
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING48, 71–95 (1998)
ARTICLE NO. PC971403

A Parallel Algorithm for Multilevel Graph
Partitioning and Sparse Matrix Ordering1

George Karypis2 and Vipin Kumar3

Department of Computer Science/Army HPC Research Center, University

of Minnesota, Minneapolis, Minnesota 55455

In this paper we present a parallel formulation of the multilevel graph
partitioning and sparse matrix ordering algorithm. A key feature of our parallel
formulation (that distinguishes it from other proposed parallel formulations of
multilevel algorithms) is that it partitions the vertices of the graph into

√
p parts

while distributing the overall adjacency matrix of the graph among allp processors.
This mapping results in substantially smaller communication than one-dimensional
distribution for graphs with relatively high degree, especially if the graph is
randomly distributed among the processors. We also present a parallel algorithm
for computing a minimal cover of a bipartite graph which is a key operation for
obtaining a small vertex separator that is useful for computing the fill reducing
ordering of sparse matrices. Our parallel algorithm achieves a speedup of up to
56 on 128 processors for moderate size problems, further reducing the already
moderate serial run time of multilevel schemes. Furthermore, the quality of the
produced partitions and orderings are comparable to those produced by the serial
multilevel algorithm that has been shown to outperform both spectral partitioning
and multiple minimum degree.© 1998 Academic Press

Key Words:parallel graph partitioning; multilevel partitioning methods; fill
reducing ordering; numerical linear algebra.

1This work was supported by NSF CCR-9423082, by the Army Research Office Contract DA/DAAH04-95-
1-0538, by the IBM Partnership Award, and by Army High Performance Computing Research Center under the
auspices of the Department of the Army, Army Research Laboratory Cooperative Agreement Number DAAH04-
95-2-0003/Contract DAAH04-95-C-0008, the content of which does not necessarily reflect the position or the
policy of the government, and no official endorsement should be inferred. Access to computing facilities
was provided by AHPCRC. Minnesota Supercomputer Institute, Cray Research Inc., and by the Pittsburgh
Supercomputing Center. Related papers are available via WWW at URL: http://www.cs.umn.edu/∼karypis.

2E-mail: karypis@cs.umn.edu.
3E-mail: kumar@cs.umn.edu.

71

0743-7315/98 $25.00
Copyright © 1998 by Academic Press

All rights of reproduction in any form reserved.

72 KARYPIS AND KUMAR

1. INTRODUCTION

Graph partitioning is an important problem that has extensive applications in many
areas, including scientific computing, VLSI design, task scheduling, geographical
information systems, and operations research. The problem is to partition the vertices
of a graph top roughly equal parts, such that the number of edges connecting vertices
in different parts is minimized. For example, the solution of a sparse system of linear
equationsAx = b via iterative methods on a parallel computer gives rise to a graph
partitioning problem. A key step in each iteration of these methods is the multiplication of
a sparse matrix and a (dense) vector. Partitioning the graph that corresponds to matrixA is
used to significantly reduce the amount of communication [19]. If parallel direct methods
are used to solve a sparse system of equations, then a graph partitioning algorithm can
be used to compute a fill reducing ordering that lead to high degree of concurrency
in the factorization phase [8, 19]. The multiple minimum degree ordering used almost
exclusively in serial direct methods is not suitable for parallel direct methods, as it
provides limited concurrency in the parallel factorization phase.

The graph partitioning problem is NP-complete. However, many algorithms have been
developed that find a reasonably good partition. Recently, a new class of multilevel graph
partitioning techniques was introduced by Bui and Jones [4] and Hendrickson and Leland
[12], and further studied by Karypis and Kumar [13, 15, 16]. These multilevel schemes
provide excellent graph partitionings and have moderate computational complexity. Even
though these multilevel algorithms are quite fast compared with spectral methods, parallel
formulations of multilevel partitioning algorithms are needed for the following reasons.
The amount of memory on serial computers is not enough to allow the partitioning of
graphs corresponding to large problems that can now be solved on massively parallel
computers and workstation clusters. A parallel graph partitioning algorithm can take
advantage of the significantly higher amount of memory available in parallel computers.
Furthermore, with recent development of highly parallel formulations of sparse Cholesky
factorization algorithms [9, 17, 25], numeric factorization on parallel computers can take
much less time than the step for computing a fill-reducing ordering on a serial computer.
For example, on a 1024-processor Cray T3D, some matrices can be factored in a few
seconds using our parallel sparse Cholesky factorization algorithm [17], but serial graph
partitioning (required for ordering) takes several minutes for these problems.

In this paper we present a parallel formulation of the multilevel graph partitioning
and sparse matrix ordering algorithm. A key feature of our parallel formulation (that
distinguishes it from other proposed parallel formulations of multilevel algorithms [1, 2,
14, 24]) is that it partitions the vertices of the graph into

√
p parts while distributing the

overall adjacency matrix of the graph among allp processors. This mapping results
in substantially smaller communication than one-dimensional distribution for graphs
with relatively high degree, especially if the graph is randomly distributed among the
processors. We also present a parallel algorithm for computing a minimal cover of a
bipartite graph which is a key operation for obtaining a small vertex separator that is
useful for computing the fill reducing ordering of sparse matrices. Our parallel algorithm
achieves a speedup of up to 56 on 128 processors for moderate size problems, further
reducing the already moderate serial run time of multilevel schemes. Furthermore, the
quality of the produced partitions and orderings are comparable to those produced by the
serial multilevel algorithm that has been shown to outperform both spectral partitioning

PARALLEL ALGORITHM FOR GRAPH PARTITIONING 73

and multiple minimum degree [16]. The parallel formulation in this paper is described
in the context of the serial multilevel graph partitioning algorithm presented in [16].
However, nearly all of the discussion in this paper is applicable to other multilevel graph
partitioning algorithms [4, 7, 12, 22].

The rest of the paper is organized as follows. Section 2 surveys the different types
of graph partitioning algorithms that are widely used today and briefly describes the
serial multilevel algorithm that forms the basis for the parallel algorithm described in
Sections 3 and 4 for graph partitioning and sparse matrix ordering, respectively. Section
5 analyzes the complexity and scalability of the parallel algorithm. Section 6 presents the
experimental evaluation of the parallel multilevel graph partitioning and sparse matrix
ordering algorithm. Section 7 provides some concluding remarks.

2. THE GRAPH PARTITIONING PROBLEM AND MULTILEVEL
GRAPH PARTITIONING

The p-way graph partitioning problem is defined as follows: Given a graphG = (V,
E) with |V| = n, partitionV into p subsets,V1, V2, . . . , Vp such thatVi ∩ Vj = ∅ for i ≠ j,
|Vi| = n/p, and

⋃
i Vi = V, and the number of edges ofE whose incident vertices belong

to different subsets is minimized. Ap-way partitioning ofV is commonly represented by
a partitioning vectorP of lengthn, such that for every vertexv ∈ V, P[v] is an integer
between 1 andp, indicating the partition to which vertexv belongs. Given a partitioning
P, the number of edges whose incident vertices belong to different partitions is called
the edge-cutof the partition.

The p-way partitioning problem is most frequently solved by recursive bisection. That
is, we first obtain a 2-way partition ofV, and then we further subdivide each part using 2-
way partitions. After logp phases, graphG is partitioned intop parts. Thus, the problem
of performing ap-way partition is reduced to that of performing a sequence of 2-way
partitions or bisections. Even though this scheme does not necessarily led to optimal
partition [15, 27], it is used extensively due to its simplicity [8, 10].

The basic structure of the multilevel bisection algorithm is very simple. The graphG =
(V, E) is first coarsened down to a few thousand vertices (coarsening phase), a bisection of
this much smaller graph is computed (initial partitioning phase), and then this partition is
projected back towards the original graph (uncoarsening phase), by periodically refining
the partition [4, 12, 16]. Since the finger graph has more degrees of freedom, such
refinements improve the quality of the partitions. This process, is graphically illustrated
in Fig. 1.

