
OpenACC Lecture 3

Nick Johnson

EPCC
The University of Edinburgh

Scotland

Agenda

Recap

Other clauses

More performance tuning

Synchronisation

Other Targets

Questions from Today

Rest of Today

Recap

From Practical 2 and the worked example, we saw that profiling can help us
get good speed-up on a code.

We followed a logical work-flow by concentrating on a single kernel at first
and then expanding outwards.

By keeping data on the device as much as possible, we can cut down a large
bulk of the time.

By using a checksum, we can be reasonably certain that our code is running
correctly.

Other clauses

In the codes we’ve looked at, there have been a few clauses that I’ve used
without really discussing.
If you know OpenMP, these will be familiar to you:

I reduction
I private
I firstprivate

I also used some data movement clauses:
I data present
I data create

I’ll now examine these in more detail.

Reduction

In an OpenACC (or OpenMP) reduction, the value of the reduction variable
from each thread is combined at the end of the loop according to the
reduction function.

Compare the two snippets:
pragma acc parallel loop
for (i=0;i <100; i++){

b += a[i];
}

pragma acc parallel loop reduction (+:b)
for (i=0;i <100; i++){

b += a[i];
}

In the left snippet, each gang will have a private copy of b which will
accumulate it’s values of a[i].
If we print this out on the host, it is unclear exactly which value will be used.

Reduction Gotchas

There is one problem with the previous example, two loop nests in a parallel
region.

pragma acc parallel
pragma acc loop reduction (+:b)
for (i=0;i <100; i++){

b += a[i];
}
pragma acc loop
for (i=0;i <100; i++){

a[i] = a[i] / b;
}

If we recall from Lecture 2, it is
not clear that b will be correctly
reduced by the time the second
loop starts.
This could be a race condition.

Reduction Gotchas

There are two fixes for this problem:
pragma acc parallel
pragma acc loop reduction (+:b)
for (i=0;i <100; i++){

b += a[i];
}
pragma acc wait
pragma acc loop
for (i=0;i <100; i++){

a[i] = a[i] / b;
}

pragma acc parallel loop reduction (+:b)
for (i=0;i <100; i++){

b += a[i];
}
pragma acc parallel loop
for (i=0;i <100; i++){

a[i] = a[i] / b;
}

This won’t happen in a kernels region OR if your compiler does the reduction
on a worker or vector loop.
Note that the PGI compilers automatically insert the reduction clause in
most cases. There is no way to turn this off!

Private

In OpenACC, scalars, reduction variables and loop iterators should be private
by default.
There is no equivalent of OpenMP’s default(none) in the current
implementations BUT it is in v2 of the standard.
So, it is best to guide the compiler with other scalars by declaring them
private.
If you are using a multi-level loop nest, with pointers & reductions,
debugging a non-private variable can be tough.

Private

pragma acc parallel loop
for (i=0;i <100;i++){

for(j=0;j <100;j++){
t += a[i*100+j];

}
c[i] = t;

}

pragma acc parallel loop private (t)
for (i=0;i <100;i++){

t = 0;
pragma acc loop reduction (+:t)

for(j=0;j <100;j++){
t += a[i*100+j];

}
c[i] = t;

}

FirstPrivate

Like private, this is very similar to OpenMP. Except that support is still at
bit hit-and-miss.

Here’s the code in a contrived example:

pragma acc loop firstprivate (b)
for (i=0;i <100;i++){

b += a[i];
}

Every gang will start b with the value it had before the region.

Only use it if you really have to!

present & create

I used these in the Himeno worked example and you will have seen them in
the code.
create - create space on the device for the arrays as you’ve specified on the
host.
present - tell the compiler that you have already copied or created the data
on the device.

pragma acc data create (a)
{
<some code >

sub_function (){
pragma acc data present (a)

}
}

Data Ranges

The compiler is good at working out the sizes of arrays. Mostly.
When you use a dynamically allocated array, you might need to provide the
data size.
You can also copy contiguous (and only contiguous) sub-arrays.
The syntax is array[start:length].

int* restrict a = (int *) malloc (sizeof (int) * 1000);
pragma acc data copy(a [10:20])
{
pragma acc parallel loop

for (i=10;i <30;i++){
a[i] = a[i] + 10;

}
} // e n d d a t a

Update

Sometimes, we want to move data from the host to the device (or vice
versa) without doing a complete copy.
This is where we can use the update directive.

pragma acc update device (a [10:10])
<some code that works on a[10] to a[19] >
pragma acc update host(a [10:10])

It can be really useful to move intermediate results from a function back to
the host.

