
Automatic Monitoring of Memory Hierarchies in
Threaded Applications with AMEBA?

Edmond Kereku, Michael Gerndt

Technische Universität München
{kereku,gerndt}@in.tum.de

Abstract. In this paper we present an approach to online automatic
monitoring of memory hierarchies in threaded applications. Our envi-
ronment consists of a monitoring system and an automatic performance
analysis tool. The EPC monitoring system, uses static instrumentation
of the source code and information from the hardware counters to gener-
ate performance data for selected code regions and data structures. The
monitor supports threaded applications by providing per-thread perfor-
mance data or by aggregating it. It also provides a monitoring requests
API for the performance tools. Our tool AMEBA performs an online au-
tomatic search for cache and thread-related ASL properties in the code.

1 Introduction

With SMP architectures being more and more a commodity computing resource
and with paradigms like OpenMP, the programming of threaded applications
became a task that almost any average programmer can master. A great number
of HPC applications originated this way. But this is where the easy part ends.
While debugging of such an application is not as easy as writing it, obtaining
performance and scalability from it could really be a daunting task.

The memory bottleneck problems for example, already present in serial pro-
grams, obtain a greater significance in threaded applications. False sharing and
data locality are added to the traditional problems such as high cache miss rate.
Usual profiling and tracing tools can’t manage anymore to find the new prob-
lems, what is needed is more extensive and complex monitoring and analysis.

AMEBA[1] (Automatic Monitoring Environment for Bottleneck Analysis) is
our approach to automatic analysis of threaded applications in SMPs. By using
the EPC[2] monitoring environment, our tool is able to automatically search for
complex cache problems (expressed in ASL[3]) in serial and OpenMP regions.
The search can even be refined to single data structures in the region. EPC can
either use simulation or the available hardware counters in the processors to
provide the required performance data. Particularly interesting for monitoring
of threads and data structures is the port of EPC to Itanium-based SMPs and
especially in ccNUMA architectures, such as SGI Altix 3700[4].
? This work is performed in the context of the projects EP-CACHE and Periscope,

funded by the German Federal Ministry of Education and Research(BMBF)

The rest of this document is organized as follows: Section 2 reveals the sup-
port of EPC for threaded applications. Section 3 is an overview of AMEBA and
Section 4 introduces new ASL properties related to threads and cache problems.

2 Monitoring threads with the EPC Monitor

The EPC environment support for threaded applications includes the instru-
mentation of OpenMP regions, the thread-specific configuration of monitoring
resources in runtime, and the ability to deliver thread-related performance data.

Our Fortran 90 instrumenter[5] called f90inst instruments sequential regions,
taking into account multiple exits from regions, as well as OpenMP constructs
based on the work done by Mohr et al. in POMP[6].

Performance tools such as AMEBA access EPC through a well defined mon-
itoring API called the Monitoring Request Interface (MRI)[7]. MRI allows the
tool to specify monitoring requests in terms of Runtime Information (what to
measure), code regions, and Active Objects which can be threads, nodes etc.

In order to configure single threads upon an MRI Request, EPC has a thread
management utility for storing thread-related information. With its help the
monitor knows how many threads are used in the monitored application, and
which thread executed a call to the monitoring library.

MRI Request
 Runtime Information: MRI_LC1_DATA_READ_MISS

Region: 13 25

 Active Object: T1, T3

Thread_Nr: T1 Thread_Nr: T4Thread_Nr: T3Thread_Nr: T2

Is current Thread_Nr
equal to T1 or T3 ?

YES
Configure the

Hardware Counters

YES
Configure the

Hardware Counters

NO
Do Nothing

NO
Do Nothing

ENTER_REGION
(13, 25)

ENTER_REGION
(13, 25)

ENTER_REGION
(13, 25)

ENTER_REGION
(13, 25)

Fig. 1. Configuration of monitoring for multi-threaded applications

Figure 1 shows how the configuration for thread-related monitoring works.
After a thread entered the monitoring library and a monitoring request is pend-
ing for the current region, first EPC determines which thread has entered the
monitoring library. If the thread id matches one of the threads specified in the
MRI Request, the hardware resources are accordingly configured, otherwise the
application immediately continues the execution.

3 The AMEBA automatic performance analysis tool

Our analyzer AMEBA performs an automated iterative search for performance
problems specified with ASL which is executed while the application is run-

ning. The search process is iterative in the sense that AMEBA starts with a
set of potential performance properties, performs an experiment, evaluates the
hypotheses based on the measured data, and then refines the hypotheses. The re-
finement can either be towards more specific performance properties or towards
subregions and data structures of the already tested region.