During the coarsening phase, a sequence of smaller graphsGl = (Vl, El) is constructed
from the original graphG0 = (V0, E0) such that |Vl| > |Vl+1|. GraphGl+1 is constructed
from Gl by finding a maximal matchingMl ⊆ El of Gl and collapsing together the vertices
that are incident on each edge of the matching. Maximal matchings can be computed in
different ways [4, 12, 15, 16]. The method used to compute the matching greatly affects
both the quality of the partitioning, and the time required during the uncoarsening phase.
One simple scheme for computing a matching is therandom matching(RM) scheme [4,
12]. In this scheme, vertices are visited in random order, and for each unmatched vertex
we randomly match it with one of its unmatched neighbors. An alternative matching
scheme that we have found to be quite effective is calledheavy-edge matching(HEM)

74 KARYPIS AND KUMAR

FIG. 1. The various phases of the multilevel graph bisection. During the coarsening phase, the size of
the graph is successively decreased; during the initial partitioning phase, a bisection of the smaller graph is
computed, and during the uncoarsening phase, the bisection is successively refined as it is projected to the
larger graphs. During the uncoarsening phase the light lines indicate projected partitions, and dark lines indicate
partitions that were produced after refinement.

[13, 16]. The HEM matching scheme computes a matchingMl, such that the weight
of the edges inMl is high. The heavy-edge matching is computed using a randomized
algorithm as follows. The vertices are again visited in random order. However, instead of
randomly matching a vertex with one of its adjacent unmatched vertices, HEM matches
it with the unmatched vertex that is connected with the heavier edge. As a result, the
HEM scheme quickly reduces the sum of the weights of the edges in the coarser graph.
The coarsening phase ends when the coarsest graphGm has a small number of vertices.

During the initial partitioning phase, a bisection of the coarsest graph is computed.
Since the size of the coarser graphGk is small (often |Vk| is less than 100 vertices), this
step takes a relatively small amount of time.

During the uncoarsening phase, the partition of the coarser graphGm is projected back
to the original graph, by going through the graphsGm−1, Gm−2, . . . , G1. Since each vertex
u ∈ Vl+1 contains a distinct subsetU of vertices ofVl, the projection of the partition from
Gl+1 to Gl is constructed by simply assigning the vertices inU to the same part inGl

to the same part that vertexu belongs inGl+1. After projecting a partition, a partitioning
refinement algorithm is used. The basic purpose of a partitioning refinement algorithm
is to select vertices such that when moved from one partition to another the resulting

PARALLEL ALGORITHM FOR GRAPH PARTITIONING 75

partitioning has smaller edge-cut and remains balanced (i.e., each part has the same
weight). A class of local refinement algorithms that tend to produce very good results
are those that are based on the Kernighan–Lin (KL) partitioning algorithm [18] and their
variants (FM) [6, 12, 16].

3. PARALLEL MULTILEVEL GRAPH
PARTITIONING ALGORITHM

There are two types of parallelism that can be exploited in thep-way graph partitioning
algorithm based on the multilevel bisection described in Section 2. The first type of
parallelism is due to the recursive nature of the algorithm. Initially, a single processor
finds a bisection of the original graph. Then, two processors find bisections of the two
subgraphs just created and so on. However, this scheme by itself can use only up to
log p processors, and reduces the overall run time of the algorithm only by a factor of
O(log p). We will refer to this type of parallelism as the parallelism associated with the
recursive step.

The second type of parallelism that can be exploited is during thebisection step. In this
case, instead of performing the bisection of the graph on a single processor, we perform it
in parallel. We will refer to this type of parallelism as the parallelism associated with the
bisection step. Note that if the bisection step is parallelized, then the speedup obtained
by the parallel graph partitioning algorithm can be significantly higher thanO(log p).

The parallel graph partitioning algorithm we describe in this section exploits both of
these types of parallelism. Initially all the processors cooperate to bisect the original
graphG into G0 andG1. Then, half of the processors bisectG0, while the other half of
the processors bisectG1. This step creates four subgraphsG00, G01, G10, andG11. Then
each quarter of the processors bisect one of these subgraphs and so on. After logp steps,
the graphG has been partitioned intop parts.

In the next three sections we describe how we have parallelized the three phases of
the multilevel bisection algorithm.

3.1. Coarsening Phase

As described in Section 2, during the coarsening phase, a sequence of coarser graphs
is constructed. A coarser graphGl+1 = (Vl+1, El+1) is constructed from the finer graphGl

= (Vl, El) by finding a maximal matchingMl and contracting the vertices and edges of
Gl to form Gl+1. This is the most time consuming phase of the three phases; hence, it
needs to be parallelized effectively. Furthermore, the amount of communication required
during the contraction ofGl to form Gl+1 depends on how the matching is computed.

The randomized algorithms described in Section 2 for computing a maximal matching
on a serial computer are simple and efficient. However, computing a maximal matching
in parallel is difficult, particularly on a distributed memory parallel computer. A direct
parallelization of the serial randomized algorithms or algorithms based on depth-first
graph traversals requires significant amount of communication. For instance, consider the
following parallel implementation of the randomized algorithms. Each processor contains
a (random) subset of the graph. For each local vertexv, processors select an edge (v,
u) to be in the matching. Now, the decision of whether or not an edge (v, u) can
be included in the matching may result in communication between the processors that

76 KARYPIS AND KUMAR

store v and u, to determine if vertexu has been matched or not. In addition to that,
care must be taken to avoid race conditions, since vertexu may be checked due to
another edge (w, u), and only one of the edges (v, u) and (w, u) must be included in the
matching. Similar problems arise when trying to parallelize algorithms based on depth-
first traversal of the graph. Another possibility is to adapt some of the algorithms that
have been developed for the PRAM model. In particular, the algorithm of Luby [21] for
computing the maximal independent set can be used to find a matching. However, parallel
formulations of this type of algorithms also have high communication overhead because
each processorpi needs to communicate with all other processors that contain neighbors
of the nodes local atpi. Furthermore, having computedMl using any one of the above
algorithms, the construction of the next level coarser graph,Gl+1 requires significant
amount of communication. This is because each edge ofMl may connect vertices whose
adjacent lists are stored on different processors, and during the contraction at least one of
these adjacency lists needs to be moved from one processor to another. Communication
overhead in any of the above algorithms can become small if the graph is initially
partitioned among processors in such a way so that the number of edges going across
processor boundaries are small. But this requires solving thep-way graph partitioning
problem that we are trying to solve using these algorithms.

Another way of computing a maximal matching is to divide then vertices amongp
processors and then compute matchings between the vertices locally assigned to each
processor. The advantages of this approach is that no communication is required to
compute the matching, and since each pair of vertices that gets matched belongs to
the same processor, no communication is required to move adjacency lists between
processors. However, this approach causes problems because each processor has very
few nodes to match from. Also, even though there is no need to exchange adjacency
lists among processors, each processor needs to know matching information about all the
vertices that its local vertices are connected to in order to properly form the contracted
graph. As a result, a significant amount of communication is required. In fact, this
computation is very similar in nature to the multiplication of a randomly sparse matrix
(corresponding to the graph) with a vector (corresponding to the matching vector).

