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Chapter 1

Basic Concepts

This chapter gives an overview of the basic concepts in vector and parallel numerical
algorithms. The goal of this chapter is to introduce the main ideas of vector and parallel
algorithms with little attention given to the underlying architecture. We have abstracted
the architecture from the algorithm when introducing these basic concepts to underscore
the fact that these are general notions valid for all implementations.

1.1 What is a High Performance Computer?

In this book we will use the term High Performance Computer to denote any advanced
architecture computer with the following features:

e parallelism on different levels

e two or more levels of memory with different access times, a so called memory hier-
archy

Within this class we have different kinds of parallel computers, and several advanced
workstations. Although these architectural features have been introduces to make the
computers execute fast, it is not computational speed as such that defines the notion of
high performance computer. In fact, a fast parallel computer may execute more than 100
times faster than a workstation (see Tables 1.1 and 1.2), and still they should both be
called high performance computers.

We will refer to non-high-performance-computers as conventional or sequential
computers, although such computers may have some parallel features (especially on
a low level of the hardware), but to a lesser extent than high performance computers.

To illustrate the aspect of speed, we cite the following performance figures from a
commonly used computer benchmark, the LINPACK benchmark[7]. In that test the per-
formance of computers is measured from the execution times for solving two linear systems
of equations: the first is of dimension 100 and is solved using a subroutine from the LIN-
PACK library[8]. The second is of dimension 1000 and any code can be used. A third
benchmark is to attain the highest possible speed on the computer by solving a large
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enough linear system. In Tables 1.1 and 1.2 we give timings in Mflops (million floating
point operations per second) for some parallel computers and workstations.

Computer n =100 n =1000 Peak performance
Cray T932 (32 proc.) 29360 57600

NEC SX-4/32 (32 proc.) 31060 64000

NEC SX-4/1 (1 proc.) 578 1944 2000

IBM RS/6K 44P-270 426 1109 1500

SUN UltraSPARC 1II (1 proc.) 154 461 672

Table 1.1: LINPACK Benchmark for various computers, January 18, 2001.

1.2 Why High Performance Computing?

High performance computers are designed to be very fast and are intended for problems
that would otherwise be intractable. There has been increasing demand from scientific
computing applications, where problems are becoming more and more complex and the
prospect of increasing computational power is in turn spurring the demand for faster
machines to solve these harder problems. We will give two examples of applications,
where the use of supercomputers is essential. In the description of the examples we will
use the terms Mflops and Gflops , which are measures for the speed of fast computers.
1 Mflops and 1 Gflops are the same as 10° and 10° floating point operations per second,
respectively.

The first example is the simulation of car crashes, where a car hits a wall. The model
of the car has approximately 20,000 elements, with 6 degrees of freedom (unknowns) for
each element, i.e., 120,000 unknowns altogether. The crash is simulated during 120ms,
and 150,000 time steps are taken. In each time step around 100 floating point operations
(flops) are needed per unknown. This means that the total computation requires 1.2 -
105-1.5-10% - 10% ~ 2 - 10" flops. On a computer with a speed of 1 Mflops, this would
take 2 - 105 seconds or 25 days approximately. This is too time consuming in a product
development stage, when it is necessary to evaluate several alternative constructions. On

Computer Number of  Ryux Npoz Rpeok
processors Gflops/s order Gflops/s
ASCI White (IBM) 7424 4938 430000 11136
Cray T3E 1080 891 259200 1296
SUN Ultra HPC10000 256 100 80000 128
SGI Origin 2000 256 98 81920 140

Table 1.2: The solution of a linear system of order IV;,,4, on some highly parallel computers
(Linpack Benchmark, January 18, 2001). R,,,; is the attained speed.
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Figure 1.1: The von Neumann model.

the other hand, with a computer that can run at 10 Gflops, the same computation takes
about 3.5 minutes, which is acceptable.

The second example is concerned with the flow around a space-shuttle. In this com-
putation there are around 106 grid points and 5 unknowns per point. 10 time steps are
taken, and for each unknown and step, 10? flops are needed. This adds up to 5-10'3 flops
altogether, and from the previous example we see that this needs a computer with a speed
of at least 1 Gflops to be feasible.

1.3 Concept of Parallel Computer

Although the concept of parallel computing was present in the pre-electronic computing era
of the 19th century, it was not until the recent years that the exploitation of this concept
has taken place. Babbage and others recognized parallel processing as a means for speeding
up the multiplication of two numbers [3] in his differential engine. The von Neumann
model of computing, which prevailed at the beginning of high speed computing, lead to
architectures that were intrinsically sequential. The von Neumann model is illustrated in
Figure 1.1.

The basic idea in this model is that data and instructions are fetched one at a time or
a few at a time, and then executed. A typical execution sequence would be as follows:

e fetch next instruction and decode it;
e calculate addresses of operands;

e fetch operands;

e execute instruction;

e return resulting operand to memory.
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The major limitation in this model is the I/O of data to and from memory. Even if we
assume that fast computation can be achieved, the bus to and from memory can cause a
bottleneck. In fact this is referred to as the von Neumann bottleneck . The early versions
of ‘supercomputers’, such as the CDC 7600, included some parallel processing, mainly
in the form of duplicating a few functional units. The first major improvements in von
Neumann model came in the early supercomputers in which memories were organized into
banks so as to allow a form of parallel access to and from memory.

The recent major turn to parallel computing is largely motivated by the limitations
inherent in the von Neumann model. Parallelizm can be achieved either within a single
processor via vectorization or by increasing the number of processors in a system. In a
parallel computer, which is a system with multiple processors, different processors share
the computations involved in the solution of a problem. To this end, the computation must
be decomposed and broken up into tasks, which can be performed simultaneously by the
different processors; and organized co-operation among the processors must be established
by means of synchronization or data exchange. The selection of an algorithm, its decom-
position into separate computational tasks and their subsequent assignment to particular
processors, as well as the physical channels and protocols by which the processors com-
municate are among the many factors leading to a multitude of parallel implementations
for any one problem.

The above decisions are made more difficult by the need (or perhaps absence) of ad-
equate performance measures. Even if a certain multiprocessor machine is already speci-
fied, one still faces the problem of having to decompose a particular algorithm into tasks
with the objective of reducing execution time to a minimum, and achieving a balanced
work-load among all processors. Before this, however, reliable criteria for evaluating and
comparing the performance of different implementations of an algorithm on a particular
machine could be crucial tools. Naturally, it is also important to be able to compare
implementations of different algorithms on one machine, as well as implementations of
different algorithms on different machines. These issues are far from being resolved. One
of the reasons is that a fair assessment of two architectures must be based on the avail-
ability of adequate hardware as well as software. Yet, due to the absence of systematic
design techniques, the development of software is and will continue to be lagging behind
hardware development.

1.4 Performance Measurements

1.4.1 Speedup and Efficiency

In ideal situations, one should expect to gain a factor of p in time when using p processors
to solve a given problem. The definition of speed-up is rather straightforward. If T} is the
time required to execute the algorithm on one processor, and 7}, the time to execute it on
p processors, then the speed-up is

Sp

53

(1.1)
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This is an intuitive notion but it contains a rather serious limitation. Often, parallel
algorithms are not the best ones on one-processor machines, since they contain additional
operations that may not be needed in a one processor machine. These could be additional
arithmetic or simply communication and synchronization operations. For fairness, we
should be comparing the best possible algorithm on a one-processor machine, say algorithm
A, versus the specific parallel algorithm, on a p-processor machine,

gA Time for a serial algorithm A
P T ’
P

(1.2)

The trouble is that in many instances one does not know what the best sequential al-
gorithm is and there might be many arguments for and against this modified definition.
An alternative is to still consider the same algorithm on a one processor machine as on a
multi-procesor machine but to take into account the overhead due to a parallel execution,
i.e., to emulate the parallel algorithm on a one processor machine. This may become
cumbersome for realistic problems.

In this book we will refer to the above speed-up defined by (1.1) as the theoretical
speed-up and to the one defined by (1.2) as the actual speed-up or relative speed-up with
respect to a given algorithm (A).

The efficiency is simply the speed-up divided by the number of processors. We can
similarly define two such notions,

S L Sy
E, = ;” and Ej = ?” : (1.3)

Note that E, < 1 whereas E;‘ is basically arbitrary. Ideally we would like to always
have E}, = 1, i.e., to have an optimal return for using more processors. Unfortunately, this
is almost never reached for realistic algorithms.

On a vector processor, the speed-up (or efficiency) can be defined analogously as

Ty

SU:TU

where T}, and T} are the times required to execute the algorithms on a processor with and
without the vectorization capability.

1.4.2 Amdahl’s Law for Parallel Computing

Before we actually run a program to answer the question of whether it pays to run it
on a parallel computer (in the sense that it utilizes the hardware efficiently), it will be
useful to have a theoretical tool to predict the speed-up and efficiency. Therefore, it is
interesting to study the performance of a code on a vector or parallel computer, where
only a certain fraction can be vectorized or parallelized. In addition to the usual overhead
due to communication and synchronization operations in parallel algorithms, one often
finds algorithms that have a portion that is intrinsically sequential.

Let us assume that the fraction of the perfectly parallelizable computation in an al-
gorithm is f, and that the rest, i.e., 1 — f, is serial. If the total execution time of this
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algorithm on one processor is 77, then the execution time for the intrinsically sequential
part is (1 — f,)T1 and the rest is f,71. On p processors, the first part cannot be parallelized
so its execution time will be the same, whereas the second part can be parallelized by a
factor of p, leading to the parallel execution time

Tp = (1 — fp)T1 + %Tl.

Therefore, the speed-up is

1
Spgif
1— fp+ L

Note that this means that for any algorithm and any number of processors,

1
Py
Formula (1.4) is referred to as Amdahl’s Law for Parallel Computing. The main con-
sequence of Amdahl’s law is that if a substantial portion, say 90%, of the computation
in an algorithm is scalar then, eventually it does not pay to throw in more processing
power, since the advantage becomes very little. The upper bound of the speed-up that
can be reached is 1/(1— f;,) and the efficiency will decrease asymptotically as 1/((1— f,)p).
Thus, if f, = 99% then we cannot achieve speed-up of the parallel implementation of the
algorithm by more than a factor 100, no matter how many processors are used.

(1.4)

1.4.3 Amdahl’s Law for Vector Computing

Many high performance computers can execute arithmetic operations in two modes: scalar
mode and vector mode. In Chapter 2 we will describe the idea of vector operations in
more detail; for the present discussion it is sufficient to point out that vector operations
are executed much faster than scalar operations.

Assume that we have a vector processor and that operations in scalar mode and in
vector mode take ts and ¢, (in some unit), respectively. Then the peak performance of
this computer is .

o
Further assume that the fraction f, of the total number of operations in the code can run
in vector mode. Then the total time to execute the code is

T'co

T = N[(l - fv)ts + f'ut'u]a
where N is the number of operations performed in the code. The average time per oper-
ation is
tf = [(1 - fv)ts + fvt'u]a
and the performance of the computer on this code is
1
ry= .
! (1_fv)ts+fvtv
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fraction of code vectorized

Figure 1.2: Amdahl’s law for Vector Computing. We have assumed t; = 10t,, and scaled
so that peak performance r is equal to 10.

This is Amdahl’s Law for Vector Computing. In Figure 1.2 we plot r; as a function of f,.
We have assumed that vector operations are 10 times faster than scalar operations. It is
seen that only for f, close to 1, does the performance get in the neighborhood of 7.

Assume that we have a code, which is vectorizable to 80%. With the values of the pa-
rameters in Figure 1.2, we then get a performance of only 36% of peak performance. Thus,
Amdahl’s law gives a rather pessimistic picture of the usefulness of a vector computer.

Amdahl’s law is a little misleading in many situations. When one is evaluating a new
computer with vector instructions, then one often wants to run bigger problems than are
possible on the presently available computer. Also, often the fraction of the code that is
vectorizable depends on the problem size.

Assume that the number of operations for a certain program depends on the problem
size n in the following way:

A(n) = an® + bn?,

where the first term represents the vectorizable part, and the second the non-vector-
izable. For example, we can assume this form for the Gaussian elimination with partial
pivoting, where the transformations of the matrix elements require O(n?) operations and
can be vectorized well. The pivot search, on the other hand, takes O(n?) operations and
is essentially sequential. Suppose for a certain value of n 80% of the code is vectorizable
(i.e., an®/(an®+bn?) = 0.8). This gives the relation, an® = 4bn?. If we consider a problem
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that is 10 times larger, then we get
A(10n) = 103an® + 10%bn?,

and the fraction vectorizable code is

3 3
10%°an _ 1000 ~ 0.976.
103an3 +10%20n2 1000 + 25

With the same parameters as in Figure 1.2 we now get 82% of peak performance.

1.4.4 Speed of a Computer

Earlier we have introduced the measures of speed Mflops and Gflops. Now we will discuss
the concept of cycle time, and its relation to the measures of speed. Time in a digital
computer should be considered to be discrete: all events take place at distinct points
in time, and the cycle time is the constant time between these points. The fastest a
sequential (i.e. non-parallel) computer can execute is one instruction per clock cycle. So, if
the cycle time is 4 ns (1 ns is 10~? second), then the maximum speed is 1/(4-107°) = 2.5-108
instructions per second, i.e., 250 Mips (1 Mips is 1 million instructions per second).

Similarly, if the floating point arithmetic units of a computer can deliver one result per
clock cycle, then the maximum theoretical speed for floating point operations is 1 over the
cycle time. Thus, a computer with a cycle time of 4 ns can have a maximum theoretical
speed of 250 Mflops under the above assumption. Later we will see that it is possible to
double that figure (or increase it by a larger factor) by introducing more parallelism.

It is interesting to note that the cycle times of high performance computers has not
been decreased very much, since the first supercomputer, the Cray-1, was introduced in
1976. The Cray-1 had a cycle time of 12.5 ns. The presently fastest computers have cycle
times of the order of a couple of nanoseconds. However, present day machines are more
than 100 times faster than the Cray-1; it is obvious then that this increase in speed is
explained by a higher degree of parallelism than in the Cray-1 (cf. also the discussion in
Section 1.2).
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Vector and Parallel Architectures

The goal of this chapter is to introduce the important architectural concepts in modern
high performance computers. The emphasis is on the essential architectural concepts for
designing efficient numerical algorithms on vector and parallel computers rather than on
hardware-related details.

2.1 Overview of Vector and Parallel Architectures

We first present the three basic types of architectures of high performance computers
that will be discussed in this book. Since the emphasis of the text is on the use of high
performance computers rather than the construction of them, we will not go into details
concerning hardware. Here we will emphasize the high end computers, because for such
systems the differences between architectures are more easily visible. Smaller systems with
similar characteristics also exist.

Since in modern high performance computers data movements between memory and
arithmetic units is the most important factor for the efficiency of execution of a certain
algorithm, our main classification scheme will distinguish between different architectures
based on how these data transfers are organized.

First, there are now classical pipelined vector computers, with a moderate number of
processors. These processors have vector instructions: only one machine instruction need
be issued for the operations performed on one or two vectors of data. Often the data, on
which vector instructions are performed are stored temporarily in vector registers. The
primary memory is shared between the processors.

Second, there are multi-processor systems with comparatively simpler processors, con-
nected in network, with distributed memory . The number of processors may range from,
say, 20 to over thousands. Communication can take place in two different ways: In the
message passing model, each processor can only access directly its own local memory, and
when data are needed from another processor’s memory, that processor must send a mes-
sage with these data over the network. In the data parallel programming model there is
one global address space that can be accessed by all processors. When a processor refer-
ences an address outside its own memory, the run time system generates automatically the
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communication need to transfer the data. The access time for non-local data is typically
considerably longer than for local data.

The third class of multi-computer architectures is similar to the second in that the
processors may be many and relatively simple, but here we have shared memory. The
processors have one global address space, and they are are connected to the physical
memory via some kind of switch. In principle, access times are the same for all processors
and for the whole memory.

Technically speaking, classical supercomputers with vector instructions also belong to
the latter category. Here we choose to treat them separately, since in most cases their
individual processors are much more powerful than is common in the third class.

2.2 Flynn’s Taxonomy

There exist quite a few classifications of computer architectures. In Flynn’s taxonomy, the
architectures are classified by the way processors execute their instructions on the data
into the following four categories [14, 15]:

1. SISD: Single Instruction stream Single Data stream
This model is nothing but the standard von Neuman organization described in Chap-
ter 1. Instructions are fetched by the CPU one at a time, typically along with two
data operands. After execution the resulting operand is stored to memory.

2. SIMD: Single Instruction stream Multiple Data stream

An SIMD architecture has a single control processor that dispatches a single stream
of instructions. The same instruction is executed simultaneously on many different
streams of data. It does not distinguish between the different ways in the ‘simul-
taneity’ is achieved. Thus, this classification includes the pipelined vector as well as
the array processors such as the Connection Machine and MasPar. An illustration
of this model is in Figure 2.1 The SIMD computer offer free synchronization after
each instruction execution and it is better for parallel programs that require frequent
synchronization.

3. MIMD: Multiple Instruction stream Multiple Data stream

The MIMD machines simultaneously execute different instructions on different data
streams. The majority of multiprocessor configurations are included in this class [24].
In a MIMD computer, each processor has its own control unit and it is possible to use
general purpose microprocessors in MIMD computers as processing units. MIMD
computers offer a much higher degree of flexibility than SIMD computers since in
MIMD computers, the processors can execute different codes, or if the same codes
are executed, different branches can be chosen. Many unstructured applications are
better suited to MIMD computer.

We now give a brief description of each of these architectures.
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Data Streams to Memory

CcU Processing Units

Data Streams from Memory

Figure 2.1: SIMD organization.

2.3 Pipelined Vector Computers

To take advantage of inherent parallelism in algorithms, the following forms of parallelism,
among others, have been implemented in computer architectures.