Array decomposition

In previous examples we have used arrays with either a square or wide &
shallow structure.
This might not map well to the accelerator hardware very well.
If we know the shape of our data, we might consider re-writing the loops to
coalesce data better:

pragma acc parallel loop
for (i=0;i <3;i++){
pragma acc loop

for(j=0;j <10000; j++){
a[j] = b[i] + c[i] * d[i];

}
}

pragma acc parallel loop
for (i=0;i <3;i++){
pragma acc loop

for(j=0;j <10000; j++){
a[i] = b[j] + c[j] * d[j];

}
}

async & wait

These two clauses go hand in hand.
As we’ve discussed before, loops in parallel regions don’t have an implicit
barrier at the end of them.
BUT, parallel regions DO have a barrier at the end.
So, the host blocks until the parallel region has finished and cannot do
anything else.
This can be wasteful so we use async to indicate that we don’t have to
block and wait to ask for an explicit barrier.
Both can take a single argument, an integer handle so you can have multiple
sets of async & wait.

Example code

pragma acc data create (a,b)
{

for(i=0;i<n;i++){
pragma acc update device (a[i :0][0: n])
pragma acc parallel loop

for (j=0;j<n;j++){
b[i][j] = a[i][j] * 2;

}
pragma acc update host(b[i :0][0: n])

}
pragma acc wait

}

pragma acc data create (a,b)
{

for(i=0;i<n;i++){
pragma acc update device (a[i :0][0: n])

async (i)
pragma acc parallel loop async (i)

for (j=0;j<n;j++){
b[i][j] = a[i][j] * 2;

}
pragma acc update host(b[i :0][0: n])

async (i)
}

pragma acc wait
}

Other Targets

In this course we’ve only used the nVidia back-end via CUDA.
There are others available: AMD/ATI devices via OpenCL.
The OpenACC remains the same but performance will vary and almost
certainly you will need to re-profile and perhaps apply some tweaks.

Present OR What?

You may have noticed that when you compile you get the statement:
present or copyin
This can be shortened to pcopyin and has the same meaning as copyin
BUT will examine the device memory to see if the data is already present.

Runtime Schmuntime

You can do all sorts of fun things with the runtime calls, mostly related to
getting information about the device.
Using the call acc set device num(int i, acc device t) you could try
using more than one card (hint - Erik has 2 GPUs per node).
You can also turn the cards on and off using acc init() and
acc shutdown().
There are other runtimes calls, but the standard explains them well.

CUDA Kernels

This is best illustrated with an example...:

#ifdef _OPENACC
pragma acc data present (u[0: n1*n2*n3],v[0: n1*

n2*n3],a[0:4] ,r[0: n1*n2*n3])
{

pragma acc host_data use_device (u,v,r,a)
{

resid_cuda (u,v,r,&n1 ,&n2 ,&n3 ,a);
}

}
#else /∗ OPENACC ∗/
#error
#endif /∗ OPENACC ∗/

Remaining Time

What’s coming up...
I Coffee (we have some time so take it easy).
I Practical 3 - I throw you in at the deep end!
I Q&A / Finish Practicals / Work on your own codes.

More Help?

One of the best places to look for help is in the pgroup.com forums. You
don’t need to be a PGI customer to access them but obviously, they only
answer questions using the PGI compiler.

You can also email me : Nick.Johnsoned.ac.uk

	Recap
	Other clauses
	More performance tuning
	Synchronisation
	Other Targets
	Questions from Today
	Rest of Today