In our parallel coarsening algorithm, we retain the advantages of the local matching
scheme, but minimize its drawbacks by computing the matchings between groups of
n/
√

p vertices. This increases the size of the computed matchings and also reduces
the communication overhead for constructing the coarse graph. Specifically, our parallel
coarsening algorithm treats thep processors as a two-dimensional array of

√
p × √p

processors (assume thatp = 22r). The vertices of the graphG0 = (V0, E0) are distributed
among this processor grid using a cyclic mapping [19]. The verticesV0 are partitioned
into
√

p subsets,V0
0 , V1

0 , . . . , V
√

p−1
0 . ProcessorPi, j stores the edges ofE0 between the

subsets of verticesVi
0 and V j

0 . Having distributed the data in this fashion, the algorithm
then proceeds to find a matching. This matching is computed by the processors along
the diagonal of the processor grid. In particular, each processorPi, i finds a heavy-edge
matchingMi

0 using the set of edges it stores locally. The union of these
√

p matchings is
taken as the overall matchingM0. Since the vertices are split into

√
p parts, this scheme

finds larger matchings than the one that partitions vertices intop parts.
In order for the next level coarser graphG1 to be created, processorPi, j needs to know

the parts of the matching that were found by processorsPi, i and Pj, j (i.e., Mi
0 and M j

0 ,

PARALLEL ALGORITHM FOR GRAPH PARTITIONING 77

respectively). Once it has this information, then it can proceed to create the edges ofG1

that are to be stored locally without any further communication. The appropriate parts of
the matching can be made available from the diagonal processors to the other processors
that require them by two single node broadcast operations [19]—one along the row and
one along the columns of the processor grid. These steps are illustrated in Fig. 2. At
this point, the next level coarser graphG1 = (V1, E1) has been created such that the
verticesV1 are again partitioned in

√
p subsets, and processorPi, j stores the edges of

E1 between subsets of verticesVi
1 and V j

1 . The next level coarser graphs are created in
a similar fashion.

The coarsening algorithm continues until the number of vertices between successive
coarser graphs does not substantially decrease. Assume that this happens afterk
coarsening levels. At this point, graphGk = (Vk, Ek) is folded into the lower quadrant
of the processor subgrid as shown in Fig. 3. The coarsening algorithm then continues
by creating coarser graphs. Since the subgraph of the diagonal processors of this smaller
procesor grid contains more vertices and edges, larger matchings can be found and thus
the size of the graph is reduced further. This process of coarsening followed by folding
continues until the entire coarse graph has been folded down to a single processor, at
which point the sequential coarsening algorithm is employed to coarsen the graph.

Since, between successive coarsening levels, the size of the graph decreases, the
coarsening scheme just described utilizes more processors during the coarsening levels in
which the graphs are large and fewer processors for the smaller graphs. As our analysis

FIG. 2. The various phases of a coarsening level. (a) The distribution of the vertices of the graph. (b)
Diagonal processors compute the matchings and broadcast them along the rows and the columns. (c) Each
processor locally computes the next level coarser graph assigned to it. (d) The distribution of the vertices for
the next coarsening level.

78 KARYPIS AND KUMAR

FIG. 3. The process of folding the graph. (a) The distribution of the vertices of the graph prior to folding.
(b, c) Processors send their graphs to the processors at the lower quadrant. The same processes is repeated
after m − k coarsening levels, in which case the graph is folded to a single processor (d, e, f).

in Section 5 shows, decreasing the size of the processor grid does not affect the overall
performance of the algorithm as long as the graph size shrinks by a large enough factor
between successive graph foldings.

3.2. Initial Partitioning Phase

At the end of the coarsening phase, the coarsest graph resides on a single processor.
We use the GGGP algorithm described in [16] to partition the coarsest graph. We perform
a small number of GGGP runs starting from different random vertices and the one with
the smaller edge-cut is selected as the partition. Instead of having a single processor
performing these different runs, the coarsest graph can be replicated to all (or a subset
of) processors, and each of these processors can perform its own GGGP partition. We
did not implement it, since the run time of the initial partition phase is only a very small
fraction of the run time of the overall algorithm.

3.3. Uncoarsening Phase

During the uncoarsening phase, the partition of the coarsest graphGm is projected
back to the original graph by going through the intermediate graphsGm−1, Gm−2, . . . ,
G1. After each step of projection, the resulting partition is further refined by using
vertex swap heuristics that decrease the edge-cut as described in Section 2. Further,
recall that during the coarsening phase, the graphs are successively folded to smaller
processor grids just before certain coarsening levels. This process is reversed during the
parallel uncoarsening phase for the corresponding uncoarsening levels; i.e., the partition
(besides being projected to the next level finer graph) is unfolded to larger processor
grids. The steps of projection and unfolding to larger processor grids are parallelized in a

PARALLEL ALGORITHM FOR GRAPH PARTITIONING 79

way similar to their counterparts in the coarsening phase. Here we describe our parallel
implementation of the refinement step.

For refining the coarser graphs that reside on a single processor, we use the Boundary
Kernighan–Lin refinement algorithm (BKLR) described in [16]. The BKLR algorithm
is sequential in nature and it cannot be used in its current form to efficiently refine a
partition when the graph is distributed among a grid of processors. In this case, we use a
different algorithm that tries to approximate the BKLR algorithm but is more amenable to
parallel computations. The key idea behind our parallel refinement algorithm is to select
a group of vertices to swap from one part to the other instead of selecting a single vertex.
Refinement schemes that use similar ideas are described in [5, 26]; however, our algorithm
differs in two important ways from the other schemes: (i) it uses a different method for
selecting vertices; (ii) it uses a two-dimensional partition to minimize communication.

Consider a
√

p × √p processor grid on which graphG = (V, E) is distributed.
Furthermore, each processorPi, j computes the gain in the edge-cut obtained from moving
vertexv ∈ Vj, to the other part by considering only the part ofG (i.e., vertices and edges
of G) stored locally atPi, j. This locally computed gain is calledlgv. The gaingv, of
moving vertexv is computed by a sum reduction of thelgv, along the columns of the
processor grid. Let the processors along the diagonal of the grid store thegv values for
the subset ofV assigned locally.

The parallel refinement algorithm consists of a number of steps. During each step, at
each diagonal processor a group of vertices is selected from one of the two parts and
is moved to the other part. The group of vertices selected by each diagonal processor
corresponds to the vertices that have positivegv values (i.e., lead to a decrease in the
edge-cut). Each diagonal processorPi, i then broadcasts the group of verticesUi it selected
along the rows and the columns of the processor grid. Now, each processorPi, j knows
the group of verticesUi and Uj from Vi and Vj, respectively, that have been moved to
the other part and updates thelgv values of the vertices inUj and of the vertices that are
adjacent to vertices inUi. The updated gain valuesgv are computed by a reduction along
the columns of the modifiedlgv values. This process continues by alternating the part from
where vertices are moved, until either no further improvement in the overall edge-cut can
be made, or a maximum number of iterations has been reached. In our experiments, the
maximum number of iterations was set to six. Balance between partitions is maintained
by (a) always starting the sequence of vertex swaps from the heavier part of the partition,
and (b) by employing an explicit balancing iteration at the end of each refinement phase
if there is more than 2% load imbalance between the parts of the partition.

Our parallel refinement algorithm has a number of interesting properties that positively
affect its performance and its ability to refine the partition. First, the task of selecting
the group of vertices to be moved from one part to the other is distributed among
the diagonal processors instead of being done serially. Second, the task of updating
the internal and external degrees of the affected vertices is distributed among all thep
processors. Furthermore, we restrict the moves in each step to be unidirectional (i.e.,
they go only from one partition to other) instead of being bidirectional (i.e., allow both
types of moves in each phase). This guarantees that each vertex in the group of vertices
U =

⋃
i Ui being moved reduces the edge-cut. In particular, letgU =

∑
v∈U gv, be the

sum of the gains of the vertices inU. Then the reduction in the edge-cut obtained by
moving the vertices ofU to the other part is at leastgU. To see that, consider a vertex

80 KARYPIS AND KUMAR

v ∈ U that has a positive gain (i.e.,gv > 0); the gain will decrease if and only if some
of the adjacent vertices ofv that belong to the other part move. However, since in each
phase we do not allow vertices from the other part to move, the gain of movingv is at
leastgv irrespective of whatever other vertices on the same side asv have been moved.
It follows that the gain achieved by moving the vertices ofU can be higher thangU.

In the serial implementation of BKLR, it is possible to make vertex moves that initially
lead to worse partition, but eventually (when more vertices are moved) better partition is
obtained. Thus, the serial implementation has the ability to climb out of local minima.
However, the parallel refinement algorithm lacks this capability, as it never moves vertices
if they increase the edge-cut. Also, the parallel refinement algorithm is not as precise
as the serial algorithm as it swaps groups of vertices rather than one vertex at a time.
However, our experimental results show that it produces results that are not much worse
than those obtained by the serial algorithm. The reason is that the graph coarsening
process provides enough global view and the refinement phase only needs to prove
minor local improvements.