1. Multiple functional units. This corresponds to duplicating the main functional units
in the CPU, e.g., multiple adders and multipliers, and multiple I/O processors.

2. Pipelining and vector processing. When a large number of operations of the same
type, e.g., additions, must be performed on a stream of data (a vector), there is no
reason why one must until one operation is completed to perform the next one. The
idea of pipelining is similar to that of an assembly line.

3. Multiple Vector pipelines.

These forms are often combined in a modern high performance computer. For example,
multiple scalar units may be found along with several vector pipelines.

The term vector computer usually refers to a computer which includes vector operations
in the instruction set. These operations are typically implemented with several ‘vector’
pipelines. In most cases the vector pipelines take their operands from vector registers,
but there are architectures in which the operands are fetched directly from memory and
returned to memory. Examples of vector computers include the family of Cray computers,
CDC Cyber 205, IBM 3090, and NEC SX computers.

2.3.1 Pipelining

In this section we will discuss the concept of pipelining, and how it is used in vector
instructions. We first illustrate scalar computations by taking the simplest possible
example, the addition of two real numbers,
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sl=s2+s3

The machine operations needed to execute this statement are (we use an informal assembler
type notation. The number of cycles given should be considered only as an example).

Number of cycles

load s2 --> R1
load s3 --> R2
add R1 + R2 --> R3
store R3 --> sl

% R1, R2, R3 are a registers

= O = =

In scalar mode, the execution of the following program

do i=1,1000
s1(i)=s2(i)+s3(i)
enddo

takes 9000 cycles plus the overhead for the loop.

To introduce the concept of pipelining, consider an assembly line for making cars, and
assume, for simplicity, that the line has only three stages, each of which takes equally long
(one time unit).

The normal operation of such an assembly line is to input enough material for one car into
the procedure every time unit, so that the workers are active all the time and produce one
car every time unit.

When performing arithmetic operations, it is often the case that several stages must
be performed before completion. The functional unit for the hardware that performs a
specific arithmetic or logical operation in the computer. If the same operation must be
applied to a stream of data there is no reason why one should wait for all the stages to
be completed on one pair of operands before starting the next one. For example, assume
that the floating point addition such as

1.234 - 10° + 4.567 - 1072 = (1.234 + 0.04567) - 10° = 1.27967 - 10° = 1.280 - 10°
consists of the following three suboperations
e Adjust exponents and fractions
e Add fractions

e Normalize fraction
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64 +

0 t1 to 1463 t

Figure 2.2: Timing diagram for a pipelined operation with n = 64. The pipe length is
assumed to be [. The k’th operand pair enters the pipeline at clock cycle ¢; and leaves it
at time ¢o.

Then the operations can be divided into stages:

T —p | adjust exponents R add the R normalize >z= g+
Yy —> and shift fractions - Y

Assume that each stage takes one clock period. When the sum of two vectors z :=z + y
(i.e., z; ==z +y;, 1 =1,2,...,n) is computed in a computer with pipelined floating point
arithmetic, then the addition unit is operated like a car assembly line, pipelining. Then
with a pair of input operands every clock period (after an initial startup time), an output
is produced every clock period.

At a certain point in the computation, the operands have progressed through the
pipeline as illustrated below.

T3 T7 Te L5
—D| —D —>z
Ys —> Y7 Y6 Ys 4

After 3 cycles the first result emerges from the pipeline, and then one result is produced
every clock cycle. A timing diagram for a pipelined operation is given in Figure 2.2

A vector is an ordered list of scalars. When a vector is used in a loop, this is often done
with a constant distance, stride, between the elements referenced. In the code below, the
vector is referenced with stride 1 on the first loop, and stride 3 in the second.

do i=1,1000
a(i)=....

enddo

do i=1,1000,3
b(i)=....

enddo

The computation in vector mode of the sum of the two vectors takes [ +n — 1
clock periods, where [ is the length (in cycles) of the pipeline and n is the vector length.
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Primary Vector Functional
memory registers unit

Figure 2.3: Vector registers are intermediate, fast storage units between primary memory
and functional units.

The corresponding computation in scalar mode (without pipelining) would take In clock

periods. Thus, the speed-up is
nl

“ltn_1"

For large values of n the speed-up becomes close to the length of the pipeline .

Sn

2.3.2 Vector Register and Instructions

Pipelined functional units can produce one result every clock period, but they also need
operands at the same rate. It is very expensive to construct memories that can deliver
operands at this rate, and therefore most modern computers with pipelined arithmetic
have vector registers, which can be considered as intermediate storage between the
functional units and the primary memory.

In the Cray C90 processor, there are 8 vector registers, each with 64 elements. For
our examples with vector registers we will assume that they have 64 elements. The vector
registers are used in vector instructions. As an example, consider the following vector
addition:

a(1:64)=b(1:64)+c(1:64)

We here use the array section syntax of Fortran 90, see Section 3.1.2. On computers with
vector instructions the pseudo assembly code for would be

vlcad b --> V1 % Vector load to the vector register V1
vload ¢ --> V2 % Vector load to the vector register V2
vadd V1 + V2 --> V3 Y, Vector addition

vstore V3 ——> a % Vector store from V3 to memory

Thus, there are only four machine instructions. A more detailed assembly version of the
same code can be
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vlocad b(1), 64, 1 --> V1 % Vector load to V1
vlcad c(1), 64, 1 ——> V2 % Vector load to V2
vadd V1 + V2 --> V3 % Vector addition
vstore a(l), 64, 1 <—— V3 % Vector store from V3

where b(1) is the start address in memory of the vector b, 64 is the vector length (we
assume that the vector registers have 64 elements), and 1 denotes the stride. Typically,
a vector instruction reserves the output vector register for as long as the operation takes,
and the input vector registers until the last element has been delivered to the vector
functional unit. We say that a computation vectorizes if it can be performed with vector
instructions. A compiler that can take a program written in a high level language and
produce code with vector instructions is called a vectorizing compiler .

A vector operation cannot be stopped once it has started but as many operations
will be performed as the vector length indicates. Therefore, loops with conditional state-
ments cannot be vectorized (we will see later that there are methods that circumvent this
problem).

A more serious difficulty is recursion :

do i=1,n
x(1)=y(i)+x(i-1)
enddo

The same vector register can not be used both for input and output to the floating point
functional unit, and therefore recursion can not be vectorized.

If the vector length in a vector operation is larger than the length of the vector registers,
then the loop must be divided up in subloops. For example, in

x(1:n)=y(1:n)*z(1l:n)

where n > 64, the compiler generates machine code, where the vector instructions have
vector length equal to the length of the vector registers, i.e., 64 in our examples. Thus,
the above code is replaced by the following:

rem=mod (n,64) % Remainder when n is divided by 64.
x(l:rem)=y(1:rem)+z(1l:rem)
do j=rem+1,n,64
x(j:j+63)=y(j:j+63)+z(j:j+63)
enddo

This technique is called strip-mining .

2.3.3 Chaining

Chaining is used in vector computers to further reduce the delay between consecutive
pipelines. The idea is to take the result of one pipeline and direct it into a second pipeline
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without waiting for all operations with the first pipeline to complete. In effect, this is
nothing but the pipelining of two and possibly more pipelines which result in a single
pipeline. By chaining the multiplication and addition units,

s _p | multipli-
zi _p | cation —> | addi-

tion —> Yy +s5*x;

Yi >

the computation of the so-called Saxpy operation,
y(1:64)=y(1:64)+s*x(1:64)

where s is a scalar, can be performed so that one result is produced every clock period.
The result of the multiplication pipeline can be fed to the the addition pipeline as input,
along with the input vector y(1 : n). Similarly, the multiplication and addition operations
in the assignment

y(1:64)=y(1:64)+z(1:64)*x(1:64)

can be chained. On the vector instruction level we have (assuming that appropriate vector
loads have been performed)

vmul V1*V2 --> V3
vadd V3+V4 --> V5

Chaining means that immediately after the vector multiplication has started, the addition
is issued. However, it can not start until the first result has appeared from the multiplica-
tion pipeline. At the same time as the first result reaches V3 it also goes into the addition
pipeline, and the addition can start. During this chained operation the multiplication and
addition functional units work in parallel in a carefully synchronized manner.

In Figure 2.4 we give a timing diagram for two chained vector operations. For simplicity
we assume that both operations have equal start up and unit times.

2.3.4 Performance Modeling of Vector Computers

A number of definitions concerning the performance of vector machines have been given
by Hockney [25]. Let [ denote the startup and unit time for a certain vector operation,
i.e. the time to set up the vector instruction plus the time for the first pair of operands
to pass through the pipeline. Then, the time to perform that operation on vectors with
length n is

t=(+mn-— 1),

where t. is the cycle time. The rate of producing n results is

"~
(l4+n—1)t.

Ty =
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Figure 2.4: Timing diagram for two chained vector operations.

The maximum (or asymptotic) rate is obtained by letting n tend to infinity :

1

Another interesting parameter is the half performance length n,/, which is the vector
length required to achieve half the maximum performance. This can be determined from

the equation
n Too 1

(+n—1t. 2 2t
which gives
n1/2 =[-1.

It is important to have a short start up and unit time /, since this determines the perfor-
mance for relatively short vectors.

On a computer where two vector operations can be chained, after 2[ cycles the result
of two floating point operations is output every cycle. Therefore, on a computer where
floating point addition and multiplication can be chained, the peak performance is

2

oo — —
t’

where %. is the cycle time.

Example The CRAY X-MP had clock period t. = 8.5 ns. This gives an asymptotic
rate for, e.g., vector (componentwise) multiplication of 7o, = 1/8.5-10"% ~ 117 Mflops (1
Mflop = 10° floating point operations).

The startup time [ for multiplication is [ = 9 clock periods. Therefore, the half
performance length is n;/, = 9. This indicates that the CRAY X-MP is very fast for short
vectors also.

For the chained SAXPY operation y := y + « * x, the asymptotic rate is ro, ~ 234
Mflops, since here the result of two arithmetic operations is output every clock period.
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Figure 2.5: The vector jj with addresses to elements in a.

It should be emphasized that the values of these parameters are only theoretical. In
practice, one has to take into account the time for memory accesses. The measured values
are roo = 70, n1/, = 53 for vector multiplication, and ro = 148, n;/5 = 60 for the SAXPY
operation (from [24]).

2.3.5 Indirect Addressing

In sparse matrices, the majority of the elements are equal to zero. It is common in
applications that such matrices of the order larger than 10° arise with the number of
nonzero elements less than 5%. For such sparse matrices the usual matrix storage scheme
should not be used, since the whole primary memory and much secondary memory would
be wasted for storing zeros. Instead, only the nonzero elements can be stored, together
with information about their location in the matrix.

In such applications the following type of code appears quite often:

do i=1,64
a(jja))=b(jji))+s*c(jj(i))
enddo

jj is a vector of indices to elements in the vectors a, b, and c:
This is called indirect addressing. Many computers have vector instructions for
indirect addressing operations:

vload jj -=> VO % Load the index vector

vload c(VO) --> V1 % GATHER: load those elements of C, whose
% indices are in VO

vload b(V0) --> V2

vmult s*V1 --> V3

vadd V3+V2 --> V4

vstore V4 --> a(V0) % SCATTER

2.3.6 Conditional Statements

Since vector instructions cannot be interrupted, special arrangements need to be made in
order to vectorize conditional statements. The vector mask (VM) register is a register
with a number of positions that is the same as the length of the vector registers, each one
bit wide. For example, the statement (the where statement in Fortran 90 is discussed in
Section 3.1.4)
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where (a(l:n) > 0) x(1:n)=y(l:n)*a(l:n)
can be vectorized using the VM registers as

vload a --> VO

set VM to 1 where VO>0 ¥ Otherwise O

vlcad y -—> V1

vmul  VOxV1 --> V2 % Execute the multiplication for
% for all elements

vload x --> V3

Generate V4 from V2 where VM=1 and from V3 where VM=0

vstore V4 --> x

where all instructions are vector operations. Note that, if only a few of the conditions
are true, then many arithmetic operations are wasted with this construction and it may
be much faster to execute the loop using scalar instructions. However the compiler can-
not make a decision in advance. On some computers arbitrary vector operations can be
controlled by the VM register.

If the computer implements the IEEE floating point standard, then the VM register
can also be used for vectorizing the codes such as

where (a(l:n) > 0) x(1:n)=y(1l:n)/a(l:n)

When implemented as in the above example, there may be divisions by zero, which will
give infinity as a result. These can simply be masked away as above. If, however, the
computer does not conform to the IEEE standard, then division by zero may interrupt
the execution of the program. Therefore, on such computers, this example should be
performed by scalar code.

2.3.7 Interleaved Memory

Typically, the memory cycle time, which is the time it takes for one word to be trans-
ferred from memory to a register, is larger than one cycle. For example, on the Cray X-MP
the memory cycle time is four cycles. With such a memory speed, the vector load and
store operations cannot deliver operands to and from vector registers at transfer speed
that matches the speed of the vector floating operations.

As memory access patterns are important on high performance computers, we specify
here how matrices are stored in primary memory. In Fortran, which is one of the most
commonly used languages in scientific computations, matrices are stored in column major
order. For example, a 3 x 3 matrix A is stored in the order

ail — a1 — a3l — a12 — A2 — a32 — Q13 — A23 — 433

There are programming languages such as C and Pascal where matrices are stored in row
major order. In the following, we assume the Fortran storage convention.
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Figure 2.6: Storage of a vector with 128 elements in interleaved memory with 64 banks.

In the interleaved memory, organization, the memory is divided into separate units
called banks in order to increase the performance of the memory. The banks can operate
in parallel and each bank operate independently of each other. As an example, on the
Cray C90 with primary memory of size 256 Mwords, the memory is interleaved with 256
banks. The consecutive elements of a vector are stored in consecutive banks, as shown in
Figure 2.6.

Since the different banks can operate independently, it is possible to load consecutive
elements of a vector from memory to vector registers (or the other way around), so that
one word is delivered each clock cycle. On the other hand, if one loads non-consecutive
elements of a vector, it may happen that when a word is requested from a memory bank,
the bank has not finished processing the previous request. This is called a memory bank
conflict. There is special hardware to resolve bank conflicts so that the second request
must wait until the first is finished. Memory bank conflicts may occur whenever non-unit
stride references to a vector are made. When matrices are stored in column major order,
referencing a matrix row-wise results in referencing a vector with non-unit stride.

With interleaved memory vload (vector load) and vstore (vector store) operations
can be chained. For example, the execution timing diagram of the assembly code

vlocad b(1l), 64, 1 --> V1 % Vector load to V1
vlcad c(1), 64, 1 --> V2 % Vector load to V2
vadd Vi + V2 --> V3 % Vector addition

vstore a(l), 64, 1 <-- V3

can be as shown in Figure 2.7.

If memory bank conflicts occur during the execution of a vector load or store opera-
tion, then the floating point operations are delayed. In order to perform the above code
as a chained vector operations there must be two read channels and one write channel
between the primary memory and the vector registers, provided that the memory can
deliver operands at high enough speed.

A similar type of conflict occurs if two different processors access the same bank in
a computer with multiple processors, and the conflict is resolved by special hardware.
Note that interleaved memory with many banks is particularly useful in computers where
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Figure 2.7: Timing diagram for four chained vector operations.
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several processors share the same memory, since this reduces the risk of this type of
memory conflict. Figure 2.8 shows the basic structure of a vector register architecture.

2.4 Memory Organization

Along with the progress on the control processing units, some advances in memory organi-
zation took place. The memory organizations on multiprocessor systems can be classified
into shared memory and distributed memory. One of the pioneers in the early history of
the digital computer stated

In my opinion this problem of making a large memory available at reasonably short
notice is much more important than that of doing operations such as multiplication at

high speed. (Alan Turing, 1947)
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Cache Memory

Primary Memory

Bigger, slower Secondary memory

Figure 2.9: Memory hierarchy

This statement is equally true today: to balance the speed of the floating point functional
units and the parallel features (multiple pipelines, multiple processors), large memories
are needed, typically of the order 0.1 to 1 Gwords which is 10? words (64 bit). Since the
fast memory is expensive, compromises have to be made between size and speed.

2.4.1 Memory Hierarchy

One of the most important concepts in high performance computers is memory hierar-
chy. Due to the cost of manufacturing very fast memory hardware, computer designers
often compromise between memory speed and memory size. Many modern high perfor-
mance computers, therefore, have a memory hierarchy as shown in Figure 2.9. Some
computers have vector registers and no cache memory , while others have cache and no
vector registers. There are computers that have both.

A cache is a fast memory between the processor and the primary memory, see Figure
2.10. The references are often made to the same memory location several times and also
when a certain memory location has been accessed, then it is very likely that nearby
locations will be accessed soon. Therefore, by storing a portion of the primary memory
in the cache memory, which can deliver operands to and from the processor much faster
than the primary memory, the overall speed can be improved.

The minimum unit of information that is handled by this two-level memory hierarchy
is a block. A certain number of blocks from the primary memory are stored in the cache.
A special memory, called the tag memory, where all locations can be read in parallel, is
used to store the block addresses which are the leading bits of all the memory locations
of the block.

Once a block of data is brought the to cache it remains there until it becomes necessary
to bring in another block, which must overwrite it.

When a memory access is found in the cache, it is called a cache hit. If a memory
access results in a miss , then the block containing that memory location is copied to the
cache before the item referenced can be transported to or from the processor.

For more detailed descriptions of cache memories, see [22, 26].

It is desirable to perform as many floating point operations as possible for every floating
point variable that is transferred from primary memory to the registers or cache memory.

