Introduction to Abisko

Jerry Eriksson, Mikael Rännar, P. Ojeda-May and B. Brydsö

HPC2N, UmeåUniversity,

901 87, Sweden.

May 27, 2015

Jerry Eriksson, Mikael Rännar, P. Ojeda-May and B. Brydsö Introduction to Abisko

Table of contents

5 Hands-on

- Use an already parallelized software
- Doing it yourself
 - Doing it yourself
 - Run each instance on a separate core
 - If inside a loop, maybe suitable for simple parallelization
 - More complex problems requires more explicit parallel programming
- Use your computer for other things
- Requires a lot of memory (up to 256 GB main memory)
- Solve larger (more interesting/realistic) problems

Projects Accounts

SUPR - SNIC User and Project Repository

- Get a login at SUPR (https://supr.snic.se/)
- Create a proposal for a project (or get added to existing project)

 (at least: Title, Abstract, Resource Usage, Classification, length of project (1-12 months), which resource(s) you wish to use, and the amount of core hours/month you need.)
- Get an account at HPC2N

Projects Accounts

Small level requests

- Max 5000 core hours/month/resource (Abisko)
- Can be submitted at any time (short abstract)
- Applications handled locally at the SNIC centers
- For small projects and new groups that want to gain experience in using HPC systems
- The PI must be employed at a Swedish university (e.g., PhD student or higher)

Projects Accounts

Medium level requests

- Up to 160000 core hours/month/resource (Abisko)
- Can be submitted at any time
- Applications handled locally at the SNIC centers and assesses the feasibility of using the requested recourses
- Evaluated once a month
- The PI must be a senior scientist in Swedish academia

Projects Accounts

Large level requests

- Above the medium level (160000 on Abisko)
- Calls for proposals for large level allocations are issued twice a year by SNAC
- Applications are evaluated by SNAC and they also decides on the allocations, based on scientific merit, need for the resources, efficient use of the resources, and impact
- The PI must be a senior scientist in Swedish academia

Projects Accounts

User Account

- Submit an account application using our online form
 - Name and affiliation
 - Which project you are taking part in (if any)
 - Choose a user name
- Print the final form twice
 - Sign and send one to us together with a copy of your passport (do NOT send by email)
 - Keep one (your initial password is on it)

User Support

- www.hpc2n.umu.se
 - Quick-start guides
 - How to access, compile, and submit
 - Installed software
 - Descriptions and how to use it at HPC2N
- support@hpc2n.umu.se
 - Problems
 - Requests (software, for instance)

User Support

The partners of HPC2N are:

Mittuniversitetet

Jerry Eriksson, Mikael Rännar, P. Oieda-May and B. Brydsö

SLU

2n umu se r bookmarks here on the bookmarks bar. Import bookmarks now... HPC2N - High Performance Computing Center North About News Events Resources System status Support Contacting Support/Help High Performance Computing Center North Search Quick-start guide (HPC2N) is a national center for Scientific and Parallel Computing. Accounts » · Apply for project HPC Access » recources We are a collaboration between universities and Apply for a user account FAO research institutes who form a competence Environment » network for high performance and parallel 17 **Events** computing, grid and cloud computing, scientific File system » visualization and virtual reality (VR), as well as Course: Introduction to Software » effective mass-storage solutions, in Northern Distributed Memory Compiling » Sweden. The primary objective of the center is to Programming and MPI. 23 raise the national level of competence in HPC and Batch systems » April to transfer HPC knowledge and technology to new · Course: Introduction to 4 1 users in academia and industry. Linux and Ahisko 22 April Today, the use of HPC include compute-intensive as well as data- and communication-intensive SeSE: High Performance applications. HPC2N is one of six national centers funded by the Swedish National Infrastructure for Computing II, April 13-17 Computing (SNIC), a metacentre under The Swedish Research Council. News HPC2N has a Board of Directors consisting of a Chairman and six members, representing the HPC2N partners and the industry. · SNIC: Call for Large allocations open. Contact information can be found on the 'Contact Us' page. Deadline 27 April 2015.

HPC2N flyer

Introduction to Abisko

User Support

- Meetings with individuals or groups
 - To see how HPC2N can be of help
 - Help to get started
 - Help to parallelize
- HPC2N Think Tank Open house
- Courses (0.5 3 days)
 - Introduction on how to use our system
 - Parallel programming (MPI, OpenMP)
 - ...