4. PARALLEL MULTILEVEL SPARSE MATRIX ORDERING ALGORITHM

The parallel multilevel graph bisection algorithm can be used to generate a fill-reducing
ordering using nested discussion. To obtain a fill-reducing ordering we need an algorithm
that constructs a vertex separator from the bisection produced by the parallel graph
bisection algorithm.

Let A andB be the sets of vertices along the boundary of the bisection, each belonging
to one of the two different parts. A boundary-induced separator can be easily constructed
by simply choosing the smaller ofA and B. However, a different separator can be
constructed using a minimum cover algorithm for bipartite graphs [23] that contains
subsets of vertices from bothA and B. In many cases, this new separatorS may have
20 to 40% fewer vertices than eitherA or B. Since the size of the vertex separator
directly affects the fill and thus, the time required to factor the matrix, small separators
are extremely important.

The worst-case complexity of the minimum cover algorithm isO(|A ∪ B|2) [23].
However,A ∪ B can be fairly large (O(|V|2/3)) for three-dimensional finite element graphs;
hence, this step needs to be performed in parallel. The minimum cover algorithm is based
on bipartite matching which uses depth-first traversal of the bipartite graph, making it
hard to obtain an efficient parallel formulation. For this reason our parallel formulation
implements a relaxed version of the minimum cover algorithm.

Parallel Vertex Cover Algorithm. Recall from Section 3.1 that the vertices of a graph
G = (V, E) are distributed on a two-dimensional processor grid so that each processorPi,

j contains the edges between verticesVi andVj. Let Ai = A ∩ Vi andBj = B ∩ Vj, that is,
Ai andBj are the subsets of boundary vertices stored locally at processorPi, j. Figure 4a
illustrates this notation by an example. In this figure, we present the connections between
setsA andB by a matrix whose rows correspond to the vertices in setA and the columns
correspond to the vertices in setB. This matrix is distributed among the processor grid,
which in the example is of size 3× 3. Using this representation of the bipartite graph,
a vertex cover ofA andB corresponds to a selection of rows and columns that includes
all of the nonzeros in the matrix.

PARALLEL ALGORITHM FOR GRAPH PARTITIONING 81

Each processorPi, j finds locally the minimum cover of edges betweenAi andBj. Let
Ai, j

c ⊆ Ai and Bi , j
c ⊆ B j be such thatAi , j

c ∪ Bi, j
c is this minimum cover. Figure 4b

shows the minimum covers computed by each processor. For example, the minimum
cover computed by processorP0, 0 contains the vertices {a0, a1, b1}, that is A0, 0

c =

FIG. 4. An example of the computations performed while computing a minimal vertex cover in parallel:
(a) original bipartite graph, (b) after local covers have been found, (c) union of the column covers, (d) after
locally removing some of the row cover, (e) union of the row covers, and (f) after removing column covers.

82 KARYPIS AND KUMAR

{ a0, a1} and B0, 0
c = { b1}. Note that the union ofAi , j

c and Bi, j
c over all the processors

is a cover for all the edges betweenA andB. This cover can be potentially smaller than
eitherA or B. However, this cover is necessarily minimal, as it may contain vertices from
A (or B) such that the edges covered by them are also covered by other vertices in the
cover. This can happen because the minimum cover for the edge-set at each processor
Pi, j is computed independently of the other processors. For example, the union of the
local covers computed by all the processors in Fig. 4b is

{a0, a2, a3, a6, a7, a9, a11, a12, a13, a15, b1, b3, b4, b7, b8, b10, b14, b15},

which is not minimal, since for example we can removea3 and still have a vertex cover.
The size of this cover can be potentially reduced as follows.

Let B j
c = ∪i Bi , j

c ; that is, B j
c is the union ofBi, j

c along the columns of the processor
grid. This union is computed via a reduction along the columns and is broadcasted to all
the processors along the corresponding grid column. For the set of edges at each processor
Pi, j, the setAi, j

c ∪B j
c is also a cover, which may not be minimum sinceB j

c ⊇ Bi , j
c . Now

each processor removes vertices fromAi , j
c such that every edge covered by these vertices

is also covered by some vertex inB j
c . More precisely, a vertexv ∈ Ai , j

c is removed if
for all edges (v, u) at processorPi, j, u ∈ B j

c . Figure 4c shows vertex covers at each
processor after the union ofBi, j

c has been computed along the columns. Figure 4d shows
the covers after some vertices of setA have been removed. For example, processorP0,

0 can remove vertexa0 from the cover of the locally stored edges, because it now has
verticesb3 andb4 in the vertex cover.

Let Ai, j
c′ be the reduced version ofAi , j

c . Note that the union ofAi , j
c′ and Bi , j

c over all
the processors is also a cover of all the edges betweenA andB. This cover is potentially
smaller than the cover obtained as the union ofAi , j

c and Bi, j
c . However, we can still

further reduce the size of this cover as follows. LetAi
c′ = ∪ j Ai , j

c′ . That is Ai
c′ is the

union of Ai , j
c′ along the rows of the processor grid; see Fig. 4e for an illustration. This

union is computed via a reduction along the rows and is broadcasted to all the processors
along the corresponding rows. For each processorPi, j the setAi

c′ ∪ B j
c is also a cover.

However, sinceAi
c′ ⊇ Ai , j

c′ , some of the vertices ofB j
c may not be needed in the cover

that keepsAi
c′ fixed, and thus they can be removed. The removal of the vertices inB j

c is
shown in Figs. 4e and 4f, respectively. Note that verticesb3 andb10 can now be removed
from the vertex cover.

Let Bi , j
c′ be the reduced version ofB j

c . Let B j
c′ be the union of the reducedBi , j

c′ ’s
along the columns. The separatorS is then constructed as

S=
√p−1⋃

i=0

Ai
c′

⋃√p−1⋃
j=0

B j
c′

 .
Note that Ai , j

c′ and Bi, j
c′ cannot be further reduced, even if the entireS is made avail-

able at each processor. The reason is that at this time, eachbi ∈ Bi, j
c′ covers at least one

edge that is not covered by anyai ∈ Ai, j
c′ , and eachai ∈ Ai , j

c′ covers at least one edge

that is not covered bybi ∈ Bi, j
c′ . Hence, the setS is at a local minimum.

In Fig. 5 we plotted the reduction in the size of the top level vertex separator
obtained by using our parallel minimum cover algorithm over the boundary induced

PARALLEL ALGORITHM FOR GRAPH PARTITIONING 83

FIG. 5. The size of the approximate minimum cover vertex separator relative to the boundary-induced vertex
separator.

vertex separator for 16, 32, and 64 processors for some matrices. For most matrices, the
approximate minimum cover algorithm reduces the size of the vertex separator by at least
10%, and for some other it decreases by as much as 25%. Furthermore, our experiments
(not reported here) show that their sizes are usually close to those obtained using the
minimum cover algorithm running on a serial computer.

5. PERFORMANCE AND SCALABILITY ANALYSIS

A complete analysis of our parallel multilevel algorithm must account for the
communication overhead in each coarsening step and the idling overhead that results
from folding th graph onto smaller processor grids. The analysis presented in this section
is for hypercube-connected parallel computers, but it is applicable to a much broader
class of architectures for which the bisection bandwidth isO(p) (e.g., fat trees, crossbar,
and multistage networks).

Consider a hypercube-connected parallel computer withp = 22r processors arranged
as a
√

p × √p grid. Let G0 = (V0, E0) be the graph that is partitioned intop parts,
and letn = |V0| andm = |E0|. During the first coarsening level, the diagonal processors
determine the matching, they broadcast it to the processors along the rows and columns
of the processor grid, and all the processors construct the local part of the next level
coarser graph. The time required to find the matching and create the next level coarser
graph is of the order of the number of edges stored in each processor, i.e.,O(m/p).
Each diagonal processor finds a matching of theO(n/

√
p) vertices it stores locally and

broadcasts it along the rows and columns of the processor grid. Since the size of these
vectors are much larger than

√
p, this broadcast can be performed in time linear to the

message size, by performing a one-to-all personalized broadcast followed by an all-to-all
broadcast (Problem 3.24 in [19]). Thus, the time required by the broadcast isO(n/

√
p).