2.4.2 Shared versus Distributed Memory

e Shared memory models : processors have very little local or ‘private’ memory; they
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I Primary memory

Figure 2.10: Two-level memory hierarchy. The shaded area represents a block from pri-
mary memory that has been copied to the cache memory.

exchange data and co-operate by accessing a global shared memory.

o Distributed, local memory models : there is no global memory that is shared by all
processors. Instead each processor will have a sizable local memory and generally no
access to other processor’s local memory. Physical interconnections between certain
processors allow for exchange of data and control information. Any synchronization
results from a possible need for exchanging data with other processors. The process-
ing elements have their own control units, but these units will communicate with
other control units.

e Distributed, shared memory models : memory is physically distributed among the
processors, but there is a global address space. When a processor makes a reference
to a memory position that is physically within another processor, then the hardware
automatically does the communication needed.

2.5 Shared Memory Multiprocessors

Multiprocessor architectures with shared memory are tightly coupled systems in which
the processors are connected to a large global memory. All the processors have the same
view of the address space. In addition, the usual assumption for shared memory models
is that access to data does not depend on its location in memory. In a shared memory
environment programming is greatly facilitated due to transparent data access; from the
user’s point of view data are stored in a large global memory readily accessible to any
processor.

The primary memory may be centralized to have only one memory module or par-
titioned into several modules. The interconnection network is a potential bottleneck for
these systems. Also, memory conflicts can lead to degraded performance because of the
need of many processors to simultaneously access the same memory locations. The inter-
action between processors and processes are controlled by a common operating system.
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The major limitation of the shared-memory system is the possibility of primary mem-
ory access conflicts and this tends to put an upper bound on the number of processors
that can be effectively incorporated in the system. In addition, shared memory computers
cannot easily take advantage of proximity of data in problems with local (data) depen-
dences. There are two possible implementations of shared memory machines. The first
uses a high speed bus to connect memories to processors and the second uses a switch.

2.5.1 Bus-based Shared Memory Multiprocess

Shared memory computers are more often implemented with buses than with switching
networks. Busses are the backbone for communication between the different units of most
computers. Physically, a bus is a collection of wires, made of either fiber or copper. These
wires will simultaneously carry information consisting of data, control signals, and error
correction bits. The speed of a bus, often measured in Megabytes per second and called the
bandwidth of the bus, is determined by the number of lines in the bus and the clock rate.
Often the limiting factor in machines based on bus architectures is the bus bandwidth
rather than the CPU speed.

If the bandwidth of each of the uniprocessor buses is Bp and that of the global bus
is Bg then, generally the limit due to communication bandwidth is set by the minimum
between Bp and Bg/p.

The primary reason why bus-based multiprocessors are more common than switch-
based ones is that the hardware involved in such implementations is much simpler. On
the other hand, the difficulty with bus based machines is that the number of processors
which can be connected to the memory will be small in general, unless one designs a net-
work of buses as was done in the 1970’s with Burroughs computers. The bus is typically
timeshared, in that slices of time are allocated to the different clients such as processors
and I/O processors that request its use. In a multiprocessor environment, the bus can
easily be saturated due to large communication demand. Several remedies are possible.
The first is to reduce traffic by adding local memories or caches attached to each proces-
sor. This remedy in turn causes some difficulties due to the coherence of data. If local
memory contains some data that has just been brought from memory, and another pro-
cessor modifies that data after it has been read by the processor, then we end up with two
copies of the same data that have different values. A mechanism should be put in place to
ensure that the most recent update of the data is being used. It may well be the case that
the additional overhead incurred by the maintenance of memory coherence will offset the
gain due to savings in memory traffic. The second remedy is to organize the architecture
around an array of buses as opposed to a single shared bus.

Typically, the bus is capable of sending data packets from one processor to all other
processors in the same amount of time as it would send them to just one processor. Each
processor may have its own local memory which is large enough to hold the data and code
of typical application programs run on the machine.
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Figure 2.11: A bus-based shared memory computer.
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Figure 2.12: Switch-based Shared Memory Computer

2.5.2 Switch-based Shared Memory Multiprocessors

The diagram of a shared memory multiprocessor based on a switching network is shown
in Figure 2.12. Variations on this scheme are numerous, but the essential features here are
the switching network and the shared memory. Examples include IBM RP3 which uses
an Omega network and the BBN butterfly computer. The switching network can be a
cross-bar switch when the number of processors is small. When there is a large number of
processors, the switch is usually a packet switching multistage network. Packets of data
are driven across a small number of stages consisting of an array of elementary switches,
e.g., 2 X 2 or 4 x 4 switches. The routing of the packet is determined by an address tag
that is part of the packet.

Figure 2.13 shows Pease’s indirect n-cube network which is topologically equivalent to
the binary n-cube. Each of the three stages D, D2, and D3 corresponds to the position of
the bit that determines the direction of the packet. These bits are considered from right
(least significant) to left (most significant). A zero bit in the i-th position dictates that
the packet take the up direction in the switch, upon reaching a switch in the ¢-th stage.

For example, a packet that must travel from node 110 to node 010 must first go up at
the ’0” exit of the bottom switch in D; to enter the third switch (from top) in Dy. Then it



26 Chapter 2

D1 D 2 D3
_0 . .
000 ; 000
001 L L L 100
010 **:(): :::** ] 010
1
011
L L L 110
0 - -
100 ) 001
101 L L L 101
—0 PR PR
110 : 011
111 L L L 111

Figure 2.13: The Pease multistage network for 8 processors

is directed to the down position of this switch (’1’ exit) towards the third switch in D3. It
then exits at the up position (0’ exit) of this switch to finally reach the destination 010.
Omega networks and Pease networks are identical in concept. Other types of network
exist but many of them are topologically equivalent.

A network of this type is able to simulate any interconnection topology, i.e., any
permutation of the p inputs to p outputs can be realized, possibly by a small number
of passes across the switch. There are also multistage networks that can realize any
permutation in one pass but they are more complicated to set-up. The switching network
becomes exceedingly complex as the number of processors and memories increases : the
connection of N processors to N memories in general requires a total of O(N log, N)
identical 2 x 2 switches.

2.5.3 Circuit Switching and Packet Switching

There has been two ways of exploiting multistage switching networks described in previous
section. The first is circuit switching. In circuit switching the elementary switches are
set-up by sending electronic signals across all of the switches. The circuit is set-up once
in a similar way in which the telephone circuits are switched. Once the switch has been
set-up, the communication between processors P, ..., P, is open to the memories

My My, ..., M,

where 7 represents the desired permutation. This communication will remain functional
as long as it is needed. When a new permutation is desired, the switch will be reset.
Setting up the switch can be costly but once it is set then communication can be quite
fast. This approach is taken in the GF11 computer built by IBM.
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In packet switching networks, a packet of data will be given an address token and
the switching within the stages will be done based on the value of the token. This was
illustrated in the previous examples.

2.5.4 Communication in Shared Memory Computers

In a shared memory model the p processors are linked to a global shared memory which
they can ideally access with equal speed. Often each processor is provided with its local
memory but this is used only as temporary storage and is not assumed to be large enough
to hold the data of the problem to be solved, which is stored in the global memory. If the
communication bandwidth of each processor is b);, the time that it will take to move a
packet of m words between any processor and the memory is of the form

tm = ™M +6Mm7

whether the architecture is based on a bus or a switch. However, the above model is
simplistic since it assumes that there are no bus contentions, memory conflicts, or hot-
spots, i.e., contention at the level of the switches in packet-switched networks. Often
the memory is divided into memory banks to allow efficient access of the memory by
several processors. For a switch based machine, we can assume that as long as there is no
contention to the same memory bank, several processors can read and write simultaneously.
On bus-based architectures, it is usually the case that the bandwidth of the global memory
does not exceed a multiple k* of bys, where k* < k. This means that at most k* different
processors can access the memory with equal speed by;. This is the best possible scenario
where there is no memory bank conflict. Memory bank contention can ruin performance
and one of the goals for a software developer is to arrange the data initially so as to
minimize memory conflicts [36, 17].

2.6 Distributed Memory Multiprocessors

By distributed memory architectures we will refer to the distributed memory message
passing architectures as well as to distributed memory SIMD computers. Distributed
memory parallel computers are efficient for problems that can be partitioned into larger
tasks that do not interact very frequently. A typical distributed memory system consists
of a large number of identical processors which have their own memories and are inter-
connected in a certain topology. The processors are linked to a number of ‘neighboring’
processors which in turn are linked to other neighboring processors. Each message usually
consists of a number of fixed-size packets, and the inter-processor communication follows
a predetermined communication protocol, cf. Section 3.2. In ‘Message Passing” models
computations are data driven, i.e., a computation in a particular processor is performed
only when the necessary operands become available and there is no global synchronization.
Data communication is carried out through message passing.
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2.6.1 Communication in Distributed Memory Computers

The following data exchange operations are common in many numerical algorithms.

1. Moving data from one processor to another. This represents the simple one-to-one
data transfer operation.

2. Moving the same data packet from one processor to all others. We will refer to this
as a broadcast operation.

3. Scattering data from one processor to all others and gathering data in one processor
from all others. In the scatter operation, a node sends packets to every other pro-
cessor. These packets, although different, are ideally of the same size. The gather
operation is the dual operation: the node receives a packet of (ideally) equal size
from each of the other nodes.

The difference between the broadcast (2) and the scatter (3) is that in the scatter
operations a different data set is sent to each processor. The gather and scatter operations
are very similar in nature. An algorithm for scatter can be derived from an algorithm for
gathering simply reversing the data paths and vice-versa. For this reason we will only
consider scatter operations.

In many present day parallel computers with distributed memory the communication
hardware is such that the time for sending a message between two nodes is more or less
the same for any pair of nodes in the processor network, cf. [28, p. 46]. In many cases it
is the startup time for a communication that dominates [16, p. 91, Table 3.1]. Therefore
it is reasonable to make the assumption that a data packet of size m can be moved from
one node to any other node in time

t(m) =1+ pm (2.1)

The constants 7 and 3 are dependent on the system, where 7 is the communication start-
up or latency and S depends on the bandwidth of the channel between the two nodes.
Note that we assume that a processor can only send to one other processor at the same
time.

In most cases, the start-up time 7 is much larger than the time for a floating point
operation, y. Typically (1998) «y is of the order 1077108, while 7 can be as large as
1074-107°. In Table 2.1 we give the parameters for two parallel computers.

Y| T B
IBM SP 0.01 | 50 | 0.01
Cray T3E-900 | 0.01 | 16 | 0.0065

Table 2.1: Typical arithmetic and communication parameters (in us) for two parallel com-
puters. The time for an arithmetic operation is an average value over different operations
and problem sizes.
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When discussing the time required for broadcast operations, it is important to make
a difference between the physical and the logical topology of a processor network. For
instance, broadcasting a message to the processors in a physical ring, can be done by
sending it from processor 0 to 1, then from 1 to 2, etc. This takes

p (T + Bm),

where p is the number of processors. This type of broadcast is often used when a ring of
processes is organized as a pipeline for computation and communication. We will refer to
this as a pipelined broadcast. However, if a logical ring is embedded in a physical network
topology, e.g. a hypercube, such that (2.1) is satisfied, then a broadcast can be executed
in
logy p(7 + fm),

where the number of processors p is assumed to be a power of two. The following code
segment performs a broadcast in log, p steps; the processors are assumed to be numbered
from 0 to p — 1, and at the beginning processor 0 holds the item data that is to be
broadcast. In the code we use message passing terminology, see Section 3.2; in reality
broadcast operation are often given as communication primitives. The variable myid is
the number of the processor.

k=21og(p) I logarithm base 2
do i=0,k-1
if myid < 2%*i then
send(2**i + myid, data)
else if myid < 2**(i+1)
receive(data)
endif
enddo

The communications performed in the first three steps are

1 communication
0 0—1

1 0— 2
1—-3

2 0—4
1—5
2—>6
3—=7

Since this broadcast algorithm can be illustrated by a binary tree, we will refer to this as
a tree broadcast. The timings of the two types of broadcasts seem to indicate that always
a tree broadcast is to be preferred. However, in the subsequent chapters we will show that
in many cases the pipelined broadcast combined with computations gives more efficient
algorithms.
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Figure 2.15: A Processor Ring Consisting of Six Processors.

2.6.2 One-, Two- and Three-Dimensional Arrays

In a linear array, processors are connected along a line as shown in Figure 2.15. When two
processors at the left and right ends are connected, the multiprocessors make a ring. Each
processor can simultaneously write to both neighbors or simultaneously read from one
neighbor and write to the other. In a linear array of processors, the communication of two
boundary processors may be taken care of separately since they have only one neighbor
each unlike the other processors.

A square two-dimensional grid consists of an array of processors connected as shown
in Figure 2.16. In this book we will only consider two-dimensional arrays. Many of the
algorithms developed for two-dimensional array can be extended to three-dimensional ar-
rays. Two-dimensional and three-dimensional arrays are popular among partial differential
equations specialists because they offer a simple way of mapping regular finite difference
grids into the multiprocessor grid.
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Figure 2.16: A 4 x 4 two-dimensional array of processors

Often, the processors on each side of the grid are connected to those on the opposite
side forming the wrap around connections which yields more homogeneous complexity
results.
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Chapter 3

Programming Models and
Environments

This chapter gives an overview of different software-related concepts in vectorization and
parallelization. Thus we introduce programming models for each of the most important
architectures that exist today. We would like to have conceptual models of the existing
machines that can be used for designing the algorithms and for analyzing them. The
following programming models/environments will be treated:

e Fortran 90. The latest Fortran standards have been designed to express parallelism
and vectorization.

e Message passing and MPI. This is the most common programming model for dis-
tributed memory parallel computers.

e Shared memory parallelism and OpenMP. Sequential codes can be parallelized for
shared memory systems by compiler directives.

e Data parallel programming. A powerful programming model based on the fact that
in many cases the order of certain computations is irrelevant.

3.1 Fortran 90

Fortran, created in the late 1950s, is still one of the most widely used programming
languages for solving problems in science and engineering. A Fortran standard was adopted
in 1991 and it is called Fortran 90 (the previous one was Fortran 77). It has several
constructs that are aimed at making vectorization and parallelization easier. Here we
briefly describe a few features in Fortran 90, which are important for vector and parallel
computers. For a more comprehensive description of Fortran 90!, see e.g. [4], [32].

! Another Fortran standard was adopted in 1995.

33
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3.1.1 Vectors and Matrices

Many programming languages, including Fortran 77, require the programmer to specify
in to great detail the order in which computations are to be performed. Consider the
following Fortran 77 code segment

do 10 i=1,n
a(1)=b(1)+c(1)
10 continue

The semantics of the language prescribes that first a(1) is computed, then a(2), etc. Now,
since each iteration of the loop is completely independent of the others, the computation
in itself need not be performed in any particular order. However, Fortran 77 forces the
programmer to overspecify the order of computation. The same is true of many other
languages.

In Fortran 90 overspecification of computation order is avoided be defing arrays (vectors
and matrices) to be data objects in themselves, and they can be referenced as such, not
just as a collection of subscripted scalars.

Let a, b and ¢ be declared

real, dimension(1:m,1:n) ::a, b, c
Arithmetic operations for matrices can be written

a=b*c
c=a-b

Here, the multiplication is element-wise, which is different from matrix-matrix multipli-
cation. It is up to the compiler writer to decide the order of computation of the elements
of the matrices, which, for instance, can be made to depend on the architecture of the
computer. Note however, that the first statement a=b*c must be completed before the
second can start.

3.1.2 Array Sections

Array sections can be referenced using a notation analogous to that in the do-loop:
i:j:k

where i is the start index , j the final index and k is the stride. For example,
x(1:20:2)=y(1:10)

which is a Fortran 90 statement, can be written in Fortran 77 as

do i=1,10
il1=(i-1)*2+1
x(i1)=y(i)
enddo
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There is one important difference here, however: using the array section, the order in
which the operations to the elements are performed is not prescribed. The variant

i:]
means that stride 1 is assumed,
h

assumes the lower limit in the declaration, and

means that both the lower and upper limits in the declaration are assumed. Thus, if a is
declared

real a(100)
then the following references are equivalent
a(1:100:1), a(1:100), a(:100), a(1:), a(:), a

and they all refer to the whole vector.
Let the matrix x be declared

x(1:100,1:50)

Then
x(1:50,1:10)

is a reference to the upper left submatrix of dimensions 50 x 10, and
x(:,25:30:2)

is a reference to the column vectors x(1:100,25), x(1:100,27) and x(1:100,29).
If a scalar is used in a assignment statement together with arrays, it is considered as
an array of an appropriate dimension. The assignment

a(:)=3.14
gives each element of a the value 3.14. A further example is as follows:
real a(100), b(-1:98), x(100,50,25), y(100,100,10,70), p,q
a=1.0
b(:10)=p+q

x(:,n,1)=a+b
x(m:n,1:10,1:20)=y(1,m:n,1:10,41:60)
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Note that all arrays used in an assignment must have conforming dimensions.

The following rule is important in understanding the difference between array sec-
tions used in assignments and do command, and in understanding how array sections are
executed using vector instructions. In the assignment

array section=expression

the whole expression in the right hand side is computed before the assignment takes place.
Thus, the assignment

a(2:n)=a(l:n-1)+a(3:n+1)
is not equivalent to

do i=2,n
a(i)=a(i-1)+a(i+1)
enddo

but to

do i=2,n
temp(i)=a(i-1)+a(i+1)
enddo
do i=2,n
a(i)=temp(i)
enddo

in the sense that they give the same results.

3.1.3 Array functions

All the intrinsic functions can be used for arrays. Let a be declared as above. The
statement

b=sin(a)
produces a matrix b, the elements of which are
b(i,j)=sin(a(i,j))

In addition to the library functions from Fortran 77, there are functions for performing
common vector and matrix operations such as

s=dot_product (x,y) Scalar product of the two vectors x and y.
s=sum(x(1:n)) Summation of the components in x.
c=matmul (a,b) Matrix multiplication, see below.

