Convergency of a Leap-Frog Discontinuous Galerkin Method for Solving Time-Domain Maxwell’s Equation in Anisotropic Materials

Adérito Araújo, Sílvia Barbeiro, Maryam Khaksar Ghalati

CMUC, Department of Mathematics, University of Coimbra, Portugal

BIT Circus
Numerical Mathematics and Computational Science
Umeå University, August 26-28, 2015
Outline

- Motivation
 Wave propagation in biological tissue (retina)
- Maxwell’s equation in anisotropic material
- Numerical methods
 Stability and convergency of Leap-frog discontinuous Galerkin scheme
- Numerical Results
 Illustrating the high-order convergency
Motivation

The motivation of this work has come from the light scattering effects in human retina.
The motivation of this work has come from the light scattering effects in human retina.

Figure: Human Eye.
Motivation

Retina

- Thin layer backside of the eye;
 Varies between 0.10 and 0.24 mm along the eye
- Light sensitive part of tissue
- Part of central nervous system;
 Constituted by layers of neurons interconnected through synapses.

Figure: Histologic image of the retina
Optical Coherence Tomography

- High resolution imaging technique
- Noninvasive
- Analogous to ultrasound imaging, but using light instead of sound
- Based on low coherence interferometry
- Rely on differences in backscattering properties of small volumes within the tissue.
- A useful diagnostic tool in ophthalmology
OCT

- A- scan
 When we change the position of the mirror, we get reflections from different depths for the same lateral position.

- B- scan
 If we take multiple A-scans along the same axis, all of them parallel between themselves, we have a bi-dimensional image of retina.

![OCT B- Scan](image)

Figure: OCT B- Scan

- OCT has the possibility of evaluating different elements in measuring the retinal nerve fiber layer (RNFL)
Motivation

- Strong correlation between RNFL thinning and a reduction in tissue birefringence
- Waveguides with induced anisotropy may worth to be modeled as they could play a role in biological waveguides

In order to model in detail the behavior of the electromagnetic wave as it travels through the retina we arrive at solving the Maxwell’s equations in anisotropic medium. ¹

Maxwell’s Equations in Anisotropic Materials

- 2D Maxwell’s equations in transverse electric (TE) mode:

\[
\begin{align*}
\epsilon \frac{\partial E}{\partial t} &= \nabla \times H, \\
\mu \frac{\partial H}{\partial t} &= -\text{curl } E, \quad \text{in } \Omega \times (0, T].
\end{align*}
\]

- \(E = (E_x, E_y) \)
- \(H = (H_z) \)
- \(\Omega \) is a two-dimensional domain.
- \(\mu \): Isotropic permeability;
- Anisotropic permittivity tensor

\[
\epsilon = \begin{pmatrix}
\epsilon_{xx} & \epsilon_{xy} \\
\epsilon_{yx} & \epsilon_{yy}
\end{pmatrix}
\]
Boundary condition

- Perfect electric conductor boundary condition (PEC)
 \[n \times E = 0, \quad \text{on } \partial \Omega, \]

- Perfect magnetic conductor boundary condition (PMC)
 \[n \times H = 0, \quad \text{on } \partial \Omega, \]

- Silver-Müller absorbing boundary condition
 \[n \times E = c \mu n \times (H_z \times n), \quad \text{on } \partial \Omega, \]

 where we assume the medium is isotropic near the absorbing boundary, i.e.,
 \[\epsilon = \begin{pmatrix} \epsilon & 0 \\ 0 & \epsilon \end{pmatrix} \]

 and the local light speed \(c \) is given by \(\epsilon \mu c^2 = 1 \).
Numerical Method

- Space discretization:
 Nodal Discontinuous Galerkin \(^2\)
 - Handle complex geometry
 - Adaptive mesh
 - High-order of accuracy and hp-adaptivity
 - Explicit semi-discrete form

- Time Integration:
 Leap-frog
 - Solving a system of equations in staggered grid points
 - Explicit 2nd order

Leap-frog Discontinuous Galerkin

- Computational domain:

 \[\overline{\Omega} = \bigcup_k T_k \]

 \(T_k \), conforming triangular elements

- Solution on each element \(T_k \):