If we assume (see the discussion in Section 6.3) that in each successive coarsening
level the number of vertices decreases by a factor greater than one, and that the size
of the graphs between successive foldings decreases by a factor greater than four, then

84 KARYPIS AND KUMAR

the amount of time required to compute a bisection is dominated by the time required
to create the first level coarse graph. Thus, the time required to compute a bisection of
graphG0 is

Tbissection= O

(
m

p

)
+ O

(
n√
p

)
. (1)

After finding a bisection, the graph is split and the task of finding a bisection for
each of these subgraphs is assigned to a different half of the processors. The amount
of communciation required during this graph splitting is proportional to the number of
edges stored in each processor; thus, this time isO(m/p), which is of the same order as
the communication time required during the bisection step. This processes of bisection
and graph splitting continues for a total of logp times. At this time a subgraph is stored
locally on a single processor and thep-way partition of the graph has been found. The
time required to compute the bisection of a subgraph at leveli is

Tbissection
i =O

(
m/2i

p/2i

)
+ O

(
n/2i√
p/2i

)

=O

(
m

p

)
+ O

(
n√
p

)
,

the same for all levels. Thus, the overall run time of the parallelp-way partitioning al-
gorithm is

T parti t ion =
(

O

(
m

p

)
+ O

(
n√
p

))
log p

=O

(
n log p√

p

)
. (2)

Equation (2) shows that asymptotically only a speedup ofO(
√

p) can be achieved in the
algorithm. However, as our experiments in Section 6 show, higher speedup can be ob-
tained. This is because the constant hidden in front ofO(m/p) is often much higher than
that hidden in front ofO(n/

√
p) particularly for 3D finite element graphs. Nevertheless,

from Eq. (2) we have that the partitioning algorithm is asymptotically unscalable. That
is, it is not possible to obtain constant efficiency on increasingly large number of pro-
cessors even if the problem size (O(n)) is increased arbitrarily.

However, a linear system solver that uses this parallel multilevel partitioning algorithm
to obtain a fill reducing ordering prior to Cholesky factorization is not unscalable. This
is because the time spent in ordering is considerably smaller than the time spent in
Cholesky factorization. The sequential complexity of Cholesky factorization of matrices
arising in 2D and 3D finite elements applications isO(n1.5) andO(n2), respectively. The
communication overhead of parallel ordering over allp processors isO(n

√
p log p),

which can be subsumed by the serial complexity of Cholesky factorization providedn
is large enough relative top. In particular, the isoefficiency [19] for 2D finite element
graphs isO(p1.5 log3 p), and for 3D finite element graphs it isO(p log2 p). We have
recently developed a highly parallel sparse direct factorization algorithm [9, 17]. The
isoefficiency of this algorithm isO(p1.5) for both 2D and 3D finite element graphs.
Thus, for 3D problems, the parallel ordering does not affect the overall scalability of the
ordering–factorization algorithm.

PARALLEL ALGORITHM FOR GRAPH PARTITIONING 85

TABLE 1

Various Matrices Used in Evaluating the Multilevel Graph Partitioning

and Sparse Matrix Ordering Algorithm

Matrix name Number of vertices Number of edges Description

4ELT 15606 45878 2D finite-element mesh

BCSSTK31 35588 572914 3D stiffness matrix

BCSSTK32 44609 985046 3D stiffness matrix

BRACK2 62631 366559 3D finite-element mesh

CANT 54195 1960797 3D stiffness matrix

COPTER2 55476 352238 3D finite-element mesh

CYLINDER93 45594 1786726 3D stiffness matrix

ROTOR 99617 662431 3D finite-element mesh

SHELL93 181200 2313765 3D stiffness matrix

WAVE 156317 1059331 3D finite-element mesh

6. EXPERIMENTAL RESULTS

We evaluated the performance of the parallel multilevel graph partitioning and
sparse matrix ordering algorithm on a wide range of matrices arising in finite element
applications. The characteristics of these matrices are described in Table 1.

We implemented our parallel multilevel algorithm on a 128-processor Cray T3D
parallel computer. Each processor on the T3D is a 150 MHz Dec Alpha chip. The
processors are interconnected via a three-dimensional torus network that has a peak
unidirectional bandwidth of 150 Bytes per second and a small latency. We used SHMEM
message passing library for communication. In our experimental setup, we obtained a
peak bandwidth of 90 MBytes and an effective startup time of 4µs.

Since each processor on the T3D has only 64 MBytes of memory, some of the larger
matrices could not be partitioned on a single processor. For this reason, we compare
the parallel run time on the T3D with the run time of the serial multilevel algorithm
running on a SGI Challenge with 1.2 GBytes of memory and 150 MHz Mips R4400
chip. Even though R4400 has a peak integer performance that is 10% lower than the
Alpha, due to the significantly higher amount of secondary cache available on the SGI
machine (1 Mbyte on SGI versus 0 Mbytes on T3D processors), the code running on a
single processor T3D is about 15% slower than that running on the SGI. The computed
speedups in the rest of this section are scaled to take this into account.4 All times reported
are in seconds. Since our multilevel algorithm uses randomization in the coarsening step,
we performed all experiments with a fixed seed.

4The speedup is computed as 1.15× TSGI/TT3D, whereTSGI and TT3D are the run times on SGI and T3D,
respectively.

86 KARYPIS AND KUMAR

6.1. Graph Partitioning

The performance of the parallel multilevel algorithm for the matrices in Table 1 is

shown in Table 2 for ap-way partition onp processors, wherep is 16, 32, 64, and

128. The performance of the serial multilevel algorithm for the same set of matrices

running on an SGI is shown in Table 3. For both the parallel and the serial multilevel

algorithm, the edge-cut and the run time are shown in the corresponding tables. In the

rest of this section, we will first compare the quality of the partitions produced by the

parallel multilevel algorithm, and then the speedup obtained by the parallel algorithm.

Figure 6 shows the size of the edge-cut of the parallel multilevel algorithm compared

to the serial multilevel algorithm. Any bars above the baseline indicate that the parallel

algorithm produces partitions with higher edge-cut than the serial algorithm. From this

graph we can see that for most matrices, the edge-cut of the parallel algorithm is worse

than that of the serial algorithm. This is due to the fact that the coarsening and refinement

performed by the parallel algorithm are less powerful. But in most cases, the difference

in edge-cut is quite small. For nine out of the ten matrices, the edge-cut of the parallel

algorithm is within 10% of that of the serial algorithm. Furthermore, the difference in

quality decreases as the number of partitions increases. The only exception is 4ELT,

for which the edge-cut of the parallel 16-way partition is about 27% worse than the

serial partition. However, even for this problem, when larger partitions are considered,

the relative difference in the edge-cut decreases; and for the 128-way partition, parallel

multilevel does slightly better than the serial multilevel algorithm.

Figure 7 shows the size of the edge-cut of the parallel algorithm compared to the

Multilevel Spectral Bisection algorithm (MSB) [3]. The MSB algorithm is a widely used

algorithm that has been found to generate high quality partitions with small edge-cuts.

We used the Chaco [11] graph partitioning package to produce the MSB partitions. As

before, any bars above the baseline indicate that the parallel algorithm generates partitions

with higher edge-cuts. From this figure we see that the quality of the parallel algorithm is

almost never worse than that of the MSB algorithm. For eight out of the ten matrices, the

parallel algorithm generated partitions with fewer edge-cuts, up to 50% better in some

cases. On the other hand, for the matrices that the parallel algorithm performed worse, it

is only by a small factor (less than 6%). This figure (along with Fig. 6) also indicates that

our serial multilevel algorithm outperforms the MSB algorithm. An extensive comparison

between our serial multilevel algorithm and MSB can be found in [16].

