in C++-.
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Fig. 3. Speed of broadcasting array of doubles

The results of the RayTracer benchmark are presented on the Figure @ for
the different sizes of data. Figure [4al presents achieved speed (number of pixels
processed in unit time) for the scene of size 150x150 pixels and the Figure
data for scene of 500x500 pixels. The speed is competitive for the MPI and the
PCJ versions of the benchmark. What is interesting, the run time for only one
task is shortest for the Java code. For the larger scene the gained speed for the
Java solution is the highest one.
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Fig. 4. The performance of the 3D ray tracing of the scene for different sizes: 150x150
(upper) and 500x500 pixels (lower).

5 Conclusions and Future Work

The PCJ library offers a new approach for the development of parallel, dis-
tributed application in Java language. It uses the newest advantages of Java and
therefore can be a good base for new parallel applications. In contrast to other
available solutions, it does not require any additional libraries, applications or
modified version of JVM. It is noteworthy that the PCJ library has great promise
to be successful in scientific applications.



PCJ - New Approach for Parallel Computations in Java 125

However, the presented tests show that there are still some areas for improve-
ments. The efficiency of sending small data and speed of the task synchroniza-
tion can be increased. Additionally, there are no advanced techniques for the
breakdown recovery and node failure handling. Such mechanisms should be also
implemented in order to make the PCJ a widely used library for distributed and
parallel application for Java language. There is also need of features known from
other libraries like scatter, gather and reduce data over tasks.
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Abstract. We present our findings and results of a project to port an ex-
isting large lattice QCD codebase to run on GPUs and clusters of GPUs.
Our design principles from the start were to strive for both productiv-
ity and performance, while tackling the problems presented by a large
constantly moving codebase. The resulting simulator reproduces the orig-
inal results while running up to 11 times faster than our highly optimized
CPU-code and meeting productivity requirements. Multi-GPU support
was implemented using MPI and scaling across nodes shows good weak
scaling. We also contemplate the consequences of the dawning of the par-
allel computing era from a lattice QCD point of view and analyze where
state-of-the art contemporary parallel computing architecture could be
improved.

Keywords: graphics processing units, computational physics, lattice

QCD.

1 Introduction

Lattice QCD (see for example [I], [2] or [3]) — short for quantum chromody-
namicd] — has long been one of the few heavy computational tasks that theo-
retical physicists have undertaken, and its importance as a tool for modelling
the most fundamental laws of physics has grown over the years with advances
in algorithms and increase of available computational power. At the moment it
is the only known and reliable method to study quantum field theories at strong
coupling.

It is evident that relentless advances in microchip technology, coupled with
modest increase in their operating frequency, are pushing us — and in fact has
already pushed us — quite far into the world of parallel computing. Simply put,
the industry can output transistors in higher and higher densities, while not
being able to run them significantly faster. This means that even consumer
devices are seeing processors with more and more processor cores, as well as cores

! When talking about lattice QCD physicists can often refer also to other models of
quantum field theory.
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specialized in doing certain types of operations, such as video playback, graphics
processing, network functions and many others. Parallelism in high performance
computing is, of course, nothing new in itself, but as the fine-grained parallelism
seeks its “optimal form” on the consumer side, high performance computing is
getting ready for the change.

Formulating the quantum field theory on a space-time lattice provides an op-
portunity to study the model non-perturbatively and use computer simulations
to get results for a wide range of phenomena — it enables, for example, one to
compute the hadronic spectrum of QCD [4] from first principles and provides
solutions for many vital gaps left by the perturbation theory, such as structure
functions of composite particles [5], form-factors [6] and decay-constants [7]. It
also enables one to study and test models for new physics, such as technicolor
theories [§] and quantum field theories at finite temperature [9].

Currently the most widely adopted massively parallel programming model is
NVIDIA’s CUDA-architecture, because it provides through its CUDA-C pro-
gramming language the most robust and productive solution. We also chose
CUDA-C as our target, and there are various other groups doing lattice QCD
with CUDA as well [TOJTTIT2]. Recently also OpenCL [I3] Lattice QCD codes
have emerged [T4/T5], where the latter group actually have studied both CUDA
and OpenCL.

