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Physicist currently working on Chemistry.
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Code developer of Chemistry at Harvard Molecular Mechanics
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Carr-Parrinello Molecular Dynamics
Multiple time steps algorithms
Modified Neglect of Diatomic Overlap (MNDO) QM/MM
approach
Hybrid MPI/OpenMP approches for QM/MM simulations
QM/MM-Cutoff methods.

P. Ojeda-May Computational Chemistry - MD Simulations



Basics on MD simulations
Abisko and Kebnekeise

Using GROMACS at HPC2N

Background

Physicist currently working on Chemistry.

Experience with Supercomputers and HPC Clusters.

Code developer of Chemistry at Harvard Molecular Mechanics
(CHARMM) package:

Carr-Parrinello Molecular Dynamics
Multiple time steps algorithms
Modified Neglect of Diatomic Overlap (MNDO) QM/MM
approach
Hybrid MPI/OpenMP approches for QM/MM simulations
QM/MM-Cutoff methods.

P. Ojeda-May Computational Chemistry - MD Simulations



Basics on MD simulations
Abisko and Kebnekeise

Using GROMACS at HPC2N

Background

Physicist currently working on Chemistry.

Experience with Supercomputers and HPC Clusters.

Code developer of Chemistry at Harvard Molecular Mechanics
(CHARMM) package:

Carr-Parrinello Molecular Dynamics
Multiple time steps algorithms
Modified Neglect of Diatomic Overlap (MNDO) QM/MM
approach
Hybrid MPI/OpenMP approches for QM/MM simulations
QM/MM-Cutoff methods.

P. Ojeda-May Computational Chemistry - MD Simulations



Basics on MD simulations
Abisko and Kebnekeise

Using GROMACS at HPC2N

Force field
Ensembles
Beyond classical MD

Simulations time scale

Figure : Accuracy w.r.t. time scale for different modeling approaches.
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Early MD simulations

Figure : Nature, 253 (1975).
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Current MD simulations

Figure : Taken from: http://www.nobelprize.org.
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Application of Parallel algorithms

Proteins

Figure : AdK enzyme in water.

Clays

Figure : Clay [JPC C, 118, 1001

(2014)].
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Application of Parallel algorithms

Figure : Ice cream research.
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Application of Parallel algorithms

Figure : Asphalt research.

Figure : Asphalt [Const. Build. Mat.,

121, 246 (2016)].
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Newton’s equation

F = −∇U Newton′s Law(1687) (1)

solution of this equation requires the knowledge of an array of
particles’ positions and velocities
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Force fields

Figure : Taken from: http://www.lpwchem.org/force-field-development/
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Force fields

V =
∑
bonds

1

2
kbonds(r − r0)2 +

∑
angles

1

2
kangle(θ − θ0)2

+
∑

torsions

∑
j

Vj(1 + cosjφ)

+

i<j∑
Coulomb

qiqj
rij

+

i<j∑
VdW

{
4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]} (4)

Proteins and Hydrocarbons: GROMOS, OPLS-AA, AMBER,
CHARMM.

Clays: CLAYFF

Coarse-graining: MARTINI
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Force fields: Energy surface

Figure : Energy surface described by V = sin(x) ∗ cos(x)
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Water models

Figure : 3-5 sites water models. Taken from:

http://www1.lsbu.ac.uk/water/water models.html
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Water models

Figure : See for details: JPC A, 105, 9954 (2001).

P. Ojeda-May Computational Chemistry - MD Simulations



Basics on MD simulations
Abisko and Kebnekeise

Using GROMACS at HPC2N

Force field
Ensembles
Beyond classical MD

Protein systems

Figure : 20 natural amino acids. Taken from: goo.gl/YrYvwv
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Protein systems

Figure : PDB information of AdK.

Figure : Structure of yeast AdK.
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Periodic boundary conditions (PBC)

The systems we can study with MD simulations are tiny compared
to real experimental setups (1023particles).

Figure : PBCs and minimum image convention [Allen & Tildesley, Comp. Sim. of

Liquids]
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Electrostatic interactions: Ewald method

The elecrostatic energy for a periodic system can be written as1,

E =
1

2

∞∑
m∈Z3

N∑
i ,j=1

′ qiqj
|rij + mL|

(5)

where rij = ri − rj , m refers to the periodic images. Primed
summation means i = j interaction is excluded for m = 0.
qx is the partial charge on atom x .