 \((\tilde{E}_{xk}, \tilde{E}_{yk}, \tilde{H}_{zk})\)

- Finite element space

 \[V_N = \{v \in L^2(\Omega)^3 : v|_{T_k} \in P_N(T_k)\} \]

 \(P_N(T_k) \): Space of polynomials of degree less than or equal to \(N \) on \(T_k \)
Divide the time interval $[0, T]$ into M subintervals;

- $t^m = m\Delta t$
- Δt: Time step size
- $t^{m+1/2} = (m + \frac{1}{2})\Delta t$
- $\tilde{E}_{xk}^m = E_{xk}(\cdot, t^m)$, $\tilde{E}_{yk}^m = E_{yk}(\cdot, t^m)$, $\tilde{H}_{zk}^{m+1/2} = H_{zk}(\cdot, t^{m+1/2})$.

Find $(\tilde{E}_{xk}^{m+1}, \tilde{E}_{yk}^{m+1}, \tilde{H}_{zk}^{m+1/2}) \in V_N$ such that, $\forall (u_k, v_k, w_k) \in V_N,$

$$
\left(\epsilon_{xx} \frac{\tilde{E}_{xk}^{m+1} - \tilde{E}_{xk}^m}{\Delta t} + \epsilon_{xy} \frac{\tilde{E}_{yk}^{m+1} - \tilde{E}_{yk}^m}{\Delta t}, u_k \right)_{T_k} = \left(\partial_y \tilde{H}_{zk}^{m+1/2}, u_k \right)_{T_k} + \left(\frac{-n_y}{Z^+ + Z^-} \left[\tilde{H}_{zk}^{m+1/2} \right]_{+} \right), u_k)_{\partial T_k},
$$

(1)
Leap-frog DG Full discrete scheme

\[
\left(\epsilon_{yx} \frac{\tilde{E}_{x_k}^{m+1} - \tilde{E}_{x_k}^{m}}{\Delta t} + \epsilon_{yy} \frac{\tilde{E}_{y_k}^{m+1} - \tilde{E}_{y_k}^{m}}{\Delta t}, v_k \right) T_k
\]

\[
= \left(\partial_x \tilde{H}_{z_k}^{m+1/2}, v_k \right) T_k + \left(\frac{n_x}{Z^+ + Z^-} \left(Z^+ \left[\tilde{H}_{z_k}^{m+1/2}\right] - \alpha \left(n_x \left[\tilde{E}_{y}^{m}\right] - n_y \left[\tilde{E}_{x}^{m}\right]\right)\right), v_k \right) \partial T_k,
\]

(2)

\[
\left(\mu \frac{\tilde{H}_{z_k}^{m+3/2} - \tilde{H}_{z_k}^{m+1/2}}{\Delta t}, w_k \right) T_k
\]

\[
= \left(\partial_y \tilde{E}_{x_k}^{m+1} - \partial_x \tilde{E}_{y_k}^{m+1}, w_k \right) T_k + \left(\frac{1}{Y^+ + Y^-} \left(Y^+ - \alpha \left(n_x \left[\tilde{E}_{y}^{m+1}\right] - n_y \left[\tilde{E}_{x}^{m+1}\right]\right)\right), w_k \right) \partial T_k,
\]

(3)
Numerical Flux

- Flux: ^3
 Coupling between the elements
 \(\alpha \in [0, 1] : \) Control dissipation
 \(\alpha = 0; \) Dissipative central flux
 \(\alpha = 1; \) Upwind flux

- Jump in the field values across the interfaces of the elements

\[
[\tilde{E}] = \tilde{E}^- - \tilde{E}^+ \\
[\tilde{H}] = \tilde{H}^- - \tilde{H}^+
\]

