
OpenACC Lecture 2

Nick Johnson

EPCC
The University of Edinburgh

Scotland

Agenda

Recap & Follow-up

Gotchas

Regions, again.
Parallel
Kernels
Scheduling

Bugs & Features
Pointers
IEEE754

Profiling

You have now all compiled your first six OpenACC codes!
Welcome to the club.

Rest of the morning:
I Another lecture
I A worked example

Scheduling

You should have seen lines like the following when compiling:

18, # pragma acc loop gang , vector (256) /∗ b l o c k I d x . x t h r e a d I d x . x ∗/

This is the clever part. The compiler has taken the loop to be accelerated
and worked out how to map it to the target hardware available.
Here it has applied gang level and vector parallelism, with the vector size
being 256.
Being a multiple of 256 it makes sense for a CUDA-based target.

Scheduling

I Scheduling is simply the mapping of the loop nests the hardware
available.

I Compilers are different and conservative! You will usually get different
results for different compilers for anything but the simplest codes.

I In general, I advise letting the compiler do the hard work unless you are
certain you can do better (ie you know the codes very well).

I We’ll return to looking at how to configure this later...

Regions

In the first lecture and practical, I glossed over this important part. Now it’s
time to look in more detail at regions and loops.
There are two types of regions in the OpenACC model. It’s slightly
non-sensical but is an artifact of the proprietary predecessor directives.

I Parallel: where you, the programmer manage the parallelism.
I Kernels: where the compiler tries to do it for you.

Let’s look in each in more detail.

Parallel Regions

Back to our old example...

pragma acc parallel
pragma acc loop
for (i=0;i <100;i++){

a[i] = b[i];
}

What’s actually happening here?
I I’ve split the line into it’s two formal parts, acc parallel and acc

loop.
I acc parallel tells the compiler to start a number of gangs which

redundantly execute everything inside them until they hit...
I acc loop which tells the compiler to share the work between the gangs.
I This is very, very similar to the work sharing model in OpenMP which

shouldn’t be surprising as there is significant overlap between the two
groups.

More on parallel...
I There is no gaurantee that if you have two loops inside a parallel region,

the first will complete before the second starts.
I It’s like an OpenMP for loop with the nowait directive.
I That’s why I used separate parallel regions for each nest in Practical 1.
I You can add #pragma acc wait after each loop nest if you wish to

make sure everything is synced.

pragma acc parallel
pragma acc loop
for (i=0;i <100;i++){

a[i] = b[i];
}
pragma acc loop
for (i=0;i <100;i++){

c[i] = b[i]*a[i]*2;
}

What’s happening here?
I The compiler is entirely at liberty to map some of the first nest to some

of the gangs and some of the second nest to the rest!
I This could be a race condition, there is no gaurantee that a[10] is dealt

with by the same thread in each nest.
I Compiler might get it right. It might not. For more complex codes, it

could be horrendous.

Kernels Regions

Back to our old example...

pragma acc kernels
pragma acc loop
for (i=0;i <100;i++){

a[i] = b[i];
}

What’s actually happening here?
I I’ve split the line into it’s two formal parts, acc kernels and acc

loop.
I acc kernels tells the compiler to analyse the following loop nest(s),

convert each to a kernel and lauch on the accelerator, in order!
I In this mode, the compiler uses auto-parallelisation routines to work out

what to do with your loops and how to schedule them on the
accelerator.

More on kernels...
I There is a gaurantee that if you have two loops inside a kernels region,

the first will complete before the second starts.
I For simple codes, this is a quick way to get going.
I The parallelism and scheduling is implicit and the compiler takes care of

it for you.
I There is one gotcha, pointers. We’ll cover this later.

Each loop nest in the kernels construct is compiled and launched separately.
In CUDA terms, each loop nest becomes a separate CUDA kernel. In

particular, this means that the code for the first loop nest will complete
before the second loop nest begins execution.

– Michael Wolfe, PGI.

Scheduling

There are three levels of parallelism expressable in OpenACC, gang,
worker, vector.
They can be placed on loops to help guide the compiler.
Consider the below example of our single loop where we guide the compiler.

pragma acc parallel loop , gang
for (i=0;i <100; i++){

a[i] = b[i];
}

This wont make much difference and we are best to let the compiler do it.

Scheduling

Here’s the output from my machine:

main:
17, Accelerator kernel generated

18, # pragma acc loop gang , vector (256) /∗ b l o c k I d x . x t h r e a d I d x . x ∗/
17, Generating present_or_copyout (a [0:])

Generating present_or_copyin (b [0:])
Generating NVIDIA code
Generating compute capability 1.0 binary
Generating compute capability 2.0 binary
Generating compute capability 3.0 binary

It’s exactly the same as before.

Scheduling

What about a doubly nested loop?

pragma acc parallel loop
for(i=0;i <100; i++){

a[i] = b[i];
pragma acc loop

for(j=0;j <100; j++){
a[i] += j;

}
}

main:
17, Accelerator kernel generated

18, # pragma acc loop gang /∗ b l o c k I d x . x ∗/
21, # pragma acc loop vector (256) /∗ t h r e a d I d x . x ∗/

17, Generating present_or_copyout (a [0:])
Generating present_or_copyin (b [0:])
Generating NVIDIA code
Generating compute capability 1.0 binary
Generating compute capability 2.0 binary
Generating compute capability 3.0 binary

21, Loop is parallelizable

Runtime = 55 us

Scheduling

What about a doubly nested loop?

pragma acc parallel loop vector
for(i=0;i <100; i++){

a[i] = b[i];
pragma acc loop gang

for(j=0;j <100; j++){
a[i] += j;

}
}

main:
17, Accelerator kernel generated

21, # pragma acc loop gang , vector (256) /∗ b l o c k I d x . x t h r e a d I d x . x ∗/
17, Generating present_or_copyout (a [0:])

Generating present_or_copyin (b [0:])
Generating NVIDIA code
Generating compute capability 1.0 binary
Generating compute capability 2.0 binary
Generating compute capability 3.0 binary

18, Loop is parallelizable

Runtime = 110 us

Vectorisation

The mapping of the loops to the hardware can seem a bit like magic.
Lets look at the mapping in a CUDA context since we are using nVidia
hardware:

I gang - maps to SM’s.
I worker - maps to threadblocks.
I vector - maps to threads / warps.
I seq - execute the loop sequentially.