1Adv. Polym. Sci., 185 , 59 (2005)
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Electrostatic interactions: Ewald method

The elecrostatic energy for a periodic system can be written as1,

E =
1

2

∞∑
m∈Z3

N∑
i ,j=1

′ qiqj
|rij + mL|

(5)

where rij = ri − rj , m refers to the periodic images. Primed
summation means i = j interaction is excluded for m = 0.
qx is the partial charge on atom x .
The potential is splitted such that,

1

r
=

f (r)

r
+

1− f (r)

r
(6)

1Adv. Polym. Sci., 185 , 59 (2005)
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Electrostatic interactions: Ewald method

The elecrostatic energy for a periodic system can be written as1,

E =
1

2

∞∑
m∈Z3

N∑
i ,j=1

′ qiqj
|rij + mL|

(5)

where rij = ri − rj , m refers to the periodic images. Primed
summation means i = j interaction is excluded for m = 0.
qx is the partial charge on atom x .
givig rise to the total energy:

E = E (r) + E (k) + E (s) + E (d) (6)

1Adv. Polym. Sci., 185 , 59 (2005)
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Electrostatic interactions

E (r) =
1

2

∞∑
m∈Z3

N∑
i ,j=1

′
qiqj

erfc(α|rij + mL|)
|rij + mL|

(7)
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2V

∑
k 6=0

4π

k2
ek

2/4α2 |ρ̃(k)|2 (8)
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π

∑
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q2
i (9)

E (d) =
2π

(1 + 2ε′)V
(
∑
i

qi ri )
2 (10)
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Electrostatic interactions: Cutoff methods

The elecrostatic energy for a periodic system can be written as2,

E =
1

2

∞∑
m∈Z3

N∑
i ,j=1

′ qiqj
|rij + mL|

(11)

where rij = ri − rj , m refers to the periodic images. Primed
summation means i = j interaction is excluded for m = 0.
Can we truncate the interactions up to r = Rc?

E =
1

2

N∑
i

rij<Rc∑
j

1

rij
+ Φ (12)

2Adv. Polym. Sci., 185 , 59 (2005)
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Electrostatic interactions: NaCl lattice

Figure : NaCl lattice.

(source:goo.gl/Fa7tcL)

Ei (Rc) =
∑
j 6=i

(rij<Rc )

qiqj
rij

(13)

EMad = −3.495129...q2/a

Figure : Single ion energy for NaCl

lattice. (Wolf et al., JCP, 110, 8256

(1999) )
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Electrostatic interactions: NaCl lattice

Figure : NaCl lattice.

(source:goo.gl/Fa7tcL)

Ei (Rc) =
∑
j 6=i

(rij<Rc )

qiqj
rij

(13)

EMad = −3.495129...q2/a

Figure : Energy convergence upon

charge neutralization. (Wolf et al., JCP,

110, 8256 (1999) )
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Isotropic Periodic Sum method: NaCl lattice

εIPS
ij (rij) =


εij(rij) + φij(rij)
if rij ≤ Rc

0 otherwise
(14)

εij is the Coulombic term and φij
is the long-range IPS correction
whose operational expression is
given by,

φij(rij) =
qiqj
Rc

[
6∑

k=1

b2k

(
rij
Rc

)2k
]

(15)
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Figure : Single ion energy using

different cutoff methods. [ JCP, 140,

164106 (2014), JCP, 122, 044107 (2005)

]
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Integration of Newton’s equation

We now now the force field and we know the law of motion:

F = ma−∇U Newton′s Law (16)

we need to integrate this equation, here we use the leap-frog
scheme [Hockney, 1970] ,

r(t + δt) = r(t) + δtv(t +
1

2
δt) (17)

v(t +
1

2
δt) = v(t − 1

2
δt) + δta (18)

velocities are updated according to,

v(t) =
1

2

(
v(t +

1

2
δt) + v(t − 1

2
δt)

)
(19)
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Constraints

Collision of two diatomic molecules

Figure : Free collision. Figure : SHAKE constraint.

See JCP, 112, 7919 (2000)

P. Ojeda-May Computational Chemistry - MD Simulations



Basics on MD simulations
Abisko and Kebnekeise

Using GROMACS at HPC2N

Force field
Ensembles
Beyond classical MD

Constraints

Modern approaches to deal with constraints

Figure : ILVES method.

See JCC, 32, 3039 (2011)
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Techniques to speedup simulations

MPI parallelization

MPI+OpenMP
parallelization

Domain decomposition
scheme

Multiple communicators

do i=1,num_particles

x(i) = x(i) + f(i)*dt

enddo

Figure : Nodes (MPI).

Figure : NUMA machine (OpenMP).
P. Ojeda-May Computational Chemistry - MD Simulations
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Ergodicity

Aobs = < A >time

=< A(Γ(t)) >time

= lim
tobs→∞

∫ tobs

0
A(Γ(t))dt

(20)

Figure : Coffee cup.
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Statistical ensembles

Microcanonical ensemble (NVE) partition function is [Allen &
Tildesley, Comp. Sim. of Liquids],

QNVE =
1

N!