- Superscript “+”: Neighbouring element
- Superscript “−”: Local cell

- Speed with which the a wave travels along the direction of the unit normal, n

$$c^\pm = \sqrt{\frac{n^T \epsilon^\pm n}{\mu^\pm \det(\epsilon^\pm)}}$$

- Cell-impedances

$$Z^\pm = \mu^\pm c^\pm$$

- Cell-conductances

$$Y^\pm = (Z^\pm)^{-1}$$
CFL Condition

If

\[\Delta t < \frac{\min\{\bar{\epsilon}, \bar{\mu}\}}{\max\{C_E, C_H\}} \min\{h_k\} \]

where

\[C_E = \frac{1}{2}C_{\text{inv}} + C_{\text{trace}}^2 N^2 \left(1 + \frac{\alpha}{2 \min\{Z_k\}} + \frac{\beta_1}{2 \min\{Z_k\}} + \frac{\beta_2}{2} \right) \]

\[C_H = \frac{1}{2}C_{\text{inv}} + C_{\text{trace}}^2 N^2 \left(2 + \frac{\alpha}{2 \min\{Y_k\}} + \frac{\beta_2 \beta_3}{2 \min\{Y_k\}} + \frac{\beta_2}{2} \right) \]

and \(\beta_1 = \alpha, \beta_2 = 0 \) for PEC,
\(\beta_1 = 0, \beta_2 = 1, \beta_3 = \alpha \) for PMC,
and \(\beta_1 = \beta_2 = \frac{1}{2}, \beta_3 = 1 \) for Silver-Müller boundary conditions.

the method is stable.
Theorem

Under the CFL condition:

\[\Delta t < \frac{\min\{\bar{\epsilon}, \bar{\mu}\}}{\max\{C_E, C_H\}} \min\{h_k\} \]

and the sufficient regularity of electromagnetic fields,

\[\max_{m \geq 1} (\|E^m - \tilde{E}^m\| + \|H^{m+1/2} - \tilde{H}^{m+1/2}\|) \leq (\Delta t^2 + h^{N+\alpha})(\|E^0 - \tilde{E}^0\| + \|H^{1/2} - \tilde{H}^{1/2}\|). \]
Numerical Results

- Computational domain:
 Unit square $\Omega = [-1, 1]^2$

Figure: Nonuniform mesh of the unit square for $K = 2310$ triangles
Numerical Results

The field distribution within the unitary cavity is given by

\[E_x(x, y, t) = \frac{-\pi}{\omega \epsilon_{xx}} \cdot \cos(\pi x) \cdot \sin(\pi y) \cdot \sin(\omega t) \]

\[E_y(x, y, t) = \frac{\pi}{\omega \epsilon_{yy}} \cdot \sin(\pi x) \cdot \cos(\pi y) \cdot \sin(\omega t) \]

\[H_z(x, y, t) = \cos(\pi x) \cdot \cos(\pi y) \cdot \cos(\omega t), \]

where

\[\omega = \pi \sqrt{\frac{1}{\epsilon_{xx}} + \frac{1}{\epsilon_{yy}}} \]

The permittivity tensor \(\epsilon \) is diagonal and characterized by

\[\epsilon' = \begin{pmatrix} \epsilon_{xx} & 0 \\ 0 & \epsilon_{yy} \end{pmatrix} \]
Numerical Results

Consider symmetric positive definite with non-vanishing off-diagonal elements

\[\epsilon = \begin{pmatrix} \epsilon_{xx} & \epsilon_{xy} \\ \epsilon_{yx} & \epsilon_{yy} \end{pmatrix} \]

Eigenvalue decomposition of \(\epsilon \)

\[\epsilon = \mathcal{R}(\phi) \epsilon' \mathcal{R}(\phi)^T, \]

where \(\epsilon \) is a diagonal matrix whose diagonal entries are the eigenvalues of \(\epsilon \).

Rotation angel:

\[\phi = \arccos \left(\sqrt{\frac{\epsilon_{xx} - \lambda_2}{\lambda_1 - \lambda_2}} \right). \]
Numerical Results

\[\epsilon = \begin{pmatrix} 5 & 1 \\ 1 & 3 \end{pmatrix} \]

- Rotation angle: \[\phi = \frac{\pi}{8} \]
- Diagonal tensor:
 \[\epsilon = \begin{pmatrix} 5.4142 & 0 \\ 0 & 2.5858 \end{pmatrix} \]