In the first example, the compiler mapped the parallelism of our loop to both
gangs (SMs) and vectors (threads). In CUDA, we would always try to get
coallesced memory accesses by having each thread operate on adjacent
elements of an array. This greatly improves speed. Each gang executed one
(or more) of the i-loops and within an i-loop, the j-loops were mapped across
threads.
In the second example, we asked the compiler to vectorise across the i-loop
and map the j-loops across gangs. It chose to split the loops across gangs
and vectors but this wasn’t so efficient given the doubling in runtimes.

There are two things that might catch you out when using OpenACC:
I Pointers.
I Maths.

Let’s take a (brief) look at these and how to avoid them.

In C, using dynamically allocated memory is generally the norm. As we saw
in Practical 1, we can use it with OpenACC without too many problems.
However:

I With a dynamically allocated array, the compiler cannot be certain you
are not aliasing or even what the size of the array is. This makes it hard
to decide on vector lengths and parallel decomposition.

I The compiler will often throw a warning and refuse to parallelise your
loops for you.

I You can take this in two ways:
I Use the restrict keyword in your declaration:

int * restrict a = (int*)malloc...
I Use the independent keyword in the kernels loop line

Using the previous single loop example with a size of 10000, using either
trick forces the compiler to sequentialise the loop and give me a runtime of
932us. Using either trick got it down to 70us!

If you run comparisons with host code or use host compute checksums
(which you should do), you might notice that for bigger summations, the
values diverge. This is normal and expected as the GPU might engage in
some tricks to get a faster runtime at the expense of strict IEEE754
compliant maths.
We could spend a whole day discussing the merits or otherwise of this in
scientific computing but it would send us all to sleep!
There are two methods to deal with the problem using the PGI compiler:

I Request IEEE754 compliant maths by using the compiler flag -Kieee.
I Introduce a tolerance into your algorithm of 10−14.

Remember also that you won’t get byte similar results from two different
CPUs or possibly even the same CPU on different days. If you can improve
your result by running a few more iterations, that’s the best option.

Profiling

So far, we have used quite simplistic tools to measure the performance of our
codes. For simple codes, this is okay but as we scale up, it becomes more
useful to use more tools.
There are three or four tools that I typically use for this type of work.

I printf and OpenMP timers - portable and mostly every system has
OpenMP these days.

I The cuda profile - can be hard to interpret.
I The compiler runtime - varies by compiler, can be hard to understand.
I nvprof & nVidia Visual Profiler - can be useful to interpret cuda profile.

nvprof

Provided by nVidia as part of the CUDA SDK and available on Erik.
Can be simple to use and the output is easily readable.
Execute your code as normal but prefixed by nvprof

[njohnso1@fermi1 ˜]$ nvprof ./ demoacc4
======== Profiling result :

Time (%) Time Calls Avg Min Max Name
46.63 10.82 us 1 10.82 us 10.82 us 10.82 us [CUDA memcpy DtoH]
43.26 10.04 us 1 10.04 us 10.04 us 10.04 us [CUDA memcpy HtoD]
10.10 2.34 us 1 2.34 us 2.34 us 2.34 us main_17_gpu

CUDA Profile

A raw, verbose version of what you get from nvprof.
Gives you slightly more information wrt CPU and GPU time.

CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE 0 Tesla C2050
CUDA_CONTEXT 1
TIMESTAMPFACTOR fffff6894980df08
method ,gputime ,cputime , occupancy
method =[memcpyHtoDasync] gputime =[9.408] cputime =[10.000]
method =[main_17_gpu] gputime =[4.192] cputime =[16.000] occupancy =[0.667]
method =[memcpyDtoHasync] gputime =[8.064] cputime =[6.000]

PGI Runtime

This is what we’ve used already in Practical 1.
Enabled by exporting PGI ACC TIME=1 in your terminal (or in
submit.bash).

Accelerator Kernel Timing data
/home/h019/ njohnso1 / demoacc4 .c

main NVIDIA devicenum =0
time(us): 49
16: data copyin reached 1 times

device time(us): total =16 max =16 min =16 avg =16
17: kernel launched 1 times

grid: [79] block : [128]
device time(us): total =19 max =19 min =19 avg =19

elapsed time(us): total =87 max =87 min =87 avg =87
21: data copyout reached 1 times

device time(us): total =14 max =14 min =14 avg =14

Performance

There is an obvious question:

Why not write that kernel in CUDA/OpenCL for speed?

Generally, we could, BUT it breaks portability.

The rule-of-thumb is that if we get within 80% of CUDA/OpenCL speed
then we are happy.

In many cases we get faster code because hand tweaking CUDA/OpenCL
can be time consuming and prone to errors.

	Recap & Follow-up
	Gotchas
	Regions, again.
	Parallel
	Kernels
	Scheduling

	Bugs & Features
	Pointers
	IEEE754

	Profiling