In the following code we compute the matrix product C = AB, where all three matrices
are square, in three different ways, using the above functions.
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real, dimension(1:100,1:100) :: a,b,cl1,c2,c3
integer 10,

..... ! Variables are given values

do i=1,100
do j=1,100
cl(i,j)=sum(a(i,:)*b(:,j))
enddo
enddo

do i=1,100
do j=1,100
c2(i,j)=dot_product(a(i,:),b(:,3))
enddo
enddo

c3=matmul (a,b)

Shift functions take arrays as input and give arrays, where the elements have been
rearranged as output. We consider a vector example.

real, dimension (1:4) X, ¥, Z

x=(/1,2,3,4/)

y=eoshift(x,shift=1) ! End-off shift
z=cshift(x,shift=-1) ! Circular shift

After executing this code the result is y=(2,3,4,0) and z=(4,1,2,3), where shift = 1
and -1 and it denotes the left and right shifts, respectively. Shift functions applied to
matrices (and arrays of higher dimension) are analogous, as seen in the following example.

real, dimension (1:3,1:3) X, ¥y
integer |

x=reshape((/1,2,3,4,5,6,7,8,9/),(/3,3/))
write(*,*)’x before shift’
do i=1,3

write(*,*)x(i,1:3)

enddo

! Circular row shift to the left
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y=cshift(x,shift=(/1,2,3/),dim=2)

write(*,*)’after shift’

do i=1,3
write(*,*)y(i,1:3)

enddo

end

The reshape function takes a vector as input and creates a 3 by 3 matrix X and cshift
shifts along the second dimension, i.e. row-wise. The first row is shifted one step, the
secoond two steps, and the third three steps. The output of the code is

x before shift
1.0000000 4.0000000 7.0000000
2.0000000 .0000000  8.0000000
3.0000000 6.0000000 9.0000000
after shift
4.0000000 7.0000000 1.0000000
8.0000000 .0000000 5.0000000
3.0000000 6.0000000 9.0000000

a1

N

The function spread can be used to create a matrix from a vector by replicating the vector
elements by rows or columns. The code

real, dimension (1:4,1:3)
real, dimension (1:3,1:4)
real, dimension (1:4)
integer

H XK O P

x=(/1,2,3,4/)
b=spread(x,1,3) ! Make 3 copies of x along the first dimension,
! i.e., by columns.
write(*,*)’b’
do i=1,3
write(*,*)b(i,1:4)
enddo

a=spread(x,2,3) ! Make 3 copies of x along the second dimension,
I'i.e., by rows.
write(*,%)’a’
do i=1,4
write(*,*)a(i,1:3)
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gives

[y

B wWw N -

enddo

as result

.0000000
.0000000
.0000000

.0000000
.0000000
.0000000
.0000000

NN

B W N -

.0000000
.0000000
.0000000

.0000000
.0000000
.0000000
.0000000

w w

B wWw N -

.0000000
.0000000
.0000000

.0000000
.0000000
.0000000
.0000000

3.1.4 Vector Mask Operations

The statement

where (a(l:n) > b(1:n)) a(l:n)=x

gives the same result as

do i=1,n

if (a(i) .gt. b(i)) a(i)=x

enddo

Similarly

where (a(1:n) > b(1l:n))

a(l:n)=x
elsewhere

a(1:n)=b(1:n)

endwhere

gives the same result as

do i=1,n

if (a(i) .gt. b(i)) then

enddo

a(i)=x
else

a(i)=b(i)
endif

4.0000000
4.0000000
4.0000000
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These code sections can be implemented on vector machines using vector mask operations.
The intrinsic functions can also be used together with mask operations. For example, the
statement

s=sum(x(1:n), where x > 0)

sums the positive components of the vector x.

3.1.5 Vectorization of Fortran Codes

3.1.5.1 Storage of Matrices

In Fortran matrices are stored in column major order. E.g., a matrix A declared as
real A(1:4,1:3)

is stored

A(1,1) A(1,2) A(1,3)
A(2,1) A(2,2) A(2,3)
A(3,1) A(3,2) A(3,3)
A(4,1) A(4,2) A(4,3)

If we reference the matrix column-wise,

do j=1,3
do i=1,4
a(i,jl=...
enddo
enddo

then we have stride 1. If we reference row-wise

do i=1,4
do j=1,3
a(i,j)=...
enddo
enddo
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then we have stride 4. This storage mode has consequences for high performance com-
puters. For instance, assume that we are using an interleaved memory computer with 16
banks, and that we access a 16 x 16 matrix by rows. Then memory bank conflicts will
occur. In general, the risk for memory bank conflicts is lower, if the matrix is accessed by
columns.

Similarly, if the computer has a cache memory, then the blocks in the cache will contain
“vertical” slices of a large matrix, and row-wise access will lead to many cache misses.

We conclude that in order to execute efficiently on high performance computers, matrix
algorithms programmed in Fortran should access the matrices column-wise.

3.1.5.2 Vectorization of Loops

In general, Fortran code where the assignments can be expressed with array sections can
be executed using vector instructions. However, not all algorithms are or can be expressed
conveniently using array sections. The task of a vectorizing compiler is to analyze do
loops, and generate vector instructions where this is possible.

3.1.5.2.1 Vector Reference Earlier we saw that a memory reference for a vector, i.e.
a vector load or store, has a start address, a length (the number of words that need to be
transferred), and a constant stride. In principle we have

vload x(1), VL, stride --> Vreg

VL elements from the vector x are loaded to the vector register Vreg, starting with element
x(1). The stride is stride.
The following definitions are taken from [29].

1. An integer variable, which has a constant increment in a loop, is called a CII (Con-
stant Increment Integer).

2. A vector reference is a reference inside a loop where all indices are of the form

[finvariant expression #| CII [finvariant expression]

It is easy to see that with these definitions all vector references have a start address, a
vector length, and a constant stride.
In the example

real x(500), a(500,250), b(1000)
do k=1,n

i=3*k+n

j=mxk+6

a(i,j)=x(k)+b(j-4)
enddo
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all the references to arrays are vector references:

array start length stride

a a(n+3,m+6) n m*500+3
X x(1) n 1

b b(m+2) n m

Loops where all array references are vector references can be executed using vector in-
structions.

3.1.5.2.2 Recursion Since the semantics of Fortran prescribe sequential execution,
data dependence between two Fortran statements of the type

x=a*b
y=x*z

implies that the statements must be executed in this order. When a loop is executed, then
it assumed that the iterations are performed in the order specified in the do statement.
Therefore, a loop can be vectorized if no data are used that have been modified in a
previous iteration.

It is obvious that the iterations in the code

do i=1,n
a(1)=b(1)+1.0
enddo

are completely independent and can be vectorized (and also parallelized). Similarly, the
following loop can be vectorized

do i=1,n
a(i)=a(i+1)+1.0
enddo

since the elements on the right hand side in the assignment are unmodified during previous
iterations of the loop. However, in the loop

do i=1,n
a(i)=a(i-1)+1.0
enddo

elements that have previously been modified are on the right hand side. This is called
recursion and cannot be vectorized.

An example of a very important application, where recursion occurs, is the solution of
a bidiagonal linear system of equations

ai T dy
by a9 x2 do
b3 as I3 = d3

b, ap Tn dp
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This can be solved by the code
x(1)=d(1)/a(1)

do i=2,n
x(1)=(d(1)-b(i)*x(i-1))/a(i)

enddo

Such a recursion can only be executed in scalar mode.
In order for the compiler to generate vector instructions, it must be clear at compile
time that the code can be vectorized. Consider

do i=1,n
x(1)=c(1)*5.0
y(i)=a(i)*x(i+k)
enddo

Here it is in general impossible for the compiler to determine if k will be negative or
positive (unless k is explicitly assigned a constant value in the program, and this is the
only assignment where it occurs). Similarly, the compiler will have difficulties with the
indirect addressing in the first statement of the following code.

do i=1,n
x(i)=c()+y(iy(i))
y(i)=a(i)+1.0
enddo

It is possible that for some previous i, y(iy(i)) has been modified (e.g., if iy(2)=1).

In such cases the compiler cannot decide if recursion will take place or not. But if
the programmer knows that no recursion will occur, then he/she should give the compiler
directives to vectorize (and he/she becomes responsible for errors, not the compiler).

3.1.5.2.3 Indirect Addressing Indirect addressing means that a vector is referenced
via a vector of indices. In Fortran 77 we write

do i=1,64
x(ix(1))=y(iy(1))+z(iz(i))
enddo

where ia, ib, and ic are integer arrays holding the indices of the elements in the arrays
that we use in the assignment statement. The corresponding Fortran 90 code is

x(ix(1:64))=y(iy(1:64))+z(iz(1:64))

Loading data this way (y and z) is called gather, and storing (x) is called scatter, cf.
Section 2.3.5. Since the stride is not constant, these operations are not vector references.
In spite of this, they can be vectorized using special machine instructions (e.g. on the
Cray Y-MP).

Indirect addressing occurs in solving sparse systems of linear equations (a system is
called sparse if most of the matrix elements are zero), and in the FFT algorithm for
computing the discrete Fourier transform.
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3.1.5.2.4 Scalar Temporary Variables A scalar variable may inhibit vectorization
in a loop where all the array references are vector references. Consider, e.g., the code

do i=1,n
s=a(i)+b(i)
r(i)=s*(x(1)+y(i))
z(i)=s*s/y (i)
enddo

If at each iteration of the loop, the value of s is to be stored in a scalar register, then
vectorization is not possible. However, by creating a temporary vector, stored in a vector
register, the compiler can generate vector instructions:

Vi=a(1:n)+b(1:n)
r(1:n)=Vi*(x(1:n)+y(1:n))
z(1:n)=V1ixV1/y(1:n)
s=[last element of V1]

3.1.5.2.5 Reduction of a Vector to a Scalar A common difficulty in vectorization
is reduction operations where a vector is reduced to a scalar, e.g. summation

Fortran 77 Fortran 90

s=0.0

do i=1,n s=sum(x(1:n))
s=s+x (i)

enddo

The same type of reduction operation occurs in matrix multiplication

do j=1,n
do i=1,n
a(i,j)=sum(b(i,:)*c(:,3))
enddo
enddo

If n is very large, then the compiler can optimize this operation so that most of the
operations are vector instructions.

Example: Consider the summation ) ;" ; z(i), where n = 1000 % 64. the computation can
be vectorized

0 --> VO

do i=1,1000,2
vload x((i-1)*64+1:ix64) —-> V1
vadd VO + V1 --> V2
vload x(i*64+1:(i+1)*64) —--> V3
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vadd V2 + V3 --> VO
enddo
Add the elements of VO using a special operation

When n is less than 64, then reduction operations cannot be vectorized in the same way
as ordinary vector operations (that would presuppose that arithmetic operations could be
performed with operands in the same vector register). But since this type of operations
is so common, many vector computers have special machine instructions for performing
them, so that they execute faster than scalar operations, but not quite as fast as ordinary
vector instructions.

3.1.5.3 Vectorization Inhibitors
A loop cannot be vectorized if it has
1. recursion
2. a subroutine call
3. I/O operations
4. assigned goto statements (T)
5. certain nested if blocks
6. goto statements that lead out of the loop
7. goto into the loop (})

((1) denotes statements/constructs that no responsible programmer would use anyway.)

3.2 Message passing

Message passing is a programming model mainly used for MIMD computers with dis-
tributed memory. Such parallel computers consist of a number of nodes, connected in a
network with a certain topology, for example a two-dimensional net or a hypercube. Often
the nodes have a processor for computations and a separate processor for communication.
The nodes can be identical and tightly coupled (e.g. Cray T3E or IBM SP), or heteroge-
neous and loosely coupled (e.g. clusters of workstations connected by Ethernet). As there
is no shared memory, the processors communicate by sending and receiving messages over
the network.

In the programming model there is a group of processes, with a certain process
topology represented by a process graph, e.g. a ring or a two-dimensional net. The
processes are assumed to execute asynchronously, and communication is performed by
sending and receiving messages. In most cases, the process graph is embedded in the
parallel computer so that each process is executed by a separate processor, and so that
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( P1 P2 P3 P4 )

Figure 3.1: Ring of processes, p = 4.

neighbors in the process graph are neighbors in the graph of the parallel computer. This
is important for load balancing and minimizing the communication time.

The main reason for distinguishing between the physical processors and their network
topology, and the logical processes and their network, is to make the software portable.

In the past each manufacturer of message passing computers supplied a vendor-specific
set of communication routines. The first message passing system that was available for a
rather wide range of computers was PVM (Parallel Virtual Machine). Since a couple of
years, standardization efforts have taken place, which resulted in MPI (Message Passing
Interface)[31], a de facto standard for message passing. BLACS (Basic Linear Algebra
Communication Subprograms) [10] is a message passing interface designed for the library
ScaLAPACK.

Before any communication can take place, a process structure is set up by a call to the
communication system. For example, a twodimensional grid of processes is created by

gridinit (nprow,npcol)

where the process grid is to have dimension nprowxnpcol. Then the individual processes
can find their identities, myid in this book, and position in the grid. Messages can be sent
to other processes by addressing them by their position in the grid, or by sending on a
certain link.

In real message passing systems there are a large number of different communication
routines, with different variants, e.g., for blocking and non-blocking communication. For
our purposes is it sufficient to consider the following primitives with simplified syntax and
loosely defined semantics.

send(destination,data) Data are sent from the process to another process. The ad-
dress destination can be either a process number or a relative position in a process
graph, see below.

receive(source,data) Sometimes the source of the data is specified, sometimes we
assume that the data can be received from any other process.

broadcast(data) One process sends the same message to all the others.

If the process graph is a ring, see Figure 3.1, then each process is assumed to know which
process is its neighbor to the west and east, and if process P1 executes

send (east,data)
then x is sent to P2. For P2 to access the data sent, it executes

receive(east,data)
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To broadcast data from one process, denoted root, to all the others in a group we use
broadcast(data)

In some message passing systems it is possible to specify if the broadcast operation shall
use a pipelined approach or a tree algorithm, cf. Section 2.6.1.

A very simple example of a message passing algorithm is given below, where a sum
s =Y i =i is computed by p processes, numbered from 1 to p. The vector is distributed
by process 1 to all the others, then each process computes its partial sum, and finally the
results are sent back to process 1.

Here we used the variant of send where a messages is sent to a specific process by
specifying its number.

Usually one writes only one piece of code that is executed by all processes. Such a
codingprinciple is often referred to as SPMD: Single Program, Multiple Data.

! Process 1 sends a portion of the vector to each other process
! It is assumed that n is an integer times p

ndp=n/p

if myid = 1 then
do i=2,p

send(i,x((i-1)*ndp+1:i*ndp))

enddo

else
receive(xloc(1l:ndp))

endif

! Each process holds its portion of the vector x in
! local variable xloc, and performs the computation

sloc=sum(xloc(1l:ndp))
! The result is sent to process 1

if myid = 1 then
do i=2,p
receive(s) ! receive from any process
sloc=sloc+s
enddo
else
send(1,sloc)
endif
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3.3 Shared memory parallelism — OpenMP

It is probably easiest to describe shared memory parallelism in terms of a particular
programming system, and we are going to use OpenMP. This does not mean that the
programming model was first invented and implemented in OpenMP. In fact, this model
was used for early parallel computers Cray-XMP and Alliant in the mid-eighties, and was
called microtasking. One important aim of OpenMP is portability: it should be possible
to execute the same parallel code on any shared memory system.

The purpose of this presentation is not to give a comprehensive overview of OpenMP,
but rather to introduce shared memory parallel programming, using some concepts from
OpenMP. For a more detailed description, see www.openmp.org and [5]%.

In the OpenMP shared memory programming model one usually start out with a
sequential code, and then adds compiler directives that instruct a parallelizing compiler
to introduce parallel execution of certain code segments. The compiler directives have
several different forms, the following is typical:

!$omp parallel
code
!$omp end parallel

The execution of the code is based on a fork-join model, where a master thread starts
the execution, and then spawns a team of parallel threads®. A computational problem is

Master thread

Parallel regions

Figure 3.2: Fork-join model for parallel execution.

defined by a set of data, stored in the shared memory, and an algorithm (the code) that

2See also Christoph Kessler’s homepage www.ida.liu.se/~chrke/.
3We will mostly use the term processor as a synonym of thread.
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will lead to the solution. When more than one processor are used to solve a problem,
they mostly work on separate pieces of data stored in the shared memory. However, part
of the collaboration will involve the same data (otherwise one would have a number of
independent problems, which are trivial to parallelize*). One important aspect of shared
memory parallel programming is to ensure the integrity of data:

e The standard type of variables are shared; any processor can access them. In order
to give different processors their own data for storing partial results, variables can
be declared to be private to one processor.

e When several processor need to update one single shared variable, care must be
taken that they do not access it at the same time. This is done by synchronization
primitives, barriers.

We will take the computation of the sum s = > ;' z; as a vehicle for discussing the most
important aspects of shared memory parallel programming. The following Fortran code
performs the computation.

s=0

do i=1,n
s=s+x (i)

enddo

In order for a processor to know how much of the computation it should do, it must find
out first how many parallel threads there are, and then its own thread number. If the
following function is called in a parallel region

nthr=omp_get_num_threads ()
then it gives the present number of parallel threads. The assignment
myid=omp_get_thread_num()

again called in a parallel region, gives the thread number (the parallel threads are number
from 0 to p-1, where p is the number of threads). Assuming that n=nthr*q, for some
positive integer g, the following code is a first attempt at parallelizing the summation.