1.1 Problem Statement

The idea behind lattice QCD is that one divides space-time into discrete boxes,
called the lattice, and places the fields onto the lattice sites and onto the links
between the sites, as shown in Fig.[[l Then one can simulate nature by creating
a set of multiple field configurations, called an ensemble and calculate values of
physical observables by computing ensemble averages over these states.

The set of states is normally produced with the help of a Markov chain, by
combining a molecular dynamics algorithm together with a Metropolis accep-
tance test, and therefore the typical computational tasks in lattice QCD are:

1. Refresh generalized momentum variables from a heat bath, once per trajec-
tor

2. Compute generalized forces for fields for each step

Integrate classical equations of motion for the field]

4. Perform a Metropolis acceptance test (at end of each trajectory) in order to
achieve the correct limiting distribution.

@

The force calculation normally involves a matrix inversion, where the matrix
indices run over the entire lattice. It is therefore the heaviest part of the com-
putation — the matrix arises in simulations with dynamical fermions (normal

2 A trajectory ranges normally from about ten to a few hundred classical steps.
3 The integration is not done with respect to normal time variable, but through the
Markov chain index-“time”.
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Fig. 1. The matter fields ¥(x) live on lattice sites, whereas gauge fields U, () live on
links connecting the sites. Also depicted staples connecting to a single link variable,
that are needed in computation of the gauge field forces.

propagating matter particles) and the simplest form for the Fermion matrix i

Apy = [QTQ]my where

+4

Quy = 0oy — K Z Sy+ia(1 + ) Un(). (1)
p==+1

Here k is a constant related to the mass(es) of the quark(s), ds,, is the Kro-
necker delta function (unit matrix elements), the sum goes over the space-time
dimensions p, 7, are 4-by-4 constant matrices and U, (z) are the link variable-
matrices that carry the force (gluons for example), from one lattice site to the
neighbouring one and in normal QCD they are 3-by-3 complex matrices.

Therefore the matrix A in the equation Ar = z, where we are solving for
the vector r with given z, is an almost diagonal sparse matrix with predefined
sparsity pattern. This fact makes lattice QCD ideal for parallelization, as the
amount work done by each site is constant. The actual algorithm used in the
matrix inversion is normally some variant of the conjugate gradient algorithm,
and therefore we need fast code to handle the multiplication of a fermion vector,
by the fermion matrix.

2  Owur Solution Using CUDA

The fundamental problem in massively parallel programming is how to express
the parallelism inherent in the algorithm. After brief analysis of our existing

4 There are multiple different algorithms for simulating fermions, here we present the
simplest one for illustrative purposes.
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code (which is based on the original MILC collaboration’s code [16]) it became
apparent that there is a very clear pattern of parallelism in this kind of code:
logic code, which is essentially sequential in nature, was interleaved with code
that could be run in parallel throughout the entire lattice — in fact, these sections
of the code had already been defined through compile time macros, which would
simply iterate in a for-loop over the entire lattice, or part of it. At times larger
parallel code sections were broken up due to the need to do MPI communication
or because results had to be accumulated throughout the lattice to decide how
to continue. Therefore the typical code was something like the following:

Logic code;
For all sites(i){ Do something for site i (i+1,...)}
Logic code;
sum = 0;
For all sites(i){
sum += Some function of site i; }
If (lsum| < tolerance) } {break out of outer-loop;}
Logic code;

At first we thought about breaking up large parallel code sections into simpler
vectorized operations over the lattice and parallelizing these vector operations
to run on GPUs, but it soon became clear, that in this approach we would
be sacrificing performance due to breaking up kernel fusion, which means that
we can save memory bandwidth (the primary bottleneck in lattice QCD) by
combining as many operations as possible for the local field values [

Further analysis revealed that almost the entire codebase was dependent on
only three fundamentally different parallel algorithms: Map, Reduce and Bin.
Here Map just performs some operation at each lattice site, Reduce does the
same, except at the end it accumulates a value over the lattice sites and Bin
or Histogram does the same as Reduce, except that the values are accumulated
to different bins (normally depending on lattice site coordinate). As a result we
decided to go with the “trivial level of parallelization” — meaning one thread per
site — and to try to re-use the existing code for the parallel sections. Afterwards
we augmented this strategy by allowing multiple threads to run on one site and
we use this feature to extract additional parallelism in those cases where the
intra-site parallelism is trivial in nature, relieving register pressure and slightly
improving scaling to smaller local volumes.