Tables 2 and 3 also show the run time of the parallel algorithm and the serial algorithm,

respectively. A number of conclusions can be drawn from these results. First, asp

increases, the time required for thep-way partition onp-processors decreases. Depending

on the size and characteristics of the matrix this decrease is quite substantial. The decrease

in the parallel run time is not linear with respect to the increase inp but somewhat smaller

for the following reasons: (a) Asp increases, the time required to perform thep-way

partition also increases; (there are more partitions to perform). (b) The parallel multilevel

algorithm incurs communication and idling overhead that limits the asymptotic speedup

to O(
√

p) unless a good partition of the graph is available even before the partitioning

process starts (Section 5).

P
A

R
A

LLE
L

A
LG

O
R

IT
H

M
F

O
R

G
R

A
P

H
P

A
R

T
IT

IO
N

IN
G

87

TABLE 2

The Performance of the Parallel Multilevel Graph Partitioning Algorithm

p = 16 p = 32 p = 64 p = 128

Matrix Tp EC16 S Tp EC32 S Tp EC64 S Tp EC128 S

4ELT 0.48 1443 6.0 0.48 1995 7.0 0.48 3210 8.5 0.48 4734 11.1

BCSSTK31 1.28 27215 10.7 1.02 43832 17.0 0.87 67134 23.6 0.78 98675 31.6

BCSSTK32 1.69 43987 12.0 1.33 71378 19.2 1.05 104532 28.4 0.92 155321 37.9

BRACK2 2.14 14987 8.6 1.83 21545 12.2 1.56 32134 16.8 1.35 45345 21.9

CANT 3.20 199567 13.4 2.29 322498 23.7 1.71 441459 38.0 1.47 575231 49.7

COPTER2 2.05 22498 7.4 1.78 32765 11.1 1.59 45230 14.0 1.42 60543 18.2

CYLINDER93 2.35 131534 14.3 1.71 198675 24.5 1.34 288340 39.2 1.05 415632 56.3

ROTOR 3.16 26532 11.0 2.89 39785 14.4 2.40 57540 20.0 2.10 77450 26.4

SHELL93 5.80 54765 13.9 4.40 86320 22.5 3.25 130856 35.3 2.67 200057 49.9

WAVE 5.10 57543 10.3 4.70 76785 13.3 3.73 101210 19.9 3.09 138245 26.8

Note. For each matrix, the performance is shown for 16, 32, 64, and 128 processors.Tp is the parallel run time for ap-way partition onp

processors,ECp is the edge-cut of thep-way partition, andS is the speedup over the serial multilevel algorithm.

88 KARYPIS AND KUMAR

TABLE 3

The Performance of the Serial Multilevel Graph Partitioning Algorithm

on an SGI, for 16-, 32-, 64-, and 128-way Partition

Matrix T16 EC16 T32 EC32 T64 EC64 T128 EC128

4ELT 2.49 1141 2.91 1836 3.55 2965 4.62 4600

BCSSTK31 11.96 25831 15.08 42305 17.82 65249 21.40 97819

BCSSTK32 17.62 43740 22.21 70454 25.92 106440 30.29 152081

BRACK2 16.02 14679 19.48 21065 22.78 29983 25.72 42625

CANT 37.32 199395 47.22 319186 56.53 442398 63.50 574853

COPTER2 13.22 21992 17.14 31364 19.30 43721 22.50 58809

CYLINDER93 29.21 126232 36.48 195532 45.68 289639 51.39 416190

ROTOR 30.13 24515 36.09 37100 41.83 53228 48.13 75010

SHELL93 69.97 51687 86.23 81384 99.65 124836 115.86 185323

WAVE 45.75 51300 54.37 71339 64.44 97978 71.98 129785

Note. Tp is the run time for ap-way partition, andECp is the edge-cut of thep-way partition.

We constructed Fig. 8 to compare the decrease in the parallel run time against various
ideal situations. In this figure, we plotted the decrease in the run time forp equal to 32,
64, and 128, relative to the run time ofp = 16 for some representative matrices from
Table 1. On the same graph, we also plotted the decrease in the run time if the speedup
had beenO(p), O(

√
p), and O(log p), respectively. From Section 5, we know that the

asymptotic speedup obtained by the parallel multilevel algorithm is bounded byO(
√

p).
Also, from Section 3, we know that if only the parallelism due to the recursive step
is exploited, then the speedup of the parallel algorithm is bounded byO(log p). From

FIG. 6. Quality (size of the edge-cut) of our parallel multilevel algorithm relative to the serial multilevel
algorithm.

PARALLEL ALGORITHM FOR GRAPH PARTITIONING 89

FIG. 7. Quality (size of the edge-cut) of our parallel multilevel algorithm relative to the multilevel spectral
bisection algorithm.

this figure, we see that for the larger problems, the decrease in the run time is much
larger than that predicted by theO(

√
p) speedup curve. This is because (as discussed in

Section 5) the constants in Eq. (2) for theO(m/p) term are much smaller than those of
the O(n/

√
p) term for graphs with relatively high average degree.

Thus, for problems with relatively high degree (such as coefficient matrices for 3D
finite element problems), our parallel algorithm performs fairly well. This can also be

FIG. 8. The decrease in the parallel run time for 32, 64, and 128 processors relative to the run time on 16
processors.

90 KARYPIS AND KUMAR

seen by looking at the speedup achieved by the parallel algorithm shown in Table 2. We
see that for most such problems, speedup in the range of 14 to 25 was achieved on 32
processors, and in the range of 22 to 56 on 128 processors. Since the serial multilevel
algorithm is quite fast (much faster than MSB), these speedups lead to a significant
reduction in the time required to perform the partition. For most problems in our test set,
it takes no more than 2 s to obtain a 128-partition on 128 processors. However, for the
problems with small average degrees, the decrease is very close toO(

√
p) is predicted

by our analysis. The only exception is 4ELT, for which the speedup is close toO(log p).
We suspect it is because the problem is too small, as even on a serial computer 128-way
partition takes less than 5 s.

6.2. Sparse Matrix Ordering

We used the parallel multilevel graph partitioning algorithm to find a fill-reducing
ordering via nested dissection. The performance of the parallel multilevel nested
dissection algorithm (MLND) for various matrices is shown in Table 4. For each matrix,
the table shows the parallel run time and the number of nonzeros in the Cholesky factor
L of the resulting matrix for 16, 32, and 64 processors. Onp processors, the ordering is
computed by using nested dissection for the first logp levels, and then multiple minimum
degree (MMD) [20] is used to order the submatrices stored locally on each processor.

Figure 9 shows the relative quality of both serial and parallel MLND versus the MMD
algorithm. These graphs were obtained by dividing the number of operations required to
factor the matrix using MLND by that required by MMD. Any bars above the baseline
indicate that the MLND algorithm requires more operations than the MMD algorithm.
From this graph, we see that in most cases, the serial MLND algorithm produces orderings
that require fewer operations than MMD. The only exception is BCSSTK32, for which
the serial MLND requires twice as many operations.

TABLE 4

The Performance of the Parallel MLND Algorithm on 16, 32, and 64 Processors
for Computing a Fill-Reducing Ordering of a Sparse Matrix

Matrix T16 |L| T32 |L| T64 |L|

BCSSTK31 1.7 5588914 1.3 5788587 1.0 6229749

BCSSTK32 2.2 7007711 1.7 7269703 1.3 7430756

BRACK2 2.9 7788096 2.5 7690143 1.8 7687988

CANT 4.4 29818759 2.8 28854330 2.2 28358362

COPTER2 2.6 12905725 2.1 12835682 1.6 12694031

CYLINDER93 3.5 15581849 2.2 15662010 1.7 15656651

ROTOR 6.1 23193761 4.0 21496647 3.0 24624924

SHELL93 8.5 40968330 5.7 40089031 4.5 35174130

WAVE 8.7 87657783 6.3 85317972 4.8 87243325

Note. Tp is the run time in seconds and |L| is the number of nonzeros in the
Cholesky factor of the matrix.