I First summation attempt, INCORRECT!
!$omp parallel
nthr=omp_get_num_threads ()
g=n/nthr ! Number of terms in each chunk
myid=omp_get_thread_num()
first=(myid-1)*qg+1
last=myidx*q
sp=0. ! Partial sum of each thread
do i=first,last

“Such problems are often referred to as embarrassingly parallel.
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sp=sp+x (i) ! Sum up my part
enddo
!$omp end parallel

Each processor performs its part of the summation, but the integrity of data has not been
taken care of. Since by default each variable is shared (except the loop variable i, which
by default is private), the same memory locations are used for each processor’s first,
last, etc. Obviously, the variables myid, first, last and sp must be declared private
for each participating processor. We must also have a shared variable s, to which the
different partial sums are to be added. However, it is absolutely necessary that only one
processor at a time is allowed to update the variable s. By enclosing the updating of
the global summation variable in a critical section, we ensure that only one processor can
access it at a time.

I Second summation attempt, CORRECT!

5=0.0

!$omp parallel private(myid,first,last,sp)
nthr=omp_get_num_threads ()
g=n/nthr ! Number of terms in each chunk
myid=omp_get_thread_num()
first=myid*q+1
last=(myid+1)*q

sp=0.0 ! Partial sum
do i=first,last
sp=sp+x (1) ! Sum up my part
enddo
!'$omp critical ! Only one processor can execute this
s=s+sp I at a time

!'$omp end critical
!$omp end parallel

Obviously, there is a synchronization point at the end of a parallel region: all processors
must have finished there part of the computation before anyone is allowed to continue
executing the statement after !$omp end parallel. Thus there is an implicit barrier at
that point.

There is a more powerful, and simpler, variant, where the iterations are distributed
automatically among the processors.

! Automatic work-sharing

s=0.0
!$omp parallel do reduction (+:s)
do i=1,n
s=s+x(1) ! Sum up my part
enddo

!$omp end parallel do
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In this reduction clause, the variable s is assumed to be shared in the enclosing context.
The iterations of the loop are distributed among the available processors, and for each
copy a private version of s is created. The private s is used for accumulating a partial
sum. At the end of the reduction the value of the global variable is updated to reflect the
result of the separate summations. The order of this final summation is undetermined.

It is important to note that codes that involve recursion, see page 42, cannot be
parallelized, for the same reason that they cannot be vectorized.

3.4 Data parallel programming

Data parallel programming languages were originally designed for SIMD computers but
are now used in much more general settings, both for sequential computers and MIMD
parallel computers. The following are typical of data parallel programming.

e Data are shared as elements of large, global arrays. Often there is one array element
per processor, at least conceptually.

e The parallelism is based on fine-grain operations, usually element-wise operations
on arrays.

e Synchronization is implicit, based on language semantics.

e Communication is partially explicit, partially implicit, based on primitive array op-
erations.

In our examples of data parallelism below we will discuss it in terms as it is (was) imple-
mented on a SIMD computer with distributed memory.

Today Fortran 90 is the most widely known example of a data parallel language,
but there existed other such languages, e.g., *Lisp (for the Connection Machine), before
Fortran 90 was defined. The simplest possible example of a data parallel computation is
matrix assignments in Fortran 90.

real, dimension(l:m,1:n) ::a, b, c

! The matrices are assigned values
a=bx*c

c=a-b

The statements must be executed in order, so if the code is executed on a parallel computer,
there is a synchronization point between each statement. Assuming that each matrix
element is stored in a separate processor in such a way that a(i,j), b(i,j), and c(i,j)
are in the memory of the same processor, we see that the computations can take place
simultaneously in all processors, and that no communication is needed.

In the following example communication is needed.

real, dimension(1l:m) ::a, b, ¢
! Variables are assigned values
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b=(1/sqrt (dot_product (b,b)))*b
! Scale b to have Euclidean
! length 1

c=a+tb

The code scales the vector b to have Euclidean length 1 and adds it to a. Again we assume
that each element in a vector is stored in a separate processor in such a way that a(i),
b(i) and c(i) are in the memory of the same processor. For the computation of the dot
product it is necessary first to multiply the b element in each processor by itself. This
can be done completely in parallel. Then the products are summed and the division is
executed. This requires communication: each processor makes its product available to
processor 0, which is assumed to have been assigned the task of summing up the products
and performing the division. Typically in an SIMD computer this is done via a register
(we call it breg), that can be read by the other processors, e.g. in summation operation
(denoted scansum(all.breg))’. Then the scalar s is broadcast to all the processors, and
each processor performs the multiplication, and, finally, the addition, in parallel with all
the others. The following pseudocode is executed by each processor.

! Local variables (scalars): a, b, and c
I Compute b*b and make it available via breg

breg=b*b
if myid=0 ! Processor O performs the summation
dotp=sqrt (scansum(all.breg))
all.breg=1/dotp ! The result is put into the breg of
! each processor
end
b=breg*b ! Scale the local component of b
c=a+b ! Each processor performs its

! add operation

In some cases it is not immediately obvious that a certain array assignment implies
communication. Consider, e.g., the slightly modified code.

real ]

real, dimension(1l:m) ::a, b, ¢

e ! Variables are assigned values

b=(1/sqrt (dot_product (b,b)))*b
! Scale b to have Euclidean
! length 1

c(1:m-1)=a(2:m)+b(1:m-1)

"These registers can be considered as a small shared memory used for communication. In an SIMD
computer it is relatively easy to ensure the integrity of data in this shared memory, since the same instruc-
tions are performed in all processors at the same time (except when a conditional statement implies that
only one processor accesses the shared memory).
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With the same assumptions as before, we now have more communication: before the final
addition is performed the elements a(2:m) are sent to the processors holding elements
(1:m-1).

It is obvious that in most cases reduction operations, such as summation and dot
products, involve communication. In the case of shift operations (see Section 3.1.3) the
communication is explicit. Assume that x is a twodimensional array, where each element
is stored in the local memory of a processor. The processors are assumed to be orga-
nized in a twodimensional grid with wrap-around connection (a torus), and each processor
can access its neighbour’s breg by referring to it as north.breg, etc. The assignment
y=cshift(x,shift=1,dim=2), which is a row-wise shift one position, is then executed in
each processor as

| local variable (scalar) x
breg=x
x=east.breg

In the following sections we will give examples how linear algebra algorithms can be
implemented in a data parallel setting.
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Chapter 4

Basic Matrix Computations

Linear algebra is at the heart of many scientific computations. It is for this essential
reason that most of the important applications developed first are done with linear algebra
algorithms.

4.1 Evolution of Linear Algebra Software

Not long ago, if one had to solve a linear system or compute eigenvalues of a small dense
matrix, the only possibility was to write one’s own code. Then a number of standard
packages, notably EISPACK and then LINPACK appeared in the public domain. The idea
of using standard software is now not only common but has become almost mandatory
because of the need to share expertise in different areas. It is possible to write different
variants of the same FORTRAN subroutine which are optimized on different machines.
When the user ports a code to another machines, the user will not have to do the additional
tuning work that would otherwise have been necessary if the optimized libraries did not
exist. The only requirement with the ‘common library’ approach is the necessity to have
standards.

One of the successes in this area is the set of BLAS (Basic Linear Algebra Subrou-
tines) libraries. The BLAS consists of a number of subprograms for basic linear algebra
computations. The first level of the BLAS were developed for the LINPACK, which is a
library of subroutines for the solution of linear systems of equations.

One of the main reasons for developing the BLAS was to make it easier for the designer
of linear algebra programs to write well-structured and efficient code using a set of modules
for the most common computations. Another reason was that the BLAS routines can
be implemented (often in assembler language) by the different computer manufacturers
so that they utilize the hardware as efficient as possible. Thus all machine-dependent
details can be hidden inside the BLAS routines, and the programs based on BLAS will be
completely portable, i.e., they can be executed on different computers without changes.

The first BLAS subroutines consisted of simple functions such as adding vectors and
computing dot products. In many computations, for instance matrix-matrix multiplica-
tions, these computations are required in some inner loop. It was soon realized that for

95
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Name Function Arguments
-DOT- dot product (n,x,incx,y,incy)
~AXPY y=a*x+y (n,a,x,incx,y,incy)
~COPY vector copy (n,x,incx,y,incy)
~ASUM  sum of absolute values (n,x,incx)

Table 4.1: Examples of BLAS1 Routines

vector computer with vector registers, it could be a good idea to go at a slightly higher
level in the inner loop in order to exploit the presence of the operands in the vector reg-
isters. This was essentially known as Level 2 BLAS or BLAS2. More recently, came the
emphasis on the use of blocks algorithms in order to exploit data locality as much as
possible in computers with hierarchical memory organizations. This gave rise to level 3
BLAS or BLASS.

There are BLAS routines in single, double, complex single, and complex double preci-
sions.

4.1.1 Level 1 BLAS

The first level of BLAS routines are based on vector—scalar operations and vector—vector
operations. The most important are listed in Table 4.1. The — sign in the subprogram
names correspond to the precision or version of the function used. For example, the dot-
product function has one prefix which can take the values S, D, C, or Z (single, double,
complex, double complex) and the suffix U (for the nonhermitian complex inner product
z’y), blank, or C (for the Hermitian complex product ) zy.

Among the arguments, n denotes the number of elements to be processed in the vectors
x and y, incx and incy denote the increments (strides) in the vectors x and y, respectively.
For example, the norm of a row of a matrix can be computed as follows:

real a(100,50)

len=SNRM2(50,a(3,1),100) ! the norm of row 3

The BLAS1 is has been partly superseded by the improvements in the FORTRAN
language. In FORTRAN 90, a SAXPY operation can be replaced by a statement of the
form

y(1:n) = y(1:n) + a * x(1:n)

In fact, even a usual do loop equivalent to the above vector instruction will be appropriately
translated into a vector instruction by most compilers with vector processing capability.

4.1.2 Level 2 BLAS

Level 2 BLAS involve matrix-vector operations. In Table 4.2, we list the matrix-vector
multiplication, triangular solution routines, and a number of rank one and rank two update
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‘ Rootname Operation Matrix type ‘

Matrix Vector Products

-GEMV y = aA’z + By General A

-GBMV y:= aA’z + By General Banded A

-SYMV y = adx + Py Symmetric A

-SBMV y = oAz + By Symmetric Banded A
Triangular Matrix Vector Products

~TRMV y=T General triangular T

-TBMV y="T Banded triangular 7'
Triangular System Solutions

~-TRSV y=(T°"'x General triangular

~-TBSV y = (T°) 'z Banded triangular
Rank One and Rank Two Updates

-GER A=axy*+ A General A

-SYR A= azzl + A Symmetric A

—-SYR2 A= azz™ +ayy’ + A Symmetric A

Table 4.2: BLAS2 routines.

routines. In what follows a superscript o denotes either a no-operation (A° = A), the
transposition (A° = AT, or the conjugate transposition (4° = AH).

A specific rule was used to name the subroutines and the suffixes have the following
meaning.

MV  Matrix vector multiplication

R Rank one update to a matrix

R2  Rank two update to a matrix

SV Solving triangular matrix problems.

For example, in matrix—vector multiplication, y = aAxz+ Sy, where « and ( are scalars,
z and y are vectors and A is a matrix. The subroutine is called SGEMYV in the case when
the matrix is general (i.e., non-symmetric).

4.1.3 Level 3 BLAS

In analogy to Level 1 BLAS for vector—vector operations and Level 2 BLAS for matrix—
vector operations, there is Level 3 BLAS for operations of the type matrix-matrix products,
rank k updates, and solution of triangular systems with multiple right hand sides. The
BLASS3 routines are listed in Table 4.3.

The meaning of the suffix in the naming of the subroutines is as follows.

MM  Matrix - Matrix operations

RK  Rank-k update to a matrix

R2K Rank-2k update to a matrix

SM  Triangular system solutions with several right-hand-sides.
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Rootname Operation Matrix type

Matrix-Matrix multiplications
-GEMM C:=aA’B°+ 8C General case
-SYMM C:=aAB+pC or C:=aBA+ C Symmetric A
Rank k updates
-SYRK C := aAA” + BC or C := AT A+ C Symmetric A

~HERK C = (e AAT + BC)e. Hermitian C
Triangular matrix A

-TRMM B =«a(A°)B Triangular A

-TRSM B =a(A°)"'B Triangular A

Table 4.3: BLAS3 routines

It is easy to parallelize Level 3 BLAS routines. Matrix multiplication can be considered
as a number of independent matrix—vector multiplications, which can be executed in par-
allel by different processors. Similarly, columns of the solution of a triangular system with
multiple right hand sides are independent and the work can be distributed over multiple
processors.

4.1.4 BLAS and Memory Hierarchy

One of the most important conclusions of this section is that in order to write efficient
programs on high performance computers, it is necessary to take into account the traffic
of operands from primary memory to functional units and back. The following rule should
be observed:

For each memory reference, perform as many floating point operations as pos-
sible.

We will now consider the different levels of BLAS regarding memory references. In each call
of SAXPY, two vectors are loaded and one is stored. Thus 3n. memory references are made
(in the sequel we assume that the vectors have n elements and the matrices have order n).
The routine performs n multiplications and n additions, altogether 2n flops. The Level 2
BLAS routine SGEMV for matrix-vector multiplication loads a whole matrix (n? memory
references; we disregard the vectors here). The number of flops is 2n? approximately.
Finally, the Level 3 BLAS routine for matrix-matrix multiplication, SGEMM, loads three
matrices, stores one, and performs 2n3 flops. The results are summarized in Table 4.4.

In dense matrix computations, the ratio of computations over data movement is typ-
ically high. For example, multiplying two n x n matrices requires 2n* floating point
operations on 2n? operands, and it produces n? result. If we are careful about minimizing
data movement, we can increase the efficiency of execution considerably. Blocking, which
was at the origin of level 3 BLAS, is precisely geared towards this goal. It is primarily
motivated by hierarchical memory systems, but the same idea can be used to minimize
communication costs in distributed memory systems.
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BLAS | routine ref. | flops | flops/ref

level
1 SAXPY 3n 2n 2/3
2 SGEMV | n? on? 2

3 SGEMM | 4n? | 2n3 n/2

Table 4.4: Memory traffic and floating point operations for BLAS routines.

Next we discuss the problem of multiplying two matrices in some more detail. In
particular we consider data movement in a computer with a memory hierarchy, see Section
2.4.1. For simplicity we assume that all matrices involved are square and of dimension n.
If the standard formula

n
cij = Y airbrj
k=1

is used then in the worst case for every element to be computed there will be 2n data
moves from main memory and one back to memory. This comes to a total of (2n + 1)n?
data moves. There are roughly 2n data moves for each computation. Consider now a
computer in which memory is organized hierarchically. For example, the processor that
performs the above computation, may be attached to a very fast local memory, a cache
memory. Ideally, we would like all the data in the matrix multiplication to be brought
only once in cache. This would entail a total of 3n? data moves from memory, far less than
in the previous case. Unfortunately, cache memories are usually small and if the matrix
is reasonably large, then this would not be possible.

However, we can certainly fit sub-blocks of the matrix in cache. If we simply divide the
matrix into blocks of equal dimension n/q each, then the above formula can be replaced
by the block version:

q
Cij = Y AyBy;.
k=1
Assuming that the cache is large enough to hold three blocks of the matrix, then we we
are able to compute (n/q)? elements by reading 2¢ blocks of (n/q)? elements each from
memory and writing back one block of (n/q)? results to memory. For each result C;; we
therefore need (2¢+1)(n/q)? memory references. The total of data moves from/to memory
in this second case is

(2q + 1) <§>2 = (2q + 1)n?

Notice that the number of moves is no longer cubic with respect to n. Also observe
that when ¢ = n we do return to the situation of the non-blocked matrix multiplication
involving (2n+1)n? data moves. This simple illustration shows that data movements from
main memory (or for any slow memory which holds the data) can be reduced drastically
by a very simple reorganization of the calculation. In [19] it is shown how to exploit this
idea to improve performance in dense matrix computations.
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BLAS Number of processors
level | routine operation 1 2 4 8
2 SGEMV | y:=«adAzx+ Py | 311 | 611 | 1197 | 2285

3 | SGEMM | C:=aAB+ C | 312 | 623 | 1247 | 2425
2 | STRMV z:=Uy 293 | 544 | 898 | 1613
3 | STRMM B:=UB 310 | 620 | 1240 | 2425
2 | STRSV z:=U"'z | 272|374 | 479 | 584
3 | STRSM B:=U"'B 309|618 | 1235 | 2398
\ Peak speed | 333 [ 666 | 1332 | 2664

Table 4.5: Speed (Mflops) of Level 2 and 3 BLAS routines on a Cray Y-MP. All matrices
are of order 500. U is upper triangular.

Clearly, it is also possible to exploit blocking in parallel processing. From a processor’s
point of view, memory is hierarchical, whether it is shared or distributed.

We close this section by giving some statistics (Table 4.5, from [9]) showing that certain
BLAS routines from levels 2 and 3 can be implemented to parallelize very well on a shared
memory parallel computer. Note that the operation of solving a triangular system of
equations is inherently sequential, and does not lend itself to efficient parallelization.

4.2 Matrix — Vector Multiplication

4.2.1 Algorithms for Memory Hierarchies

Assume that we want to compute
y = Az, (4.1)

where A has dimension m x n. The components of y are given by
n
Y = Zaz‘jl“j, 1=1,2,...,m.
j=1

There are two immediate versions matrix-vector multiplication algorithms that are based
on BLAS 1 routines. The dot-product form consists of computing each component of the
resulting vector y as

Fortran 77 Fortran 90
! SDOT (IJ) version ! SDOT (IJ) version
do i=1,m do i=1,m
y(1)=0 y(i)=dot_product(a(i,1:n),x(1:n))
do j=1,n enddo
y(i)=y(i)+a(i,j)*x(j)
enddo

enddo
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Symbolically the SDOT version can be represented as

X - - - = t
x| |+~ - - = |
x| [« - - = |
X - - - = l

This figure should be interpreted as follows: each element of the left hand side vector is
equal to the inner product of one row of the matrix A and z. (This type of figures are
used in [11]. The presentation in this and the following section is to a considerable extent
based on that paper.)

Note that each inner product is independent of others, and therefore all the inner
products can be computed in parallel. However, this algorithm has the disadvantage that
the elements of A are referenced row-wise, which means that there will occur cash misses.