2.1 Parallel Call Framework

In order to reach maximal productivity, while giving us a migration path to
the GPUs and being able to retain most of the codebase, we decided to use
only features present in modern C and C++ compilers. This meant wrapping
the parallel sections of the code with preprocessor directives that would trans-
late the code inside into function objects for CUDA and normal functions for

5 Allows us to fetch once, use multiple times and store once again.
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ANSI C compilers. This way we can actually run the same code at near optimal
performance with both CPUs and GPUsH

To wuser codd] this causes three changes. First the parallel calls need to be
taken out of normal function scope, as unfortunately the C++ standard does not
allow local types as template variables (this is fixed in C++11), and dressed with
proper preprocessor directives, which translates the code inside into functions or
function-objects:

forallsites(i) { <code> };
becomes

PARALLEL_CALL_BEGIN(<name>, <input>, i)
{ <code> }
PARALLEL_CALL_ENDQ);

for the Map algorithm,

PARALLEL_REDUCE_BEGIN (<name>, <in>, i, <out>)
{ <code>; <out> = ... }
PARALLEL_REDUCE_SUM(...)
{ <sum code> }
PARALLEL_REDUCE_END(...);

for the Reduce algorithm and

PARALLEL_HISTOGRAM_BEGIN (<name>, <input>, i, <out>, <out_index>)
{ <code>; <out> = ... ; <out_index> = ... }
PARALLEL_HISTOGRAM_SUM(...)
{ <sum code> }
PARALLEL_HISTOGRAM_END(...);

for the Bin, or Histogram, algorithm. This way we can support arbitrary reduc-
tion operations both with normal reductions as well as with histograms. The
change above is normally easy for an arbitrary parallel call with a few copy-
paste operations. On top of this the inputs needed in the algorithm are packed
inside a structure which is passed on as a parameter to the user code. The so-
lution then for CUDA takes in the code inside the preprocessor macros, makes
function objects out of them and passes these function objects as parameters to
templatized versions for the solutions of the three parallel algorithm types. In
this way we achieve:

— Good performance (code correctly inlined)
— Parallel algorithms coded once, used everywhere
— Complete abstraction of underlying parallel hardware

5 We considered also OpenCL, but it provides little support for algorithm abstraction,
normally achieved with function objects.

" By user code we mean the architecture independent part of the code that contains
the actual lattice QCD algorithms.
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The most important algorithm is Map, the implementation of which we wrote
ourselves to get best performance; For a long time we used the thrust library
[I7] for CUDA for Reduction, but later implemented our own reduction routine
in order to gain more flexibility to the code and to better cater for the use
case where we want multiple threads per lattice site. The implementation of the
Histogram or Bin algorithm was also developed by us, as no good pre-existing
solutions were found.

The largest change to the user code was caused by the fact that we had to
change layout of the fields in the memory from the typical array of structures
to structure of arrays for CUDA code in order to enable coalescing in memory
fetches and stores. Therefore on the CPUs the access pattern to read one field
of three components r; in three sites is:

ThreadO:
Site 0: Site 1: Site 2: Site 3:
1 T2 T3 1 T2 T3 1 T2 T3
and the access pattern on GPUs for the same operation is:
ThreadO:
1 e T2 e T3
Thread1:
1 e T2 e T3 ’
Thread3:

1 e T2 e T3

where the distance between r; and r; 41 (called the stride) is number of sites
allocated for the field. In effect this means storing each component of a field in a
separate array, which places always the same components of a field of subsequent
lattice sites next to each other. We also noticed that best performance can be
reached when the values are stored as double2’s, which means a tuple of two
double precision (64-bit) floating point numbers (and float4’s in case we have
built single precision version of our code).