PARALLEL ALGORITHM FOR GRAPH PARTITIONING 91

FIG. 9. Quality of our parallel multilevel nested dissection algorithm relative to the multiple minimum degree
algorithm and the serial multilevel nested dissection algorithm.

Comparing the parallel MLND algorithm against the serial MLND, we see that the
orderings produced by the parallel algorithm requires more operations (see Fig. 9). This
is mainly due to the following three reasons:

(a) The bisections produced by the parallel multilevel algorithm are somewhat worse
than those produced by the serial algorithm.

(b) The parallel algorithm uses an approximate minimum cover algorithm (Section
4). Even though this approximate algorithm finds a small separator, its size is somewhat
larger than that obtained by the minimum cover algorithm used in serial MLND. From
some matrices, the true minimum cover separator may be up to 15% smaller than the
approximate one. As a result, the orderings produced by the parallel MLND require more
operations than the serial MLND.

(c) The parallel algorithm performs multilevel nested dissection ordering only for
the first logp levels. After that it switches over to MMD. The serial MLND algorithm
performs O(log n) levels of nested dissection and only switches to MMD when the
submatrix is very small (fewer than 100 vertices). On the other hand, depending onp,
the parallel MLND algorithm switches to MMD much earlier. Since MLND tends to
perform better than MMD for larger matrices arising in 3D finite element problems (Fig.
9), the overall quality of the ordering produced by parallel MLND can be slightly worse.
This effect becomes less pronounced asp increases, because MMD is used on smaller and
smaller submatrices. Indeed on some problems (such as CANT and SHELL93), parallel
MLND performs better as the number of processors increases.

However, as seen in Fig. 9, the overall quality of the parallel MLND algorithm is
usually within 20% of the serial MLND algorithm. The only exception in Fig. 9 is
SHELL93. Also, the relative quality changes slightly as the number of processors used
to find the ordering increases.

Comparing the run time of the parallel MLND algorithm (Table 4) with that of the
parallel multilevel partitioning algorithm (Table 2) we see that the time required by
ordering is somewhat higher than the corresponding partitioning time. This is due to the
extra time taken by the approximate minimum cover algorithm and the MMD algorithm
used during ordering. But the relative speedup between 16 and 64 processors for both
cases is quite similar.

92 KARYPIS AND KUMAR

6.3. How Good Is the Diagonal Coarsening?

The analysis presented in Section 5 assumed that the size of the graph (i.e., the number
of edges) decreases by a factor greater than four before successive foldings. The amount
of coarsening that can take place depends on the number of edges stored locally on
each diagonal processor. If this number is very small, then maximal independent subsets
found by each diagonal processor will be very small. Furthermore, the next level coarser
graph will have even a smaller number of edges, since (a) edges in the matching are
removed, and (b) some of the edges of the matched vertices are common and thus are
collapsed together. On the other hand, if the average degree of a vertex is fairly high, then
significant coarsening can be performed before folding. To illustrate the relation between
the average degree of a graph and the amount of coarsening that can be performed for
the first bisection, we performed a number of experiments on 16 and 64 processors. In
Table 5 we show the reduction in the number of vertices and edges between foldings.

TABLE 5

The Reduction in the Number of Vertices and Edges between Successive Graph Foldings

4 × 4 2× 2 1× 1

Graph p V E V E V E

CANT 16 74.34 241.95 1.72 2.26

d = 72 64 16.71 39.09 2.63 3.51 1.78 2.20

BCSSTK31 16 49.23 118.57 1.90 2.50

d = 44 64 8.67 29.06 2.67 2.99 2.60 3.20

BCSSTK32 16 16.04 32.55 2.67 3.73

d = 32 64 4.99 7.43 2.94 3.40 1.98 2.33

BRACK2 16 7.43 7.06 2.48 3.14

d = 12 64 6.84 6.41 1.83 1.93 1.82 2.06

ROTOR 16 12.31 12.60 1.90 2.06

d = 12 64 5.07 4.77 2.47 2.70 1.85 1.99

COPTER2 16 7.61 7.64 1.89 2.04

d = 12 64 2.77 2.59 1.96 1.92 2.62 3.02

4ELT 16 2.01 2.04 4.48 5.76

d = 6 64 1.30 1.31 1.72 1.76 4.19 5.50

Note. For each graph, the columns labeled withV(E) give the factor by which the number of vertices
(edges) is reduced between successive foldings. These results are shown for three processor grids, 4× 4,
2 × 2, and 1× 1, that correspond to the quadrant of the grid to which the graph was folded. For example,
for BCSSTK32, when 64 processors are used, the number of vertices was reduced by a factor of 4.99
before being folded to 16 processors (4× 4 grid). For the same graph, the number of vertices was reduced
further by a factor of 2.94 before being folded to 4 processors, and by another 1.98 factor before being
folded down to a single processor. Thus, the graph that a single processor receives has 4.99× 2.94× 1.98
= 16.65 times fewer vertices than the original graph. Under each graph, the average degreed of the graph
is shown.

PARALLEL ALGORITHM FOR GRAPH PARTITIONING 93

A number of interesting conclusions can be drawn from this table. For graphs with
relatively high average degree (e.g., CANT, BCSSTK31, BCSSTK32), most of the
coarsening is performed on the entire processor grid. For instance, on 64 processors,
for CANT, the average degree of a vertex on the diagonal processors is 72/8 = 9. As a
result significant coarsening can be performed before the edges of the diagonal processors
get depleted. By the time the parallel multilevel algorithm is forced to perform a folding,
both the number of vertices and the number of edges have decreased by a large factor. In
many cases, this factor is substantially higher than that required by the analysis. For most
of these graphs, over 90% of the overall computation of coarsening is performed using all
the processors, and only a small fraction is performed by smaller processor grids. This
type of graphs corresponds to the coefficient matrices of 3D finite element problems
with multiple degrees of freedom that are widely used in scientific and engineering
applications. From this, we can see that the diagonal coarsening can easily be scaled up
to 256 or even 1024 processors for graphs with average degree higher than 25 or 40,
respectively.

For low-degree graphs (e.g., BRACK2, COPTER2, and ROTOR) with average degree
of 12 or less, the number of vertices decreases by a smaller factor than the high degree
graphs. For BRACK2, for each vertex, each diagonal processor has on the average 12/8
= 1.5 vertices; thus, only a limited amount of coarsening can be performed. Note that for
4ELT, the number of vertices and the number of edges decrease only by a small factor,
which explains the poor speedup obtained for this problem.

7. CONCLUSION

In this paper we presented a parallel formulation of multilevel recursive bisection
algorithm for partitioning a graph and for producing a fill-reducing order via nested
dissection. Our experiments show that our parallel algorithms are able to produce good
partitions and orderings for a wide range of problems. Furthermore, our algorithms
achieve a speedup of up to 56 on 128-processor Cray T3D.

Due to the two-dimensional mapping scheme used in the parallel formulation, its
asymptotic speedup is limited toO(

√
p) because the matching operation is performed

only on the diagonal processors. In contrast, for one-dimensional mapping scheme used
in [1, 14, 24] the asymptotic speedup can beO(p) for large enough graphs. However,
this two-dimensional mapping has the following advantages. First, the actual speedup
on graphs with large average degrees is quite good as shown in Fig. 8. The reason is
that for these graphs, the formation of the next level coarser graph (which is completely
parallel with two-dimensional mapping) dominates the computation of the matching.
Second, the two-dimensional mapping requires fewer communication operations (only
broadcast and reduction operations along the rows and columns of the processor grid) in
each coarsening step compared with one-dimensional mapping. Hence on machines with
slow communication network (high message startup time and/or small communication
bandwidth), the two-dimensional mapping can provide better performance even for graphs
with small degree. Third, the two-dimensional mapping is central to the parallelization of
the minimal vertex cover computation presented in Section 4. It is unclear if the algorithm
for computing minimal vertex cover of a bipartite graph can be efficiently parallelized
with one-dimensional mapping.