The second approach is based on the SAXPY operation. By writing the matrix as a
collection of column vectors

A=(aqasg ... ay), a;= : ,

am]’

and exchanging the order of the loops, the multiplication can be written as

T
9 n
y=(a1az2...an)| . | = Z:cha.j
: et
In

This is done by the code

! SAXPY (JI) version

y(1:m)=0
do j=1,n
y(1:m)=y(1:m)+a(l:m,j)*x(j)
enddo

The j loop is a SAXPY operation and symbolically, it can be represented as

T Tt
I I I
| IR
e Ll

Due to the column-wise access pattern, cache misses will not occur, and this variant
will execute more efficiently on modern computers with a memory hierarchy.

X X X X
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4.2.1.1 Vector Computers

The situation is very similar for vector computers. In the inner product algorithm, there
is a risk of memory bank conflicts, due to the row-wise access of the matrix. Also, even
though inner products can be vectorized using special instructions and hardware, they
are usually slower than “real” vector operations due to the need to take the summation
of the product values. Furthermore, inner products usually entail a higher start-up time.
However, if the row dimension is much smaller than the column dimension of A, the dot
product form may be advantageous since it involves longer vectors.

In the SAXPY version we have genuine vector operations, which can be chained and
executed efficiently. On the other hand, the semantics of Fortran prescribe that at each
iteration of the loop, the vector y is converted to the floating point format in which it
has been declared. Therefore, if, as is often the case, the vector register is wider (has
more bits) than the standard word length, then conversion must take place, and this is
usually done by storing the vector y in primary memory for each iteration of the j loop.
Since we are only interested in the final value of y, there will be n — 1 unnecessary vstore
operations.

Instead we would prefer to accumulate y in a vector register. This version is sometimes
called GAXPY (Generalized SAXPY, GAXPY is not one of the BLAS routines). (In
the code below we assume that a scalar can be stored in the multiplication unit and used
in a vector operation.)

! GAXPY version
0 --> Vo0
do j=1,n,2
vload a(l:m,j) --> V1
load x(j) to multiplication unit
Vixx(j) --> V2
V2+V0 --> V3
vload a(l:m,j+1) --> V4
load x(j+1) to multiplication unit
V4xx(j+1) --> V5
V5+V3 --> VO
enddo
vstore VO --> y(1:m)

Unfortunately, compilers do not always recognize when intermediate results could stay
in vector registers or when the loads and arithmetic operation can be overlapped. To
simulate GAXPY, loop unrolling can be done. For simplicity, assume that n is a multiple
of 4. The ji version can then be written as

! SAXPY version, unrolled loop

y(1:m)=0

do j=1,n,4
y(1:m)=y(1:m)+a(l:m,j)*x(j)+a(l:m,j+1)*x(j+1)
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+a(l:m,j+2)*x(j+2)+a(l:m,j+3) *x(j+3)
enddo

Here the compiler can keep the vector y in vector registers while four chained vector
multiplications and additions are executed, and it will store it in primary memory when
j changes.

4.2.2 Message Passing Matrix—Vector Multiplication

The message passing matrix—vector multiplication algorithm given below is based on
SAXPY operation. We can write

n
y=Azr = Za.jxj,
Jj=1

where a.; denotes the j’th column of A. If the number of processors p is the same as n,
and the j’th column a.; of A and the j’th component of z, z;, are assigned to processor
J, then all the products z;a.; can be computed in parallel.

After all the vectors zja.;, 1 < 4 < n, are computed, we need to add them up.
Of course, this can be done by sending them to one processor that performs all vector
additions. However, if the number of elements of y is large, then it may be faster to let the
processors share this work. This can be done by a fan-in algorithm, illustrated in Figure
4.1.

T1a.1] T20.2 T3G.3 T4G.4 T50.5 Tea.e T7a.7 TLa.8

Figure 4.1: Fan-in algorithm for computing y = Az = 37, a.;z;.

Assume that p = n = 2¢ for a positive integer d, and that the processors are numbered
1,2,...,p. Each processor is further assumed to have a local variable, myid, which is its
identification number. In the code below we use integer division as in Fortran, where, e.g.,
1/2 =0. Thus

1—1 if7is odd
1/2) %2 =14 . P ’
(i/2) { i if ¢ is even.
In the code we use the communication primitives send (destination,vector) and receive (vector),
where the latter means that a message from any other processor is received. The whole
computation is done when each processor executes the following code.

ALGORITHM 4.1 Parallel matrix-vector multiplication. Fan-in algorithm.
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! Each processor has local variables aj (vector) and xj (scalar)
! with its column from the matrix A, and its component of the

! vector x, respectively.

! It is assumed that the number of processors is equal to 2**d

! NOTE: "/=" means "not equal"

!

y(1:m)=xj*aj(l:m)
if (myid/2)*2+1 = myid then

send (myid+1,y) ! Even processors will continue
else
do k=1,d ! Fan-in algorithm

if (myid/2**k)*(2**k) = myid then
receive(yl)
y=y+yl
if (myid/2#*(k+1))*(2%*(k+1)) /= myid and k<d then

send (myid+2**k,y)

endif

endif

enddo
endif

Synchronization is needed to ensure that the necessary multiplications are complete before
addition begins and this is performed in a natural way via communication. For example,
when P; and P, are done with multiplication, one of them begins addition with the data
it receives from the other but it will wait until the data are received and this wait achieves
the necessary synchronization.

It is easy to generalize Algorithm 4.1 to the case when each processor holds a block of
columns from the matrix A.

The SDOT (inner product) version of matrix vector multiplication is derived from the
expression

T T
a% a%m
ay. as.
y=Ax = : T = : ,
T T
ap,. a,,. T

where the ith row of A is denoted as a;fp,. For simplicity we assume that p = m and that
processor i has al and the whole vector z. Then each processor can compute its inner
product a;fp,ac, and achieve perfect parallelism.

4.2.3 Shared Memory Parallel Matrix—Vector Multiplication

Matrix—vector multiplication using the SDOT version is trivial to parallelize using OpenMP,
since the computation of each component of the vector y is independent of the others. How-
ever, due to the row-wise access, this version of is unsuitable also in the parallel shared
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memory context. The SAXPY version can easily be parallelized based on the summation
code in Section 3.3.

ALGORITHM 4.2 Shared memory parallel matrix-vector multiplication.

y(1:m)=0.
!$omp parallel private(myid,first,last,yp)
nthr=omp_get_num_threads ()
g=n/nthr ! Number of vectors in each chunk
myid=omp_get_thread_num()
first=myidx*q+1
last=(myid+1)*q
yp(1:m)=0. ! Partial sum
do j=first,last
yp(1:m)=yp(1:m)+a(l:m,j)*x(j)

enddo
!'$omp critical ! Only one processor can execute
y(1:m)=y(1:m)+yp(1l:m) ! this at a time

!'$omp end critical
!$omp end parallel

4.2.4 Data Parallel Matrix—Vector Multiplication
In the formula for the SAXPY based algorithm

n
vy= Z Lj@-js
7=1

each element in column j of the matrix A is multiplied by the same quantity, z;. In
Fortran 90, we can express this in a data parallel way by creating a matrix of the same
dimensions as A, where all the elements of column j are equal to z;, and then performing
the elementwise matrix multiplication. This is performed using the spread function:

Axspread(x(1:n),1,m) ! make m copies of x(1:n) along the
! first dimension, i.e. by columns.
I Multiply by A, element-wise.

Then, to form the vector y we sum the elements of the result matrix rowwise:
y(1:m) = sum(A*spread(x(1:n),1,m),2)

The communication in this algorithm is described in Figure 4.2.

Assume that the elements of A are distributed to processors by blocks, that the ele-
ments of x are in the same processors as the first row of A, and, finally, the elements of y
are in the same processors as the first column of A. In HPF we can write this
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Elementwise  Sum the elements

Spread x multiplication of each row

Figure 4.2: Data parallel matrix-vector multiplication.

'HPF$ distribute (block,block) :: a
'HPF$ align with a(1,:) : :
'HPF$ align with a(:,1) oy ()

Matrix-vector multiplication often appears as an intermediate step of other larger
computation and which algorithm to use will depend on the storage of A and z at the
time when the multiplication is required and also what computation follows after.

4.3 Matrix — Matrix Multiplication

Consider the problem of computing the matrix-matrix multiplication
C = AB,

where, for simplicity we assume that both A and B are n X n. A common matrix multi-
plication algorithm can be written in Fortran 77 as

! SDOT (IJK) version
do i=1,n
do j=1,n
c(i,j)=0
do k=1,n
c(i,j)=c(i,j)+a(i,k)*b(k,j)
enddo
enddo
enddo

and in Fortran 90 as

! SDOT (IJK) version
do i=1,n
do j=1,n
c(i,j) = dot_product(a(i,1l:n), b(l:n,j))
enddo
enddo
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The above version is based on inner products (SDOT). Similarly as in matrix-vector
multiplication, we now have 3! = 6 different ways by changing the order of execution of
the three FORTRAN loops.

Disregarding the zero initialization of A, we can write the generic matrix multiplication
algorithm

! Generic matrix multiplication
do -----

c(i,j)=c(i,j)+a(i,k)*b(k,j)
enddo
enddo
enddo

We denote the version names by the order of the indices. By making i the last index, we

have column oriented vector operations in the innermost loop and obtain KJI and JKI
versions.

The JIK version comes by switching the 5 and ¢ loops in IJK version.

! JIK version

do j=1,n
do i=1, n
c(i,j) = dot_product( a(i,1:n), b(1l:n,j) )
enddo
enddo

This results in a slight variation in which the dot product is still used but the elements of
C are computed column-wise instead of row-wise.

The JKI version involves column-wise SAXPY operation, i.e. vector operations with
stride one.

! JKI version

do j=1,n
do k=1, n
c(1:n,j) = c(l:n,j) + a(l:n,k) * b(k,j)
enddo
enddo

The two innermost loops of the JKI version can be illustrated as

V(T
|

JKI : | I
L

X X X X

— —
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This version can be implemented using SAXPY operations, but we see that since the
computation of each column of C' can be finished before it is stored back, we have a
GAXPY oriented algorithm. Furthermore, since the columns of A need only be loaded
from primary memory, and not stored back, we have only half as much memory traffic
as in the KJI version. One interesting point is that the SAXPY operations may involve
vectors of different lengths. In the IKJ version, we had vectors of length n and stride n,
whereas in the JKI version we have a vector length of n but a unit stride.
The final set of versions consists of starting with the k-loop.

! KJI version

do k=1, n
do j=1, n
c(1:n,j) = c(l:n,j) + a(l:n,k) * b(k,j)
enddo
enddo

If we consider the 7 and j loops together, we discover that each of them corresponds to a
rank-one update, i.e., the computation corresponds to the formula

b1,
bl n
C=AB=(a1 ag ... aqn)]| . :Za.kbg,
: k=1
bl

n

where a.; are column vectors of A and bf_ are row vectors of B, respectively. The matrix
a.kbf. is called an outer product matriz, and the above version is referred to as the outer
product form. We can illustrate the computation of the two innermost loops symbolically:

Tt T

e | |
BN |

Pddd \

The figure should be interpreted: “each column of C is updated by adding a multiple of a
column from A”. We see that each column of C' must be fetched from primary memory,
updated and then stored back.

The outer product form of matrix multiplication can be written in Fortran 90 using
the function spread.

do k=1, n
c(l:n,1:n)=c(l:n,1:n)+spread(a(l:n,k),2,n)*spread(b(k,1:n),1,n)
enddo

The memory traffic in three of the versions described above, SDOT ( IJK), KJI and
JKI, is summarized in Table 4.6 (only the highest order term is given).
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SDOT [ kji | jki
n m3 | n

Table 4.6: Memory traffic in matrix multiplication.

4.3.1 Message Passing Matrix Multiplication

There are several ways of implementing matrix—matrix multiplications on a message pass-
ing system. We will present a rather simple method, which executes surprisingly well
on modern computers, and actually outperforms other more complicated algorithms [20].
Consider

C = AB,

where, for simplicity, A, B, and C are assumed to be n x n matrices. The matrices are
distributed by equal size blocks over a square mesh of processes. Thus, with

All T Alr
A= e
Arl o Arr

where each A;; is a £ x k matrix with n = kr, we assume that A;; is stored in process

(4,7). The number of processes is p = 2.

To derive the algorithm we first partition A by block rows and B by block columns:

Aj.
A = S, Ai=(An - Ay)
A,
B = (By - By), Bj=| :
Brj

With the assumed distribution of the matrix, the whole block A;. is stored on process row
¢, and, similarly, B.; is stored in process column j. Using this notation we see that the
block Cj; is given by
n
Cij = AiBj =Y AyBy;.
k=1
This can be written in outer product form,

Cij = > a7,

where a! denote the columns of A;., and (7)™ the rows of B.;, respectively,
(o)

Ai.:(al a?), B =
)"
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C A B
Figure 4.3: The shaded areas of A and B are used in the computation of Cj;.

We illustrate the data used in the computation of a block Cj; in Figure 4.3. Now, each
process in row 4 will need all the column vectors ag in turn for its sum, and each process
in column j will need each row vector (b/)” in turn. Thus, process (i,7) can compute its
block of C' by executing the following pseudo-code:

ALGORITHM 4.3 Message Passing Matrix Multiplication
Cz'j =0
do 1=1,n

if I hold aﬁ then broadcast it within my process row

if I hold b{ then broadcast it within my process column

Cij = Cij + a;(b])"
enddo

It is now straightforward to derive a measure of the efficiency of this algorithm. Assuming
that a floating point operation (addition or multiplication) takes v seconds, we see that
the computations in one step of the algorithm takes 2k2v seconds (both aﬁ and b] have k
elements), and the total time is

2 ) 3
2nk27:2nn—2'y:i'y.
r p

To estimate the communication time, we assume that sending a message of size m from
one processor to any other takes 7 + Bm, and that a broadcast over r processes takes
log, (7 4+ Bm), see Section 2.6.1. The communication in each step takes 2log, r(7 + Bk),
since k elements are broadcast row-wise and column-wise!. Thus the total communication
time is

2nlogy (T 4+ Bk) = 2nlogy r <T + ﬁr_n> =nlogyp (T + ﬁ_n) ,

VP

where we have used % = p.

! Actually, some processes will finish one step and begin with the next before other processes have
completed the step. In the end, however, all processes will have to wait until all other have finished their
work. Therefore it is adequate to assume that all steps take as long for all processes.
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To demonstrate the efficiency of the algorithm we compute the speed-up (i.e. the time
for the sequential algorithm over the time for the parallel algorithm)

Sn.p) 2n’y p
n,p) = = .
P a3y ot nlogy p(r + B/ vB) 1+ DORP L 4 VP08 P g

The efficiency is
S(n,p) 1
E(n,p) = = .
’ 1 I
P 1+p;§22p%+\/52%g2pg

If we ignore the log, p factor, which grows slowly for large p, we see that the algorithm is
scalable in the following sense: The efficiency stays the same when we increase the number
of processors, if at the same time we let the problem size (matrix dimension n) grow as
n = C,/p. The concept of scalability will be further discussed in Section 4.4.

The algorithm can be made even more efficient if we do not perform a logarithmic
broadcast, but instead consider the array of processes as a two-dimensional pipeline. Here

the process that holds the current column vector aé sends it to the nearest neighbor to

the east, which sends it to the next neighbor, and so on. The vectors b% are send to the
neighbors to the south.

ALGORITHM 4.4 Pipelined Message Passing Matrix Multiplication
Cz'j =0
do 1=1,n

if I hold a! then

send(east,al,r-1)
else

receive(west,al, count)

if count>! send(east,al,count-1)
endif
if I hold b/ then

send(south,w}r—l)
else

receive(north,%,count)

if count>1 send(south,%}count—i)
endif

Cij = Cij + al(b])”

enddo
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C A B

Figure 4.4: The shaded areas of A and B are used in the computation of a block column
of C.

For the timing analysis we first note that since we are performing a broadcast using the
“linear” algorithm, it takes

n
2(r — 1)(7 + Bk) = 2/p (T + B—=) (4.2)
VPl
before the last process in the pipeline receives its first data. After that all processes are
busy receiving and sending data, and doing their updates of C;;. There are n steps in the
algorithm, so this takes approximately
2n3 n
n(2k%y 4+ 2(1 + k) = — v+ 2n(1 +  —).
( ( ) p ( ﬂQ
At the end of the computation, the process that sends the last message will be idle while
the others are finishing up. This takes about as long as the initial wait (4.2). Thus the

total time is 5
2n n n
“—y+2n(r+B—=) +4/p (T + B—), 4.3
il ( V# VD ( ﬂg (4.3)

approximately. Note that the log, p factors have disappeared. In the same way as before,
we now get the efficiency

1

Eb = Eb(nap) ~ )
1+ LIy

(4.4)

where, for simplicity, we have disregarded the less important last term in (4.3). Thus, the
above pipelined message passing matrix multiplication algorithm is scalable in the same
sense as the previous version.

It is also possible to derive a version of this algorithm, where data are distributed by
block columns. In Figure 4.4 we illustrate the way A and B are accessed to compute one
block column in C. It is natural to implement this algorithm on a ring of processes. Since
the process that holds a certain block of C, also holds the corresponding block of B, it is
only necessary to send the columns of A around the ring. This can be done either by a
logarithmic broadcast or in a pipelined fashion.

It is rather straightforward to repeat the timing analysis above for this case. The total
time for the pipelined block column version becomes

3
%}v+m7+wn+%w+ﬁm,
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approximately, where the last term is the time for the startup and final phases (when the
pipeline is filling up and when the final message is sent around). Simplifying by ignoring
the last term, we get the efficiency

1
Ey. = Epe(n,p) = - (4.5)
’ B
Ltom i+ oy
Note that here we have a term % g in the denominator, as opposed to (4.4), where instead

we have % % + % g This will be important in the analysis of the scalability of these two
variants in Section 4.4.