Changing the layout of the fields in memory causes two major changes to the
code, as well as several minor ones. In parallel code sections we can no longer
apply the normal array dereferencing to access the fields, but have to resort
to accessor-functions that jump through the memory with the correct stride. A
typical pattern has been something like:

forallsites(i){
a = DoSomething(x[il, z[il);
x[i] = z[i] + axy[il;

3

Now it becomes

PARALLEL_CALL_BEGIN(name, input, i){
x = getField(input.x, i);
y = getField(input.y, 1i);
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z = getField(input.z, i);

a = DoSomething(x, z);

X =z + axy,;

setField(input.x, i, x);
} PARALLEL_CALL_END();

Also due to memory layout change we had to adapt our MPI code to cope with
it. It turns out that the best solution was to do an intermediate pass on the GPU,
which writes the buffer to be sent through MPI into a single linear block, sends
the block to the CPU, which performs a normal MPI send/receive, receives the
block on the CPU side, transfers it back to the GPU as is and scatters the linear
block into proper places in the memory block allocated for the field. We suspect
that this is due to increased call overheads, caused by an increased amount of
memory copy calls. Here it should be noted that scaling across multiple MPI
nodes should be improved by taking advantage of direct GPU-to-GPU commu-
nications provided by the GPUDirect v.2 [I§] implementation, where present,
but we have not had the time to try it out ourselves yet. We do, however, take
advantage of GPUDirect v.1 when present, which allows us to share the pinned
memory buffers between the MPI-Implementation (typically Infiniband) and the
GPU, eliminating the need for unnecessary copies due to DM A-transfers — in our
experience this results in a minor overall improvement, in the order of five per-
cent increase in performance.

Another optimization that we implemented was to take advantage of CUDA
streams [19], which can be thought of as task-parallel threads within the GPU.
Operations on different streams can be run in parallel to each other and an
event-system can be used to synchronize the streams to each other. The oper-
ations within a single stream are of course completed sequentially. The authors
in [20] take advantage of this system to concurrently perform memory transfers
between the CPU and the GPU, while running the bulk of the matrix-vector
multiplication for those sites that have no out-of-node neighbors and they re-
port good scaling on relatively large lattices. Due to the fact that our solution
already does a good job of overlapping MPI-communications with computational
tasks even without multiple streams, we see an increase in performance only with
small lattice-sizes, and even in these situations the improvement is of the order
of five percent, but this feature may become more relevant with GPUDirect v.2
[18] enabled and with next generation GPUs, that have improved support for
multiple MPT clients [21].

2.2 Performance Results

Our performance benchmarks were run on Vuori, a HP CP4000 BL ProLiant
supercluster at CSC [22]. The tested hardware consisted of Tesla M2050 GPUs,
as well as hexacore Opterons with 12.8 GB/s of memory bandwidth. The GPUs
are about 10 times as fast as the CPUs, when measured by memory bandwidth,
as the GPUs have about 129.5 GB/s of bandwidth with ECC turned on, and we
always compare a GPU against a whole CPU running all six cores. The network
is 4x quad-rate Infiniband with 3.2 GB/s of maximal throughput.
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In Fig. @l we present performance comparison results for two different models:
One is based on the SU(2) symmetry where the link matrices are 2-by-2 complex
matrices with 4 parameters; The other is the normal QCD symmetry group,
the fundamental SU(3), where we store all 9 complex numbers of the 3-by-3
matrix. An easy opportunity for optimization here would be to use a smaller
representation of the SU(3) matrix — the almost standard optimization is to use
12 real parameters and the remaining 6 parameters can be found by requiring
unitarity of the matrix (see for example [23], page 5). The runs have 1 flavor of 2
pseudofermions and the SU(3) run implements the so-called clover improvement
to the fermion action [24]. The results are what can be expected by looking at
performance differences between the processor types and it can seen that our
GPU version of the simulator is running at near-optimal speed, provided that
the CPU code is running at near-optimal speed. In order to measure the quality
of our GPU-porting work we decided to use as a measure the relative speed-up
over the CPU code, as we know that our old CPU code performs well§

B 1 CPU/GPU
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1200 04 CPUIGPU
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(5]
[}
9 800
0
g
£ 6.00
g
(8]
8 400
[oR
3
2
g 200
Q.
%]
0.00
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Fig. 2. GPU Performance against optimized CPU-versions

Multi-GPU scaling was studied with various models as well. In Fig. Bl we
present results for SU(2) runs on a lattice of 24? sites and we can observe here
that while the scaling from 1 to 2 GPUs is good and from 2 to 4 GPUs is de-
cent, the relatively easy symmetry group of the model means less local work at
each site and hence scaling from 4 to 8 GPUs starts hit the MPI-limitations.
The performance is given as number of conjugate gradient (CQG) iterations per
second and the timings include force computations between steps — the number
is therefore obtained by computing the total number of CG iterations done in
one trajectory divided by the amount of time it took to compute the trajectory.