Connecting Modules File Systems Batch System

Abisko

- 328 nodes/15744 cores
- 10 fat nodes (512 GB RAM), 318 thin nodes (128 GB RAM)
- CPUs: (thin) 4 × AMD Opteron 6238 (Interlagos) 12 core (2.6 GHz)
- CPUs: (fat) 4 × AMD Opteron 6344 (Abu Dhabi) 12 core (2.6 GHz)
- Interconnect: Infiniband QDR, 40Gb/s, Mellanox
- Installed 2011

Jerry Eriksson, Mikael Rännar, P. Ojeda-May and B. Brydsö Introduction to Abisko

Connecting Modules File Systems Batch System

Abisko

- Application software: Abinit, Ansys, DDT, Espresso, Gamess, Gaussian, Gromacs, HDF5, Matlab, NetCDF, NWChem, Octave, PETSc, R, Siesta, VASP, WRF, ...
- Num. and Comm. libraries: BLACS, FFTW, BLAS, LAPACK, ScaLAPACK, ACML, Intel MKL, ParMETIS, RECSY, SLICOT, ...
- MPI: OpenMPI, Intel MPI
- Compilers: GCC, Intel, Pathscale, PGI
- Other software on request

Connecting Modules File Systems Batch System

Connecting from a Windows System

You need an ssh client to connect.

- PuTTY
- Cygwin

If you want to open graphical displays, you need an X11 server

- Xming
- Cygwin

Transferring files (sftp or scp)

- WinSCP
- FileZilla (only sftp)
- PSCP/PSFTP

Connecting Modules File Systems Batch System

Connecting from a UNIX/Linux System

- Login with ssh: local> ssh username@abisko.hpc2n.umu.se
- If you want to open graphical displays, you need to enable X11 Forwarding: local> ssh -X username@abisko.hpc2n.umu.se
- Use scp for file transfer: local> scp username@abisko.hpc2n.umu.se:file /tmp local> scp file username@abisko.hpc2n.umu.se:file

Connecting Modules File Systems Batch System

Modules

- Many versions of software packages
- Use a tool called modules
 - Can choose a combination of libraries and compilers that will work together
 - Changes the environment (sets path, etc.)
 - User guide and man-page

Connecting **Modules** File Systems Batch System

Modules

- Some useful module commands
 - help list all module commands
 - show display information on a module
 - add add a module to the environment
 - rm remove a module from the environment
 - list list currently activated modules (module list)
 - avail list all modules that exist on the system

Examples

- module add pgi will add the latest version of the Portland compilers
- module add openmpi/pgi will add the latest version of openmpi (suitable for the current machine) that was built with the Portland compilers
- module avail OR module avail intel

Connecting Modules File Systems Batch System

File Systems

There are 2 file systems: AFS

- Your home directory
- Backed up regularly
- NOT accessible by the batch system

PFS

- Parallel file system
- NO BACKUP
- Accessible by the batch system

Connecting Modules File Systems Batch System

- Offers high performance when accessed from the nodes
- To create soft link from your home directory to your corresponding home on the parallel file system ln -s /pfs/nobackup\$HOME \$HOME/pfs
- Then if you use
 - cd pfs

from your home directory you will end up in your "parallel" home directory

Connecting Modules File Systems Batch System

Batch System (SLURM)

- Large/parallel programs, run through the batch system
- Keeps track of available system resources
- Takes care of scheduling jobs of multiple users, running tasks simultaneously
- Enforces local system resource usage and job scheduling policies
- Users submit to a queue (running, idle, blocked)

Connecting Modules File Systems Batch System

Job script

#!/bin/bash
#SBATCH -A SNICYYYY-XX-NN
#SBATCH -n 48
#SBATCH --time=01:00:00

```
module add openmpi/psc
srun ./parallel_prog args
```

- Submitting: sbatch <jobscript>
- Show the job queue: squeue [-u username]
- Show information about a job:

scontrol show job
<jobid>

 Delete a job: scancel < jobid>

Connecting Modules File Systems Batch System

Job script

#!/bin/bash

#SBATCH -A SNICYYYY-XX-NN

#SBATCH -n 48

#SBATCH --time=01:00:00

```
module add openmpi/psc
srun ./parallel_prog args
```

Your account (-A)

- The account is your project id
- Low priority if not set
- You can find your project id by running: projinfo

Connecting Modules File Systems Batch System

Job script

#!/bin/bash #SBATCH -A SNICYYYY-XX-NN

#SBATCH -n 48

#SBATCH --time=01:00:00

```
module add openmpi/psc
srun ./parallel_prog args
```