4.3.2 Shared Memory Parallel Matrix Multiplication

Using the code for matrix—vector multiplication given in Section 4.2.3 it is relatively easy
to parallelize a SAXPY version of matrix multiplication.

4.3.3 Data Parallel Matrix Multiplication

Matrix multiplication appears to be ideally suited for data-parallel computation because
of the regular nature of the operation. Our description of Cannon’s algorithm for multipli-
cation of square matrices will also show that the communication aspects of data-parallel
computations are very important.
Consider
C = AB,

where A, B, and C' are square matrices. Assume, for the moment, that they all have order
4, and that we have a 4 x 4 array of processors. In the algorithm, processor (i,7) will
compute ¢;;. From the definition of matrix multiplication, the elements of the first column
of C are given by

4
ci1 = Y aikbp = a11biy + aizby + ai3bsy + aaby
k=1
4
eyt = Y agkbp = agaby1 + agsbst + azabar + azbi
k=1
4
csi = Y askbp = assbs + assba + azibi + aszbay
k=1
4
cit = Y aakbpt = auabsy + asnbiy + agabar + assbs;

=
Il
—_

Note that we have written the sums in a nonstandard order. If at the start of the compu-
tations b;; and a;; are in processors (4,1), 4 = 1,...,4, then the first term in each equation
can be computed in parallel.
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The elements of the second column of C' are given by

cig = Z a1kbr2 = a11b12 + a12b2e + a13b3z + a14bao
k=1
4

c2 = Y agkbrz = agsbyy + agsbsy + azabsz + azibio
k=1
4

C32 = Z askbr2 = asszbsz + azabaz + azibia + azobao
4

cir = Y aakbrz = ausbsy + asibiz + aszbag + aszbso

k=1

Similarly, if at the start of the computations bj» and a;;1 are in processors (i,1), i =
1,...,4, then the second term in each equation can be computed in parallel, and, in
addition, this can be done in parallel with the computations for the first column in C'.

Thus, with the initial distribution of matrix elements to processors illustrated in Figure
4.5(a), each processor can compute a first term in its sum.

To continue the computation, the elements of A must be shifted horizontally and the
elements of B vertically (with wrap-around, i.e., an element at the bottom of the array
is moved to the top, and correspondingly for horizontal shift). After the first shift the
elements of A and B are as in Figure 4.5(b), and a second term in each sum can be
computed. The algorithm proceeds as illustrated in Figure 4.5(c) and (d), and after 4
elementwise multiplications and 3 shifts, the result C' is computed.

The algorithm is implemented by the following Fortran 90 subroutine.

subroutine cannon(a,b,c,n)
integer 1 n
real, dimension(l:n,1:n) :: a,b,c

!local variable
integer :t k

! Perform the initial skewing of a and b

a=cshift(a, (/(k, k=0,n-1)/),2) ! Horizontal

b=cshift (b, (/(k, k=0,n-1)/),1) ! Vertical

c=0.0

do k=1,n
c=c+axb ! Elementwise multiplication
a=cshift(a,1,2) ! Shift one step to the left
b=cshift(b,1,1) ! Shift one step up

enddo

return

end
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a11b11

a12b22

a13b33 | a14ba4

a2bo1

a23b32

a24b43 | a21b14

a12b21

a13b32

a14b43

a11biy

a33bsy

a34b40

a31b13 | az2boy

a23b31

a4byo

a1bi3

a2boy

a44ba1

as1b12

a42b23 | a43b34

a34bs1

az1bi2

azabo3

a33bzy

(a) Initial

alignment

as1b11

a42b22

a43b33

@44bas

a13b31

a14b4o

a11b13 | ai2boy

(b) After

first shift

a24ba41

a21b12

a22b23 | a23b34

a14b41

a11bi2

a12b23

a13b34

az1b11

a32boo

a33b33 | a34baq

a21b11

a22b22

a23b33

a24b44

a42ba1

a43b32

a44b43 | a41b14

azaboy

a33bzo

a3aby3

az1biy

(c) After second shift

a43b31

44b42

as1b13

a42b24

(d) After third shift

Figure 4.5: Four steps of Cannon’s algorithm on 4 X 4 processors.
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The Fortran 90 intrinsic function cshift (circular shift) performs the communication
necessary for this algorithm. The statement a=cshift(a,1,2), specifies that a is to be
shifted one step along the second dimension, i.e., rowwise, to the left in wrap-around
fasion. In the statement a=cshift(a, (/(k,k=0,n-1)/),2), each row of a is shifted by
a different amount, given by the vector 0,1,...,k=1. This means that the first row is
shifted 0 position, the second row 1 position, to the left, etc.

It is straightforward to generalize this algorithm to the case when we have distributed
the matrix by blocks to a square 7 x 7 mesh of processors (with wrap-around connections)
as in Section 4.3.1. Thus, there are r steps, and in each step the (i, j) processor performs

a matrix multiply
Cij := Cij + Air By,

where the matrices have dimension k& x k = (n/r) x (n/r). Thus the total time for doing

the arithmetic is 5 5
2n 2n
2rkPy = 5y = =,
r p

where we have used p = 2. In each step every processor sends and receives two blocks, so
the total communication time (excluding the time for the initial skewing of the matrices)

1S
2

2r(r + k%) = 2/pT + 2”—p B.

75

If the initial skewing is performed by sending matrix blocks to neighbors, then it takes
(the last row and column take the longest time)

2

) R m 242 B
2( 1)(7 + Bk*) 2\/p +2\/1_76

Thus the total time for the block version of Cannon’s algorithm is

2n3 n?
77 + 4\/57' +4—

\/155’

approximately. The efficiency becomes

ECBJII'IOI'I ~

1+2(§)3 L 42

=[S
2

4.4 Scalable Computations

Using the example of message passing matrix multiplication given in Section 4.3.1, we will
now discuss in some more detail the concept of scalability. In [12], the following definition
of scalability is given:

A vparallel algorithm is called highly scalable if the concurrent efficiency de-
pends on the problem size (number of data) and the number of processors only
through their ratio.
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Since in matrix computations the problem size is proportional to n?, where n is the matrix
dimension, the definition can be rephrased: A parallel algorithm is called highly scalable
if the efficiency depends on n?/p, but not on p or n separately. The quantity n?/p is the
memory requirement per processor. Therefore, we can also say that an parallel algorithm
is highly scalable if the efficiency stays the same when we simultaneously increase the
number of processors and the problem size in such a way that the memory requirement
per processor is constant.

To illustrate the concept of scalability, we first consider the message passing matrix
multiplication algorithm in the case of a ring of processes, where the matrix is distributed
by block columns (Section 4.3.1. The efficiency of that algorithm is (see (4.5))

1

Lr gty

Ebc = Ebc(nap) ~

We see that the efficiency depends on p/n, so the algorithm is not scalable according to the
definition. In order to maintain efficiency in this algorithm when p is increased, we would
have to increase n at the same rate. Thus, when we double the number of processors,
the memory requirements per processors also doubles. Eventually, when the number of
processors is increased, we may run out of memory.

On the other hand, the corresponding algorithm with a square mesh of processes,
where the matrix is distributed by block, has efficiency (4.4)

1
L+ B I 42

Eb = Eb(nap) ~

=

This algorithm is scalable. In Figure 4.6 we illustrate the deterioration of efficiency in the
block-column variant of the algorithm, as the number of processors is increased, and at
the same time, the memory per processor is kept constant. The values of the parameters
v, T, and [ are representative of modern (1994) parallel computers [20]. Analogous and
similar graphs are given in [20] illustrating runs on actual computers.

We see that Cannon’s matrix multiplication algorithm with efficiency (4.6) is also
scalable, if the matices are distributed by block over a two-dimensional mesh of processors
with wrap-around connections.

Different aspects of scalability are discussed at length in [26].
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o
(2]
T

L

efficiency

o
N
T

Il

Figure 4.6: Efficiency of the block and block column variants of the message passing
matrix multiplication algorithms, solid and dashed curves, respectively, as functions of
the number of processors p. The amount of memory per processor is kept fixed. We used
v=10"",7=10"*% and B = 1075.



Chapter 5

Solution of Dense Linear Systems

Solving linear systems of equations is one of the most important tasks in Scientific Comput-
ing. We will devote this chapter to the discussion of algorithms for solving such problems.
As will be seen, there is a very rich set of possible algorithms to suit all possible archi-
tectures. Thus, the straightforward Gaussian elimination gives rise to several different
implementations. We will attempt to describe the algorithms with as much generality
as possible with regards to the underlying architecture on which they are executed. An
algorithm which is initially designed for a distributed memory computer can very well
be implemented on a shared memory computer. This leads to a fundamental distinction
between the algorithm and its implementation.

5.1 Gaussian Elimination and LU Decomposition

In this section we describe Gaussian elimination of a dense n x n matrix A for solving the
linear system

Az =b. (5.1)

For simplicity of presentation, we assume that no pivoting is required. We describe al-
gorithms for reducing the matrix A to upper triangular form, without performing any
operations on the right hand side b. The reduction is implicitly an LU decomposition of
A’

A=1LU,

where L and U are lower and upper triangular, respectively. The amount of work to reduce
A to upper triangular from is about 2n3/3 flops. To solve the linear system (5.1), one can
either use the LU decomposition and obtain z by forward and backward substitution. This
requires 2n? flops approximately, so it is much cheaper than the reduction to triangular
form. Alternatively, one can adjoin b to A and apply all operations to it, as if it were
just another column of A. After the reduction, the solution is then obtained by back
substitution.

The usual way of deriving the Gaussian Elimination algorithm without pivoting is as

79
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follows. Suppose after k£ — 1 steps in the algorithm, the matrix is reduced to the form

ail a19 . QA1p
a9 e aon

Qrk  OGkk+1 cee Qgp

ik Qi k41 s Qin

Gpk  Opk+1 --- Gpn

In the next step of the elimination the elements below the main diagonal in column £ will
be annihilated. This is done by adding suitable multiples of row k to rows k+ 1 to n. The
result is

ail a19 . QA1p
a9 ce a2n
agk Ak k+1  --- Qkn
. : y
i !
0 Qikr1 - Qip
i !
0 Gppyr - Gy

where the transformed elements are
a;j:aij—aikakj/akk, j=k+1,....,n, 1=k+1,...,n. (5.2)
The multiplier a;;/agk is saved in the position (i, k) in the matrix.
Qik

ajp 1= , i=k+1,...,n. (5.3)
Ak

When the reduction is finished, the elements of the lower triangular factor L are those
below the diagonal in the array for A. The elements above the diagonal are those of U.
Gaussian elimination without pivoting may be unstable [21, p. 110] (except for special
matrices, e.g. symmetric, positive definite or diagonally dominant matrices). In partial
pivoting the pivot column (in the example column £, the elements below the diagonal) is
searched for the element of largest modulus. If that element is found in row ¢’, say, then
rows k and i’ are swapped (also the rows of part of the lower triangular factor computed so
far must be swapped). Then the operations of step k are carried out as described above.

5.2 LU decomposition on Vector Computers

In this section we describe vector implementations of Gaussian elimination, and we also
discuss the modifications necessary to take advantage of a memory hierarchy.
The algorithm described in the previous section can be represented in the KI1J variant.
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ALGORITHM 5.1 LU decomposition — Row (KI1J) Variant

do k=1,n-1
do i=k+1,n
a(i,k)=a(i,k)/a(k,k)
do j=k+1, n
a(i,j)=a(i,j)-ali,k)*ak,j)
enddo
enddo
enddo

Here the matrix is referenced as follows in the two innermost loops:

KI1J:

TTTTT
|
|
|
U

As in matrix multiplication, we can change the order of the loop and describe Gaussian
elimination by the following generic algorithm:

a(i,j)=a(i,j)-a(i,k)*a(k,j)/a(k,k)
enddo
enddo
enddo

We can permute the loop variables i, j and k in 3! = 6 different ways. We will discuss
how the efficiency of couple of variants depends on the architecture. A column variant of
the algorithm is often preferred as it involves vector combinations with stride one. Instead
of writing the innermost loop (the i loop) explicitly, we express it as a vector statement.

ALGORITHM 5.2 LU decomposition — Column (KJI) variant

do k=1,n-1
a(k+1:n,k)=(1/a(k,k))*a(k+1:n,k)
do j=k+1, n
a(k+1:n,j)=a(k+1l:n,j)-a(k,j)*a(k+1l:n,k)
enddo
enddo
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As in the case of matrix multiplication, the KJI variant is a SAXPY oriented algorithm:

KJI: L O N N
[ T N
[ T N
| |

Another name for these KIJ and KJI variants is right-looking variant, since in each
step the matrix elements to the right of the column that is annihilated in the present
transformation are referenced (updated).

A Gaxpy-oriented variant is obtained by exchanging the k and j loops:

ALGORITHM 5.3 LU decomposition — JKI variant

do j=1,n
do k=1,j-1
a(k+1:n,j)=a(k+1l:n,jd)-a(k,j)*a(k+l:n,k)
enddo
if (j<n) then
a(j+1:n,j)=(1/a(j,j))*a(j+1:n,j)
endif
enddo

This Gaxpy variant references the matrix in the following way:

JKI :

The rightmost marked column is not modified until the present step of the algorithm.
After all previous transformations are applied to that column, the elements below the main
diagonal are annihilated, in principle. This need not be done explicitly. The computation
actually performed is to divide the elements below the diagonal by the diagonal element,
the pivot element. This variant is often referred to as left-looking.

As in the matrix multiplication, the most efficient variant on vector computers, e.g.,
Cray Y-MP, is the one with the minimum number of memory references (all have the same
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Variant KI1J KJI | JKI
Memory references | 2n3/3 | 2n3/3 | n3/3

Table 5.1: Memory references in three variants of the LU decomposition algorithm.

No Longer
Accessed
No
Accessed and Not Yet
Longer . 1 Accessed
Accessed Active not modified

Active

Figure 5.1: Access patterns of the KJI (right-looking), and JKI (left-looking) variants of
the LU decomposition algorithm.

number of flops). In Table 5.1 we summarize the number of memory references for the
three variants considered. The access pattern of the different versions is shown in Figure
5.1.

5.3 Block Algorithms for Memory Hierarchies

One can maximize the number of flops per memory reference by organizing the computa-
tions in block forms. Suppose the matrix A is partitioned into blocks as

(An A12>
Ay A )’

where A;; and Agy are square (but not of the same dimension; usually the dimension of
Aq1 is much smaller than that of Ags). Consider the identity

<A11 A12> _ (Ln 0) (Uu U12>

A21 A22 L21 I 0 522 ’

where the blocks in L and U have the same dimension as the corresponding blocks in A,
and I is the identity matrix. Then multiplying the blocks, we obtain

<A11 A12>:<L11U11 L11Ux2 >
Ag1 A LoyUpny Soo+ LoyUia ) -
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Since L11U11 = A11, we can compute Li; and Uy; by the usual LU decomposition algorithm
applied to A11. Then from L11 U12 = A12 and L21U11 = A21, we can compute U12 and L21
by solving triangular stystems with multiple right hand sides. Then Sog = A9y — Loy Uso
can be computed and Soo can be stored in the place where Ass was stored. The algorithm
is summarized:

1. LHUH = A11 (Un—blocked LU)
2. L11Uyp = Ay (Triangular solve)
3. Lo1Uyy = Ay (Triangular solve)

4. A22 = A22 — L21U12 (Matrix multiplication)

Then Ass is partitioned into blocks and the analogous procedure is repeated.
For simplicity, in the Algorithm 5.4, we assume that the matrix order n satisfies n =
t * 1, for some integers ¢ and r. The memory reference pattern is illustrated in Figure 5.2.

ALGORITHM 5.4 Right-looking Block Variant

* Right-looking block LU decomposition

do i=1,t
s=(i-1)*r +1 *Start position of block to decompose
e=i*r *End position of block to decompose
u=e+1 *Start position for update

Ls:e,s:eUs:e,s:e = As;g,s;g *Un-blocked LU
Usown = Lot oo Agieun *BLAS-3 routine STRSM

S s:e,s:ef1s:e,
Lu:n,s:e - Au:n,s;eUs_:el,s:e *BLAS-3 routine STRSM
Au:n,u:n = Au:n,u:n - Lu:n,s:eUs:e,u:n *BLAS-3 routine SGEMM

enddo

A left-looking variant can be derived as follows. Partition the matrices A, L and U as

An A A Ly Ui U Uss
Agr Ay Azz | = | Lot Lo U Usz |, (5.4)
Az Aszy Az L3 L3> L33 Us3
and assume that we know Uy, L1y, Lo; and L3;, and we want to compute Lo, L3s, Ujo

and Usqe. By identifying the second column block in A with the second column block of
the product in (5.4), we obtain

Ay = LUy,

Agy = LoiUig + LogUso,
Aszy = L31Uiz + L3aUss.
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Figure 5.2: Right-looking block LU decomposition. The darker shade indicates the ele-
ments that are computed in the present block transformation and the lighter shade indi-

cates elements that are updated.

From the first equation, we compute Uyo by solving a triangular system
L11Uy2 = Ajpa.
Then we update the (2,2) and (3,2) blocks in A:
<A22> o <A22> B <L21> Uty
Asz ) \Asg L3 '
Now we can factor the updated diagonal block,
LooUzz = Asa,

using an un-blocked algorithm, and compute Lgo := Aso U{QI. The algorithm is summarized
in Algorithm 5.5. The memory reference pattern is illustrated in Figure 5.3.