8 Often authors give results in amount of GFlops/s (See [T1123]).
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An interesting fact in this particular case is the superlinear scaling of the CPU
performance; This is most likely caused by better utilization of the caches of the
CPUs, starting to take advantage of the temporal locality in the algorithm.

Scaling of clover improved SU(3) theory is presented in figures [ [ and [6
Here we can see the effect of the local lattice volume clearly: the 30* lattice
scales quite well up to 8 GPUs but in the 18% case the scaling from 4 to 8 GPUs
is already quite bad, indicating that either the MPI implementation cannot
keep up with the GPUs anymore, or that the local lattice size for each GPU
is starting to become too small to fill the GPU completely — we suspect both,
based on simulating a system of the size of the local volume with a single GPU,
but have not studied further the balance of the two effects.

120
—¥— cpu-su2_hmc sSu2 - 2474 |attice
—8— cpu—su2_rcl_sf
100
== gpu-su2_hmc
== gpu —su2_rcl_sf
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(2]
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0
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Fig. 3. Scaling of the SU(2) model at 24" sites from 1 to 8 GPUs and CPUs (6 to 48
cores)

We ran out of memory running the 30%-sized lattice with just one GPU so the
result here is absent. The scaling on the GPUs is good at large lattice-sizes and
exhibits typical weak scaling — we can scale to 8 GPUs with 30%-sized lattices
and probably beyond, but could not yet test it as we did not have access to
a system with more GPUs. This means that we can employ GPUs to get the
same performance with smaller resource usage when studying small lattices and
they enable us to study large lattices with significantly higher performance. Our
GPU scaling with large enough lattices cuts execution time by 35 to 45 percent
for every doubling of processor resources and CPU scaling cuts 50% for each
doubling almost without exception — in this study we did not try how far we can
keep on scaling CPUs.
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It should be noted also, that as our results are measured from entire trajec-
tories, the number of iterations per trajectory vary slightly, resulting in small
variations in the ratio of CG iterations to force computations between different
number of MPI processes. These variations may skew the comparisons between
CPUs and GPUs by a few percent and in order to fight this effect we have tried to
select trajectories with similar amounts of CG-iterations per force computations.

2.3 Novel Aspects of Our Solution

We feel that our solution for the parallelization is unique in many respects. The
major difference to other large projects, such as the ones discussed in [I1] and [23]
is that we do not hide the code running on the GPUs behind libraries, but make
it more accessible to developers and easier to make changes — only the difficult
things, such as memory layout handling, MPI tweaks and implementation of the
parallel algorithms, have been abstracted away and even those are a few function
or macro calls away.

Bringing the GPU code to the developer also enables us to avoid memory
copies between the CPU and GPUs as the fields can be kept on the GPU mem-
ory just by implementing the necessary functionality with GPU code. There
are already groups that implement the entire HMC trajectory, or a large por-
tion of it, using the GPU [25[15], but extending the application of GPUs even to
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measurements, like in our code, is not common yet. The QDP++ Library [11]
seems to provide such tools. Also writing new code with our system is a breeze:
it is as easy as programming for the CPUs and one can debug the code using
the CPU-compiled version of the same code. Our only regrets are the memory
layout issue and the fact that we had to move the parallel code outside the logic
functions (see Section [2Z.1]).

3 Discussion

Thanks to the fact that we were able to find such an easy way to port the
existing parallel sections of the code to the GPUs, we ended up porting almost
all of them. The conventional thinking in parallel computing has long been that
one should look at the profiler, see where more than 90 percent of the time is
spent, and parallelize that.