Number of tasks (-n)

- The number of tasks is for the most cases the number of processes you want to start.
- The default value is one
- e.g. number of MPI tasks
- e.g. number of serial programs

Connecting Modules File Systems Batch System

Job script

#!/bin/bash
#SBATCH -A SNICYYYY-XX-NN
#SBATCH -n 48
#SBATCH --time=01:00:00

```
module add openmpi/psc
srun ./parallel_prog args
```

Number of cores per task (-c)

- For multi threaded applications (OpenMP/pthreads/...)
- indicates the number of cores each task can use
- The default value is one
- Maximum is 48

Connecting Modules File Systems Batch System

Job script

#!/bin/bash

#SBATCH -A SNICYYYY-XX-NN

#SBATCH -n 48

#SBATCH --time=01:00:00

```
module add openmpi/psc
srun ./parallel_prog args
```

The run/wallclock time D-HH:MM:SS

- Runtime (wall clock time) of your job
- Try to estimate correctly
 - Hard limit
 - Shorter jobs are more likely to fit into slots of unused space faster.

Connecting Modules File Systems Batch System

Job script

#!/bin/bash
#SBATCH -A SNICYYYY-XX-NN
#SBATCH -n 48
#SBATCH --time=01:00:00

module add openmpi/psc
srun ./parallel_prog args

Load modules needed or other things. (This is for your program that is compiled with the PathScale compiler and the OpenMPI library.)

Connecting Modules File Systems Batch System

Job script

#!/bin/bash

#SBATCH -A SNICYYYY-XX-NN

#SBATCH -n 48

#SBATCH --time=01:00:00

module add openmpi/psc
srun ./parallel_prog args

Run your MPI application using srun

- Starts the required number of processes
- Note! If your program is serial it will start many instances

Connecting Modules File Systems Batch System

Job script

#!/bin/bash #SBATCH -A SNICYYYY-XX-NN <mark>#SBATCH -n 48</mark> #SBATCH --time=01:00:00

module add openmpi/psc
srun ./parallel_prog args

Run your multi threaded application on 36 cores. Change the marked lines with:

#SBATCH -c 36

export OMP_NUM_THREADS=36

./my_OpenMP_program args

Connecting Modules File Systems Batch System

Job script

#!/bin/bash
#SBATCH -A SNICYYYY-XX-NN
#SBATCH -n 48
#SBATCH --time=01:00:00

module add openmpi/psc
srun ./parallel_prog args

Output

- Put stdout into the file
 < jobid>.out
 #SBATCH --output=%J.out
- Put stderr into the file
 < jobid>.err
 #SBATCH --error=%J.err
- By default both to slurm-<jobid>.out

Input

Use file.txt as stdin
 #SBATCH --input=file.txt

Connecting Modules File Systems Batch System

Job script - several serial jobs

```
#!/bin/bash
#SBATCH -A SNICYYYY-XX-NN
#SBATCH -n 6
#SBATCH --time=01:00:00
```

```
# Use '&' to move first
# job to the background
srun -n 1 ./job1.batch &
srun -n 1 ./job2.batch &
...
srun -n 1 ./job6.batch
wait
```

- Running several (here 6) serial jobs from the same submit job.
- The scripts job1.batch, job2.batch, ... could be a simple script containing only "./myprogram"
- 'wait' is used as a barrier to collect all executables when they are done.

Connecting Modules File Systems Batch System

Job script - several serial jobs

```
#!/bin/bash
```

```
#SBATCH -A SNICYYYY-XX-NN
```

```
#SBATCH -n 6
```

```
#SBATCH --time=01:00:00
```

```
srun -n 1 ./myprogram 10 &
srun -n 1 ./myprogram 100 &
...
srun -n 1 ./myprogram 1000000
wait
```

- Running several instances of the same program from the same submit job.
- Each instance is run with different variables here
- 'wait' is used as a barrier to collect all executables when they are done. projinfo

Simple hands-on

- Log in to Abisko.
- O to the parallel file system.
- Copy executable (threaded program)and submit file: cp ~mr/Public/mandel . cp ~mr/Public/submit .
- Out the submit file into the batch queue.
- Sook at the queue.
- Where did the output from the program go?
- Q Run on 12 cores instead. Does it run twice as fast?
- The program creates a picture on a file (mandel.ppm) as output. Try looking at it (e.g. using the command display).

Job script (submit)