ALGORITHM 5.5 Left-looking Block Variant

* Left-looking block LU decomposition.

do i=1,t
s=(i-1)*r +1 * Start position of block to decompose
e=i*r * End position of block to decompose
if i>1
Utis—1,s0e = L1 121 ALis—1,s:e * STRSM
Aginsie = Asmsie — Lsin 1:5—1U1:5—1,5:e * SGEMM

endif
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Figure 5.3: Left-looking block LU factorization. Lighter shade indicates elements that
are used and darker shade indicates elements computed in the present stage.

Variant BLAS % operations | time | Mflops (average)

Left-looking | unblocked LU 10 20 146
SGEMM 49 32 438
STRSM 41 45 268

Right-looking | unblocked LU 10 19 151
SGEMM 82 56 414
STRSM 8 23 105

Table 5.2: Operations and times for block LU variants for n = 500, r = 64 on Cray 2-S, 1
processor.

L. 5:eUs:es:e = As:n,s:e * BLAS-2
enddo

The performance of two variants of block LU decomposition is illustrated in Table 5.2
(data from [1]).

The main part of the work in block LU decomposition is based on the BLAS-3 routines,
The variants differ in how much of the work is done by which subroutines. A subroutine
may be more efficient or less efficient depending on a particular computer. It is therefore
possible to optimize the algorithm for a specific architecture by choosing block size and
variant of the algorithm.

5.3.1 LAPACK

LAPACK [2] is a library of subroutines for linear systems of equations, linear least
squares problems, and eigenvalue problems. It is designed to replace both the LINPACK
library which contains routines for solving linear systems of equations and least squares
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and the EISPACK library for eigenvalue problems. LAPACK has been designed to give
high efficiency on vector processors, high performance, workstations and shared memory
parallel computers.

The subroutines are written in Fortran 77, and as much work as possible is performed
by calls to BLAS routines, in particular block algorithms and BLAS 3 routines are used.
This way the LAPACK programs are portable, and at the same time they perform well on
most computers, in particular if the BLAS routines have been optimized for each computer.
On some supercomputers (e.g. those from from Cray Research), the BLAS 3 routines are
implemented with vector instructions and parallelization (if there are any idle processors
at the beginning of the call to a BLAS routines then they are used for parallel execution
of the code). In addition, the BLAS 3 routines are highly optimized, and the LAPACK
routines parallelize automatically on Cray computers with more than one processor.

The linear equations part of the library contains routines for the solution of general
linear systems, as well as banded, symmetric, positive definite, and indefinite systems.
There are single and double precision routines for real and complex arithmetic.

The library contains routines for the computation of several matrix decompositions,
e.g., LU, QR and SVD. Also a number of eigenvalue decomposition routines for symmet-
ric and nonsymmetric matrices are included. Much effort has been made for providing
comprehensive error bounds, both normwise and componentwise.

The matrix decomposition routines are block algorithms (see Chapter 5). To determine
the block size the LAPACK routines call a subroutine, ILAENYV, that returns the block size
that is optimal for the actual computer, the LAPACK routine and the problem dimensions.

LAPACK was developed by an international group of researchers and it is available at
no charge through netlib at URL

http://netlib.org/lapack
http://www.netlib.no/netlib/lapack/index.html

5.4 Message Passing LU Decomposition

We now study some implementation details of the right-looking (KJI) variant on a dis-
tributed memory parallel computer with message-passing. Consider the code

do k=1,n-1
a(k+1:n,k)=a(k+1:n,k)/a(k,k)
do j=k+1,n
a(k+1:n,j)=a(k+1l:n,jd)-a(k,j)*a(k+1l:n,k)
I SAXPY operation
enddo
enddo

Now, we implement this algorithm on a ring of p processes, and we will only consider
neighbor-to-neighbor communication.

We first discuss two schemes for distributing the matrix to processes that will lead to
inefficient usage of the parallel computer. Suppose first that we distribute the matrix over
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( P1 P2 P3 P4 )

Figure 5.4: Ring of processes, p = 4.

Process Py (Idle)
Idle)
Active)

Active)

Process Py

Process P3

~ A~~~

Process Py

Process P, (Active)

Figure 5.5: LU decomposition on a Block Row Partitioned Matrix.

the p processes in a block row fashion so that process P; holds rows (i — 1)n/p+1 to in/p
of A and the corresponding components of the right hand side vector b, see Figure 5.5.

At step j, the row j which is stored in P; must be sent to P;1; ... P, in order to perform
the eliminations in each of them.

Similarly, the matrix can be divided up into blocks of contiguous columns. Then,
at step 7, column 7, which contains the multipliers is in P;, and must be transmitted to
P,y ... P,. Since we are transforming A to upper triangular form, with these assignments,
process 1 becomes idle after the initial n/p steps, then after n/p additional steps process
2 becomes idle, etc. Obviously, these assignments will not give a good load balancing.

On a sequential machine the time for LU decomposition is proportional to §n37 where
v is the time required to perform 1 floating point operation. In the preceding schemes, use
of p processes will not speed up the computation by a factor of p, no matter how fast the
communication is, because processes are often idle. There are several ways of improving
the efficiency of these algorithms. We could keep processes busy by having idle processes
continue the elimination on rows above the pivot row instead of remaining inactive; this
is the Gauss-Jordan method. An alternative is interleaving of rows or columns across
processes or we distribute the columns to the processes in an cyclic way, as illustrated in
Figure 5.6.
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Figure 5.6: Cyclic distribution of columns to processes, p = 4. The numbers denote the
process to which a column is assigned.

The pivot columns must be broadcast to all the processes, and this can be done in
a pipelined fashion: As soon as a process receives the pivot column, it sends it to the
neighbor to the east, and then starts to perform the updates to the local columns. The
elimination is performed if each process executes the following code.

ALGORITHM 5.6 Message passing LU decomposition

! LU decomposition, column cyclic distribution
dimensions: n=r*p.
columns of the local matrix C(l:n,l1:r) are columns

!
!
! A(:,myid), A(:,p+myid), A(:,2p+myid),...
!

j=0
do k=1,n-1
if (mod(k,p)=myid) or (mod(k,p)=0 and myid=p) then
! Remainder when k is divided by p
! This process holds the
! pivot column
j=j+t
C(k+1:n,j)=(1/C(k,j))*C(k+1:n,j)
send(east,C(k+1:n,j),p-1)
piv_col(k+1:n)=C(k+1:n,j)
else
receive(west,piv_col(k+1:n),counter)
if counter>1 then
send(east,piv_col(k+1:n),counter-1) ! Immediately
! send it further
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endif
endif

do jj=j+i,r
C(k+1:n,jj)=C(k+1:n,jj)-C(k,jj)*piv_col(k+1:n)
enddo
enddo

We use the variable counter to keep count of how many processes have had access to the
present pivot column, and to prevent it from being sent around in the ring forever. When
the program has been executed, each process holds r columns from the upper triangular
matrix U in the LU decomposition of A. Under the diagonal in each column are the
elements from the lower triangular factor L.

We will now perform a simplified timing analysis of Algorithm 5.6. Concerning the
arithmetic, we disregard the computation of the pivot column, since this is one order of
magnitude less work than the update of the rest of the matrix. Since we have a cyclic
distribution of columns to processes, we have a good load balancing, and we can assume
that the time for performing the floating point operations is 2n3/(3p)y, approximately),
where v is the time for one flop.

Algorithm 5.6 is pipelined, and there is a startup phase, when the pipeline is filled,
and a corresponding finishing phase, when it is emptied. If the problem is large, then
these phases are much shorter than the time when all processes are busy!, and therefore
we will disregard them. In step k of the algorithm each process sends a message of length
n —k, which, under the usual assumptions about the communication (Section 2.6.1), takes
T+ (n — k). Thus, the total communication time is

n—1 n2
> (r+ Bln— k) ~ 07+ B
k=1

The parallel efficiency of this algorithm is

2~ 2n3y/3 B
9T p(2ndy/(3p) + nT +n2B/2) 1+ 2L

2n2

QL=

+

NS
S8
L[>

Thus, since the efficiency depends on p/n, this algorithm is not scalable (cf. Section 4.4.

In Sections 4.3.1 and 4.4 we saw that in order to get a scalable algorithm for matrix mul-
tiplication, it was necessary to distribute the matrices block-wise over a two-dimensional
mesh of processes. If we use that distribution here, then we get a bad load balancing, as
is illustrated in Figure 5.7. On the other hand, we have just seen that to obtain good
load-balancing, it is necessary to use a cyclic distribution. As a consequence, to get a
scalable algorithm for LU decomposition, with good load balancing, we should use a com-
bination of the two approaches, where blocks of the matrix are distributed cyclically over
the processes [12]. We illustrate this in Figure 5.8.

Tn the startup and finishing phases there are altogether 2(p — 1) messages sent, to be compared to n,
approximately, in the middle part of the algorithm.
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Figure 5.7: Bad load-balancing in the LU decomposition algorithm with blocked mapping.
Each square represents a matrix block stored in one process. The processes completely
outside the shaded area are idle.

We first derive the mathematical formulas for a right-looking block LU decomposition
algorithm and then discuss the parallel implementation. Assume we have partitioned the
matrix in 7 X r blocks, where n = rm. After k — 1 steps of the block algorithm we have
computed a partial triangularization of the matrix:

A A e A
Ago . A?m

Ape  Aggyr o Apm

A:ik Ai,;f-l—l o A;m

A’r.nk Am;k+1 o Amm

In the next step of the block elimination algorithm we zero the blocks in column k. This
is equivalent to computing a block LU decomposition

A Apgrr o Apm
Aig  Aigt1 - Aim

Amk Am,k+1 Amm



92 Chapter 5

Figure 5.8: Block cyclic storage. The large squares represent large matrix blocks. Each
large block is distributed over the whole array of processes. The small squares represent
small blocks of the matrix.

L Uk Ukk+1 -+ Ukm
=| Lix - 1 0 ket Aim ;
Ly - I 0 lm,lc-i—l AL

where the lower triangular matrix is zero except in the first block column and the diagonal.
By identification we get

LUk = Agk, (5.5)
LU = Aj, k+1<1<m, (5'6)
LikUkj = Agj, k+1<j5<m, (5.7)

Al = Ay — LigUy, k+1<4,5<m. (5.8)

First the blocks Ly and Uy are computed by “point” LU decomposition, then the ele-
ments in block row £ and block column & by solving a sequence of triangular systems with
multiple right hand sides. Finally, we compute the (i, 7) blocks by matrix multiplication
and addition. This block elimination algorithm is equivalent to the “point” algorithm
(5.2), (5.3), except that here we also transform the elements of block row k.

In the discussion of the parallel algorithm it is instructive to consider Figure 5.9, which
illustrates the situation just before step k£ has been performed. Since the diagonal “pivot
block” is assigned to one process, that process can compute the LU decomposition (5.5)
without communicating with any other process. Then the “pivot” process must broadcast
Uir to all other processes in the same process column (the process pivot column), and
these processes will compute L from (5.6). Similarly, Ly is broadcast to all processes in
the same process row (the process pivot row), and the blocks Uy, are computed. Finally,
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Figure 5.9: Block LU decomposition. We have m = 4, and the process grid is 4 x 4. In
step k we will use the diagonal shaded block as “pivot block”. The other shaded blocks

are assigned to the same process as the diagonal block.

each process in column k broadcasts its block L;; to all processes in the same row, and

each process in row k broadcasts its block Uy; within its column, whereupon all the blocks
A;j can be computed. Thus all communication is within process rows and columns.

ALGORITHM 5.7 Message Passing Right-Looking Block LU Decomposition

do k=1,m

if I hold pivot block then
Compute LU decomposition LyrUyr = Agk
Broadcast Uy within my process column
Broadcast Li; within my process row
endif
if I am in process pivot column then
Receive Uy
Compute my blocks L;; from L;; Uk, = Ak
Broadcast L;; within my process row
endif
if I am in process pivot row then
Receive Ly
Compute my blocks Uy; from Ly,Uy; = Ayg;
Broadcast Uy, within my process column

endif

Receive L;; and Uy; corresponding to all my blocks Aj;;
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Perform updates Aij = Aij — LikUkj
enddo

Of course, the broadcasts can be pipelined as in the column version. The detailed
derivation of an estimate of the runtime for this algorithm is rather tedious [12]. It can
be shown that the efficiency is

1
1+0(&)I+0(*2) 2

Elubc =

Thus the algorithm is scalable.

The block cyclic distribution combined with the block algorithm has the advantages
the pivot block is decomposed within one process only, the communication is always within
process rows and columns, and each message is a whole block of numbers.

5.4.1 Pivoting

If we incorporate partial pivoting (which, in general, we must do, for stability reasons),
then the algorithm becomes a little more complicated. We can no longer decompose
the block Ap; separately from the rest of the block column, since in each step of the
computation of Ly we must search the columns of

Agp
A1k

Amk
for the element of largest modulus. The modified code is given below. Note that “pivot

column” refers to the column of processes holding the matrix blocks Agp, Api1k, ---,
Ak

ALGORITHM 5.8 Message Passing Right-Looking Block LU Decomposition with
Partial Pivoting

do k=1,m

if I am in process pivot column then execute factor(Agk,...,Amk)
Receive pivoting information and apply interchanges
if I am in process pivot row then

Receive Ly
Compute my blocks Uy; from Ly,Uy; = Ay,
Broadcast Uyj within my process column

endif

Receive L;; and Uy; corresponding to all my blocks A;;
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Perform updates Aij = Aij — LikUkj

enddo

Before describing the procedure factor, we remark that the step where the rows are
interchanged according to the pivoting information received applies also to blocks in L,
and it involves exchanging segments of rows with other processes in the same process

column.
The procedure factor computes the factorization
Akk Ly,
P, AkTLk _ LkTLk U,
Amik Lk

where Py is a permutation matrix, by Gaussian elimination with partial pivoting.

ALGORITHM 5.9 Procedure factor(Agg,..., Amk)
! Factor a block column of A with partial pivoting.

! All computations are performed within the blocks (Agk,..., Amk)

do i=1,r
Find maximum element and its location in column i

Swap rows
Scale column i

Broadcast the pivot row to all processes in the process column

Update the elements of the trailing submatrix

enddo

Broadcast pivoting information and all my blocks L;; to processes within my

process row.

Communication between processes in the process pivot column takes place in all steps in
the loop of the procedure, except the update step.

The LU decomposition algorithm is scalable also with pivoting [12]. This is essentially
the algorithm implemented in the ScaLAPACK library. The performance of the algorithm
on an Intel Paragon computer is illustrated in Figure 5.10 (data adapted from [6]).
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Figure 5.10: Performance of the ScaLAPACK LU decomposition algorithm on a 16 x 32
process grid on an Intel Paragon computer. The block size was r = 8.

5.5 Shared Memory LU Decomposition

As in the case of matrix multiplication, it is straightforward to parallelize Gaussian elimi-
nation. We use the column oriented SAXPY (KJI) version given on page 81, and instruct
the compiler to parallelize the loop that performs the updates:

ALGORITHM 5.10 LU decomposition — OpenMP

do k=1,n-1
a(k+1:n,k)=(1/a(k,k))*a(k+1:n,k)
!$omp parallel do schedule (static)
do j=k+1, n
a(k+1:n,j)=a(k+1l:n,jd)-a(k,j)*a(k+1l:n,k)
enddo
!$omp end parallel do
enddo

Unless the matrix is extremely large, it is probably not worth it to parallelize the compu-
tation of the pivot column a(k+1:n,k) (the overhead for the fork-join is likely to be larger
than the gain in parallelization). That computation is performed by the master thread.
The do schedule (static) means that the iterations of the loop are divided up in
equal chunks, each of the size (n-k)/p, where p is the number of processors. By default,
the loop index is made private to each processor. The computations in the parallel region
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are completely independent, so there is no need to explicitly synchronize in this code.
However, there is an implicit barrier at the !$omp end parallel do statement: each
processor waits until the rest have finished their computations. This ensures that the pivot
column for the next iteration has been been computed correctly, before it is transformed
by the master thread.

5.6 Data Parallel LU Decomposition

To develop a data parallel program for LU decomposition, first consider the code

do k=1,n-1
do i=k+1,n
a(i,k)=a(i,k)/a(k,k) % Divide by the pivot element
enddo

do j=k+1,n
do i=k+1,n
a(i,j)=a(i,j)-a(i,k)*a(k,j)
enddo
enddo
enddo

The main part of the work in the algorithm is in the j,i-loop. Assuming for the moment
that each matrix element is stored in a separate processor, we consider the communication
needed for modifying the (i,j) element in

a(i,j)=a(i,j)-a(i,k)*a(k,j)

In order for the (i,j) processor to modify its element, it must have a(i,k) and a(k,j).
The communication is illustrated in Figure 5.11.

This communication must be performed for all elements in the lower right submatrix,
and it can be expressed using the Fortran 90 intrinsic function spread. The statement

spread(a(k,k+1:n),1,n-k)

creates a matrix of dimension (n-k) X (n-k), where the elements of each row are equal to
the corresponding elements of row k in a. Similarly,

spread(a(k+1:n,k),2,n-k)

creates a matrix where the elements of each column are equal to the corresponding elements
of column k in a. We illustrate this in Figure 5.12.
Now we can write the code for LU decomposition in the form
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Figure 5.11: Communication for modifying a(i,j).
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Figure 5.12: (a) spread(a(k+1:n,k),2,n-k) (b) spread(a(k,k+1:n),1,n-k).

do k=1,n-1
a(k+1:n,k)=a(k+1:n,k)/a(k,k)
a(k+1l:n,k+1:n)=a(k+1l:n,k+1:n)-spread(a(k+1:n,k),2,n-k)*
spread(a(k,k+1:n),1,n-k)
enddo

The multiplication is element-by-element matrix multiplication, and each multiplication
takes place in the processor where the element from a is stored.

Now assume that the matrix is too large to store one element per processor, and that
it is assigned processors in a blocked fashion. Then after a few steps in the algorithm,
some processors will be idle (Figure 5.7). As in the message passing algorithm we should
use a block cyclic assignment as shown in Figure 5.8.
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