As it turns out in our case, 80 to 90 percent of the time (in typical runs)
is pretty nicely contained within the conjugate gradient algorithms, but there
are several of those, and the remaining 10 to 20 percent is already quite a large
part. Let us assume that we can reach the tenfold performance improvement by
applying GPU acceleration to the parallel sections of the code and let us quickly
check an example of how the performance scales:

Tog  TRest Ttot  Improvement

Baseline 8 2 10 1x
Optimize CG 0.8 2 2.8 3.6x
Optimize All 0.8 0.2 1.0 10x

Here we see that optimizing only the conjugate gradient will result in a mere
3.6-fold overall performance gain. While in itself it is not that bad, even more
impressive is, if we can achieve the full tenfold improvement promised by the
architecture we are using.

We believe that one should choose the right tool for the job, and therefore
parallel sections of the code should by default be run on parallel architectures.
If this is not feasible for some legacy code, then we should at least try to pave
the way for the correct solution when we write new code. We believe that most
algorithms involved in high performance computing have a notion of trivial level
of parallelization, let it be a ‘site’ or ‘cell’, as in our case, or a node, a particle
or just an entry in an array, and that this parallelism should be exploited to the
fullest in order to reduce wasted processor time and energy.

On the other hand productivity is also a major concern and here there is still
a lot of work to do: programming on massively parallel architectures should be
made as simple as possible and libraries, such as Thrust [17], should provide so-
lutions for all common, abstractable parallel algorithms. The programming lan-
guage used should be expressive enough to enable hiding different levels of par-
allelism and yet provide low-level access to code needed in micro-optimizations.
As an example of a modern effort to reach these goals see for example [26].

In our simulation code, we achieve good performance on a relatively small
amount of parallel threads per site, which means that there are always
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multiple independent instructions for the compiler to use in hiding the pipeline
and memory latencies. We have noticed though that in some kernels register
pressure is starting to limit performance, and extending our strategy to deploy
multiple threads per site to those situations where the threads collaboratively
produce a result, would help both with register pressure and with strong scal-
ing, as then a smaller local lattice volume is needed to fill the GPU with work.
The abstraction of such interfaces might be non-trivial though and may require
some sort of adjustable libraries to be implemented for the most time-critical
kernels. It is made even further difficult by the fact, that in different kernels an
optimal amount of threads per site might vary, creating even more pressure to
get a permanent solution for the memory-layout problem, since the number of
threads per site, dictates the optimal layout of fields in the memory, which of
course cannot vary within one simulation.

This issue is related to the memory layout issue and the ideal solution probably
would deal with both. One possibility for such a solution would be that once the
compiler detects portions of code that have excessive register pressure, it would
automatically issue multiple threads to handle the auto-vectorizable portions
of the code by taking advantage of the unused processing units. Another option
would be to simply have the hardware support strided access directly would ease
the situation considerably and would probably pave way for a good software-
based solution for the parallelism-problem. In the mean time we shall explore
the various ideas we have on the subject.

Another option would be to run more threads in one site on the kernels that
experience high register pressure to exploit the vector-level parallelism inherent
in the small matrix-vector operations, but it is not a trivial task to hide this
parallelization from the user with current programming languages. Here a nice
solution could be something like a device-side BLAS-library, that would provide
optimized code for small linear-algebra operations inside the kernels, although
it might very well be, that the crude C-programming language does not provide
good way to abstract away the number of threads needed for each operation.

Note. During the review process of the present paper we have implemented
a collaborative intra-site threading technique for CUDA capable GPUs in two of
the heavy computational loops that do improve performance by relieving register
pressure, allowing more thread-level parallelism. The implementation uses on-
chip shared memory to share the different color-components of a Wilson vector
between the collaborating GPU threads in the colormatrix-vector multiplication
needed in EqlIl and therefore each of the threads only have to fetch one row of
the matrix. The sharing of the color-components is done between strictly differ-
ent thread-warps in order to avoid costly shared-memory bank-conflicts (apart
from the ones necessarily caused by 64-bit accesses inherent in double precision
calculations) between threads of the same warp (see [19]) — this requires us to
synchronize the different warps a few times in order to ensure correct ordering
of operations, but the performance impact of the synchronizations seems minor.
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4 Conclusions

We have presented our solution for a lattice QCD simulator for CUDA-capable
GPUs that has been implemented by porting an existing C+MPI-based simula-
tor, derived from the MILC-collaboration’s original code[16]. Our code includes a
large number of lattice QCD related algorithms and is aimed mostly at exploring
new physics and new models.