1

h3N

∫
drdpδ(H(r,p)− E ) (21)

The thermodynamic potential is the negative of the entropy
−S/kB = − lnQNVE

In the case of the Canonical ensemble (NVT) the partition
function is,

QNVT =
1

N!

1

h3N

∫
drdp exp(−H(r,p)/kBT ) (22)

with thermodynamic potential A/kBT = − lnQNVT .
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Statistical ensembles

Isothermal-isobaric ensemble (NPT) partition function is,

QNPT =
1

N!

1

h3N

1

V0

∫
dV

∫
drdp exp(−(H(r,p)+PV )/kBT )

(23)
the corresponding thermodynamic potential is
G/kB = − lnQNPT

Grand-canonical ensemble (µVT) partition function is,

QµVT =
∑
N

1

N!

1

h3N
exp(µN/kBT )

∫
drdp exp(−H(r,p)/kBT )

(24)
the corresponding thermodynamic potential is
−PV /kB = − lnQµVT
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Thermostats

NVE is obtained by solving NE.

NVT can be achieved with the following thermostats:
Berendsen, Velocity-rescaling, Nose-Hoover.

H =
N∑
i=1

pi
2mi

+ U(r1, r2, . . . , rN) +
p2
ξ

2Q
+ Nf kT ξ (25)

A better approach is Nose-Hoover chain.

Using general and local thermostats.

NPT can be simulated with Berendsen and Parrinello-Rahman
methods.
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Accelerated MD simulations

The original potential energy surface V (r) is modified according to,

V ∗(r) =

{
V (r), V (r) ≥ E ,
V (r) + ∆V (r) V (r) < E .

(26)

Figure : Modified potential energy surface [JCP, 120, 11919 (2004)].
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Accelerated MD simulations

the biasing term is,

∆V (r) =
(E − V (r))2

α + (E − V (r))
(27)

Figure : Free energy landscape of Alanine dipeptide [JCP, 120, 11919 (2004)].
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Umbrella sampling (US) simulations

The potential energy is modified
as follows JCP, 23, 187 (1977):

Eb(r) = Eu(r) + wi (ξ)

with wi (ξ) = K/2(ξ − ξrefi )2 Figure : Potential energy surface.

For each window the free energy
is given by,

Ai (ξ) = −(1/β) lnPb
i (ξ)−wi (ξ)+Fi

Figure : Probability histograms.
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String method (SM) simulations

Define a set of collective vari-
ables zj and effective forces as
follows

k

T

∫ T

0
(zj − θj(t))dt ∼ ∂F (z)

∂zj

Figure : Free energy surface.The free energy along the string
is computed by PRB, 66, 052301

(2002),

F (z(α))−F (z(0)) =

∫ α

0

N∑
i=1

dzi (α
′)

dα′
∂F (z(α′))

∂zi
dα′
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String method (SM) simulations

Figure : Free energy surface of Alanine dipeptide.

P. Ojeda-May Computational Chemistry - MD Simulations



Basics on MD simulations
Abisko and Kebnekeise

Using GROMACS at HPC2N

Force field
Ensembles
Beyond classical MD

Coarse-grain simulations

Figure : Reduction of the degrees of freedom [Annu. Rev. Biophys., 42, 73 (2013)].
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Alchemical simulations

Figure : Thermodynamic cycle for binding of two protein ligands L1 and L2, [JCC,

30, 1692 (2009)].

∆∆Gbind
Li→Lj

= ∆Gbind
Lj
−∆Gbind

Li
= ∆Gprot

RLi→RLj
−∆G solv

Li→Lj
(28)

The Hamiltonian is modified according to,

H = Tx + (1− λ)V0 + λV1 (29)
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Alchemical simulations

Figure : Thermodynamic cycle for binding of two protein ligands L1 and L2, [JCC,

30, 1692 (2009)].

The free energy difference going from λ = 0 to λ = 1 is,

∆Gλ=0→λ=1 =
1∑

λ=0

− 1

β
ln
〈
exp

(
−β(H(λ+δλ) − H(λ))

)〉
(30)
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Abisko and Intro to Kebnekeise

Birgitte Brydsoe
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GROMACS on GPU/Phi

Figure : GROMACS performance.P. Ojeda-May Computational Chemistry - MD Simulations
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GROMACS

Setting up the system

minimization

solvation

neutralization

equilibration

production

analysis
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GROMACS files

*.gro, *.pdb (coordinates)

*.top (topology)

*.tpr (binary input file)

*.mdp (parameter file for simulation)
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