- Boundary conditions:
 - PEC: \[[\tilde{E}_x] = 2\tilde{E}_x, [\tilde{E}_y] = 2\tilde{E}_y, [\tilde{H}_z] = 0 \]
 - PMC: \[[\tilde{E}_x] = 0, [\tilde{E}_y] = 0, [\tilde{H}_z] = 2\tilde{H}_z \]
 - Silver-Müller
 \[Z^- \tilde{H}_z^+ = n_x \tilde{E}_y^+ - n_y \tilde{E}_x^+ \]
 \[Z^- \tilde{H}_z^+ = (n_x \tilde{E}_y^- - n_y \tilde{E}_x^-) \]
Numerical Results

<table>
<thead>
<tr>
<th>K</th>
<th>Error E_x</th>
<th>Rate E_x</th>
<th>Error E_y</th>
<th>Rate E_y</th>
<th>Error H_z</th>
<th>Rate H_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1.56E-01</td>
<td></td>
<td>1.07E-01</td>
<td></td>
<td>2.27E-01</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>6.29E-03</td>
<td>3.67</td>
<td>7.50E-03</td>
<td>3.04</td>
<td>6.13E-03</td>
<td>4.13</td>
</tr>
<tr>
<td>146</td>
<td>1.09E-03</td>
<td>3.04</td>
<td>1.44E-03</td>
<td>2.86</td>
<td>6.31E-04</td>
<td>3.94</td>
</tr>
<tr>
<td>568</td>
<td>1.30E-04</td>
<td>3.12</td>
<td>1.68E-04</td>
<td>3.16</td>
<td>4.06E-05</td>
<td>4.04</td>
</tr>
<tr>
<td>2310</td>
<td>1.62E-05</td>
<td>2.97</td>
<td>2.06E-05</td>
<td>2.99</td>
<td>2.57E-06</td>
<td>3.94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
<th>Error E_x</th>
<th>Rate E_x</th>
<th>Error E_y</th>
<th>Rate E_y</th>
<th>Error H_z</th>
<th>Rate H_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5.33E-02</td>
<td></td>
<td>5.55E-02</td>
<td></td>
<td>1.78E-01</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>2.46E-03</td>
<td>3.52</td>
<td>3.34E-03</td>
<td>3.21</td>
<td>3.81E-03</td>
<td>4.39</td>
</tr>
<tr>
<td>146</td>
<td>3.48E-04</td>
<td>3.38</td>
<td>4.35E-04</td>
<td>3.53</td>
<td>3.78E-04</td>
<td>4.00</td>
</tr>
<tr>
<td>568</td>
<td>2.41E-05</td>
<td>3.93</td>
<td>2.93E-05</td>
<td>3.97</td>
<td>2.48E-05</td>
<td>4.01</td>
</tr>
<tr>
<td>2310</td>
<td>1.49E-06</td>
<td>3.96</td>
<td>1.85E-06</td>
<td>3.94</td>
<td>1.50E-06</td>
<td>4.00</td>
</tr>
</tbody>
</table>
Figure: Convergence in space: N order of convergency of E_x in the case of central flux ($\alpha = 0$), for different polynomial orders.
Figure: Convergence in space: N order of convergency of E_x in the case of upwind flux ($\alpha = 1$), for different polynomial orders.
Figure: Convergence in time: 2nd order convergence of E_x, E_y and H_z when $\alpha = 1$ (upwind flux) and PEC boundary conditions.
Numerical Results

Figure: Convergence in space: N order of convergency of E_x in the case of central flux ($\alpha = 0$), for different polynomial orders.
Numerical Results

Figure: Convergence in space: N order of convergency of E_x in the case of upwind flux ($\alpha = 1$), for different polynomial orders.
Conclusion

- Fully explicit leap-frog DG scheme for solving time dependent Maxwell’s equations in anisotropic media which is in our application of interest.
- Conditionally stable
- Convergent:
 - Optimal order of convergence $O(h^{N+1}, \Delta t^2)$ for upwind flux
Acknowledgments

This work was supported by the Centro de Matemática da Universidade de Coimbra (CMUC), funded by the European Regional Development Fund through the program COMPETE, and by the Portuguese Government through the FCT - Fundação para a Ciência e a Tecnologia under the projects PEst-C/MAT/UI0324/2013 and PTDC/SAU-ENB/119132/2010 and under the BD grant SFRH/BD/51860/2012.