Our algorithm provides weak scaling over MPI-nodes and a clear performance
benefit over optimized CPU-versions, with 6 to 11 fold increase in performance
over the hexacore OpteronsE The scaling across MPI processes with GPUs is not
as strong as with CPUs due to overheads caused by memory layout changes, in-
creased PCI Express traffic and also because GPUs simply require more network
bandwidth since they run faster, yet multi-GPU performance is competitive with
large lattice sizes and should be even more competitive, once GPUDirect v.2 is
taken advantage of.

The extreme ease of use of our framework coupled with very real performance
benefits lead us to believe that we will be ready to face the challenges of the new
massively parallel computing era. We feel that our way of expressing parallelism
can stand the test of time, as the level of abstraction is high enough to enable
the developer to forget underlying architecture, while still being low enough to
allow removal of bottlenecks in performance critical sections of the code.
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Abstract. We demonstrate the effectiveness of graphics processing units
(GPU) in computing the time evolution of a many-body quantum state.
We study the Hubbard model with exact diagonalization. We discretize
the time into small steps and expand the time evolution operator into a
Taylor series. An algorithm for calculating the time evolution on a GPU
is given and tested on a 1D lattice to observe spin-charge separation.

1 Introduction

In quantum physics, the goal is to solve the Schrédinger equation,

Hig) = ih

o 19 (1)

where H is the Hamiltonian that characterizes the energy of the system in ques-
tion. Formally, given some initial state |1y), we can solve the above equation to
give the state of the system at time ¢ as

(1)) = Te™h o HDAT |y (2)

where 7' is the time-ordering operator. In computations, the integral is dis-
cretized into IV small timesteps At:

0 .
W) = | T e #7029 | o), 3)

j=N

where the operators are time-ordered such that the earliest Hamiltonian operates
first. If we assume that the Hamiltonian is time-independent, then we get the
simple result,
[9(8)) = e~ o) (4)
where we see that the time evolution of a state is given by the operator e~ *H?
when we choose i = 1.
In condensed matter physics, one popular choice for the Hamiltonian H is
the Hubbard model, which was introduced in the 1960s to describe interacting
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electrons in a solid[T23]. Tt has since been the subject of extensive study and is
still a source of interesting physics[4]. It is perhaps the simplest model to display
many of the essential features of electron correlations, such as ferromagnetism
and conductor-Mott-insulator transition.

In the Hubbard model, the solid is described by a fixed lattice, where electrons
can hop from one lattice site to another. The electrons are always bound to an
atom, such that their wave functions are vectors whose components squared
are the probabilities of finding the electron at the corresponding lattice site.
Interactions take place only between electrons that are residing on the same
site.

The Hamiltonian can be written as

H= Hhop + Hips (5)
=t Z Z (czT,oCJ%a +h.c) + UZW,TW,@ (6)
<ij>o=11 i

where < ij > denotes a sum over neighboring lattice sites, C;U and ¢; , are

the creation and annihilation operators which respectively create and annihilate
an electron at site ¢ with spin o, and n,, = c;.r’aci’a counts the number of
such electrons. U is the interaction energy and ¢ is the hopping amplitude. The
creation and annihilation operators obey the typical anticommutation rules for
fermions,

{cza,ch} = ;00 and {CIU,C;T} = {¢Cio,cjr} =0, (7)

which means that there are four possible occupations for a lattice site: either it
is empty, has one up electron, one down electron or one of each.

An important property of the Hamiltonian is that the numbers of both up
and down electrons are separately conserved. This is convenient because it allows
one to fix the number of up and down electrons and thus restrict to a subspace
of the whole Hilbert space.

Despite the model’s simplicity, an analytic solution is only available in one
dimension, and it was found by Lieb and Wu in 1968[5]. In general, computa-
tional methods are required. While both terms in the Hamiltonian are easy to
diagonalize separately, their sum is highly nontrivial. One method to numeri-
cally solve the Hubbard model is exact diagonalization. The idea is to simply
calculate the matrix elements in a suitable basis and then diagonalize the result-
ing matrix. The obvious downside of this approach is that the number of lattice
sites and particles that can