94 KARYPIS AND KUMAR

The parallel graph partitioning and sparse matrix reordering algorithms described in this
paper are available in the PARMETIS graph partitioning library that is publicly available
on WWW at http://www.cs.umn.edu/∼metis.

REFERENCES

1. S. T. Barnard, Pmrsb: Parallel multilevel recursive spectral bisection,in “Supercomputing 1995.”

2. S. T. Barnard and H. Simon, A parallel implementation of multilevel recursive spectral bisection for
application to adaptive unstructured meshes,in “Proceedings of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing,” pp. 627–632, 1995.

3. S. T. Barnard and H. D. Simon, A fast multilevel implementation of recursive spectral bisection for
partitioning unstructured problems,in “Proceedings of the Sixth SIAM Conference on Parallel Processing
for Scientific Computing,” pp. 711–718, 1993.

4. T. Bui and C. Jones, A heuristic for reducing fill in sparse matrix factorization,in “6th SIAM Conf.
Parallel Processing for Scientific Computing,” pp. 445–452, 1993.

5. P. Diniz, S. Plimpton, B. Henrickson, and R. Leland, Parallel algorithms for dynamically partitioning
unstructured grids,in “Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific
Computing,” pp. 615–620, 1995.

6. C. M. Fiduccia and R. M. Mattheyses, A linear time heuristic for improving network partitions,in “Proc.
19th IEEE Design Automation Conference,” pp. 175–181, 1982.

7. J. Garbers, H. J. Promel, and A. Steger, Finding clusters in VLSI circuits,in “Proceedings of IEEE
International Conference on Computer Aided Design,” pp. 520–523, 1990.

8. A. George and J. W.-H. Liu, “Computer Solution of Large Sparse Positive Definite Systems,” Prentice-
Hall, Englewood Cliffs, NJ, 1981.

9. A. Gupta, G. Karypis, and V. Kumar, Highly scalable parallel algorithms for sparse matrix factorization,
IEEE Trans. Parallel Distrib. Systems8, 5 (May 1997), 502–520. [Available on WWW at URL http://
www.cs.umn.edu/∼karypis]

10. M. T. Heath, E. G.-Y. Ng, and B. W. Peyton, Parallel algorithms for sparse linear systems,SIAM Rev.

33 (1991), 420–460. [Also appears in “Parallel Algorithms for Matrix Computations,” (K. A. Gallivan
et al., Eds.), SIAM, Philadelphia, PA, 1990]

11. B. Hendrickson and R. Leland, “The Chaco User’s Guide,” version 1.0, Technical Report SAND93-2339,
Sandia National Laboratories, 1993.

12. B. Hendrickson and R. Leland, “A Multilevel Algorithm for Partitioning Graphs,” Technical Report
SAND93-1301, Sandia National Laboratories, 1993.

13. G. Karypis and V. Kumar, “Analysis of Multilevel Graph Partitioning,” Technical Report TR 95-037,
Department of Computer Science, University of Minnesota, 1995. [Also available on WWW at URL
http://www.cs.umn.edu/∼karypis] [A short version appears in “Supercomputing ’95”]

14. G. Karypis and V. Kumar, “Parallel Multilevelk-way Partitioning Scheme for Irregular Graphs,” Technical
Report TR 96-036, Department of Computer Science, University of Minnesota, 1996. [Also available on
WWW at URL http://www.cs.umn.edu/∼karypis] [A short version appears in “Supercomputing ’96”]

15. G. Karypis and V. Kumar, Multilevelk-way partitioning scheme for irregular graphs,J. Parallel Distrib.
Comput.48, No. 1 (1998), 96–129.

16. G. Karypis and V. Kumar, A fast and highly quality multilevel scheme for partitioning irregular graphs,
SIAM J. Sci. Comput.,to appear. [Also available on WWW at URL http://www.cs.umn.edu/∼karypis] [A
short version appears in “Intl. Conf. on Parallel Processing 1995”]

17. G. Karypis and V. Kumar, “Fast Space Cholesky Factorization on Scalable Parallel Computers,” Technical
report, Department of Computer Science, University of Minnesota, Minneapolis, MN, 1994. [A short
version appears in the “Eighth Symposium on the Frontiers of Massively Parallel Computation,” 1995]
[Available on WWW at URL http://www.cs.umn.edu/∼karypis]

18. B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs,Bell Syst. Tech. J.

1970.

PARALLEL ALGORITHM FOR GRAPH PARTITIONING 95

19. V. Kumar, A. Grama, A. Gupta, and G. Karypis, “Introduction to Parallel Computing: Design and
Analysis of Algorithms,” Benjamin/Cummings Publishing Company, Redwood City, CA, 1994.

20. J. W.-H. Liu, Modification of the minimum degree algorithm by multiple elimination,ACM Trans. Math.
Software11 (1985), 141–153.

21. M. Luby, A simple parallel algorithm for the maximal independent set problem,SIAM J. Comput.15, 4
(1986), 1036–1053.

22. R. Ponnusamy, N. Mansour, A. Choudhary, and G. C. Fox, Graph contraction and physical optimization
methods: A quality–cost tradeoff for mapping data on parallel computers,in “International Conference
of Supercomputing,” 1993.

23. A. Pothen and C.-J. Fan, Computing the block triangular form of a sparse matrix,ACM Trans. Math.

Software1990.

24. P. Raghavan, “Parallel Ordering Using Edge Contraction,” Technical Report CS-95-293, Department of
Computer Science, University of Tennessee, 1995.

25. E. Rothberg, Performance of panel and block approaches to sparse Cholesky factorization on the iPSC/
860 and Paragon multicomputers,in “Proceedings of the 1994 Scalable High Performance Computing
Conference,” May 1994.

26. J. E. Savage and M. G. Wloka, Parallelism in graph partitioning,J. Parallel Distrib. Compt.13 (1991),
257–272.

27. H. D. Simon and S.-H. Teng, “How Good is Recursive Bisection?,” Technical Report RNR-93-012, NAS
Systems Division, Moffet Field, CA, 1993.

GEORGE KARYPIS received his Ph.D. in computer science at the University of Minnesota, and he is
currently an assistant professor at the Department of Computer Science and Engineering at the University of
Minnesota. His research interests span the areas of parallel algorithm design, applications of parallel processing
in scientific computing and optimization, sparse matrix computations, parallel programming languages and
libraries, and data mining. His recent work has been in the areas of parallel sparse direct solvers, serial and
parallel graph partitioning algorithms, parallel matrix ordering algorithms, and scalable parallel preconditioners.
His research has resulted in the development of software libraries for unstructured mesh partitioning (METIS
and ParMETIS) and for parallel Cholesky factorization (PSPASES). He is the author of over 20 research articles
and a coauthor of the widely used textbook “Introduction to Parallel Computing.”

VIPIN KUMAR received his Ph.D. in computer science at the University of Maryland, and he is currently a
professor at the Department of Computer Science and Engineering at the University of Minnesota. His current
research interests include parallel computing, parallel algorithms for scientific computing problems, and data
mining. His research has resulted in the development of highly efficient parallel algorithms and software for
sparse matrix factorization (PSPASES), graph partitioning (METIS and ParMETIS), and dense hierarchical
solvers. Kumar’s research in performance analysis resulted in the development of the isoefficiency metric for
analyzing the scalability of parallel algorithms. He is the author of over 100 research articles and a coauthor
of the widely used textbook “Introduction to Parallel Computing.” Kumar has given over 50 invited talks
at various conferences, workshops, and national labs and has served as chair/co-chair for many conferences/
workshops in the area of parallel computing. Kumar serves on the editorial boards ofIEEE Parallel and
Distributed Technology, IEEE Transactions of Data and Knowledge Engineering, Parallel Computing, and the
Journal of Parallel and Distributed Computing. He is a senior member of IEEE and a member of SIAM
and ACM.

Received November 1, 1996; revised October 15, 1997; accepted October 20, 1997