LC1MissesOverMemRef
(properties)

MRIContextProvider
(AMC_MRI)

PropertyContext
(Asl)

ContextProvider
(Asl)

MRIExperiment
(AMC_MRI)

RefineStrategy
(strategies)

MRIApplication
(AMC_MRI)

Strategy
(Asl)

SummaryPerf
(Asl)

Property
(Asl)

SeqPerf
(Asl)

MRISeqPerf
(AMC_MRI)

Experiment
(Asl)

ParPerf
(Asl)

MRIParPerf
(AMC_MRI)

Application
(Asl)

Region
(Asl)

AMEBA Dynamically Loaded Classes
MRI Implementation

ASL Base Classes

ASL Compiler

Fig. 2. AMEBA Classes derived from the ASL data model

AMEBA is built over the model shown in Figure 2. This model includes a set
of fixed base classes which are implemented in the tool and a set of derivative
classes which are implemented separately for a specific monitoring environment,
hardware system or application domain. Those classes are dynamically loaded
at runtime, which makes AMEBA a very versatile and extensible tool.

The base classes includes the Strategy which specifies the search process,
the Property which describes the performance problems, the PropertyContext
which holds the performance data needed to evaluate the property, and the
ContextProvider which sets the connection with the monitoring system. The
classes derived from the PropertyContext contain summaries of the performance
data specific to sequential (SeqPerf) or parallel (ParPerf) regions, and specific
to the monitoring environment (MRI(Seq/Par)Perf).

4 Threads and Cache-related ASL Properties

As stated before, AMEBA uses the APART Specification Language (ASL) to de-
scribe the performance problems1 in terms of condition, confidence, and severity.
Consider for example the following ASL Property:

1 Actually in the original ASL specification, a property constitutes a performance
problem if its severity exceeds a given threshold. In AMEBA we provide the threshold
as parameter to the property, therefore we interchangeably use the terms property
and problem when referring to ASL Properties.

property UnbalancedLC1DataMissRateInThreads(ParPerf pp, float t){
let
miss_rate(int tid)=pp.lc1_miss[tid]/pp.mem_ref[tid];
mean=sum(miss_rate(0),...,miss_rate(pp.nrThreads))/pp.nrThreads;
max = max(miss_rate(0),...,miss_rate(pp.nrThreads));
min = min(miss_rate(0),...,miss_rate(pp.nrThreads));
in
condition: max(max-mean, mean-min) > t;
confidence: 1;
severity: max(max-mean, mean-min) * pp.parT[0]; }

where pp is summary of performance data for a parallel region, parT[0] is
the execution time of the master thread. This property specifies that there is a
problem in parallel regions if the L1 cache miss rate in a thread deviates from the
mean value achieved over the threads beyond a given percentage t. Furthermore
it specifies that the problem is more severe if it is found in regions where most
of the execution time is spent. We also are 100% confident about the existence
of the problem in regions where the condition is true because our measurements
are based in precise counter values and are not statistical values.

If a performance problem expressed by an ASL property is the refinement
of another performance problem, we organize them in an hierarchical order. In
AMEBA we implemented search strategies which take this organization into
account. For example UnbalancedLC1DataMissRateInThreads is actually a re-
finement of the problem specified by LC1DataMissRateInThreads, which holds
if the miss rate in one of the threads is higher than a threshold. Similar proper-
ties exist for the L2 and L3 caches and refinements are provided for write and
read misses.

An interesting group of properties can be defined for Itanium-based
ccNuma architectures such as SGI Altix 3700. By using the Itanium-specific
events DATA EAR CACHE LAT4, LAT8, LAT16 .. LAT4096 we can identify data
locality problems. One property of this group is RemoteMemAccessInThreads.

References

1. E. Kereku, M. Gerndt: The EP-Cache Automatic Monitoring System. (In: Pro-
ceedings of Parallel and Distributed Computing and Systems, Phoenix 05)

2. E. Kereku et al.: A Data Structure Oriented Monitoring Environment for Fortran
OpenMP Programs. In: Proceedings of Euro-Paar 04, Pisa. (2004) 133–140

3. T. Fahringer et al.: Knowledge Specification for Automatic Performance Analysis.
Technical report, APART Working Group (2001)

4. SGI Altix 3700’s homepage: http://www.sgi.com/products/servers/altix/3000.
5. M. Gerndt, E. Kereku: Selective Instrumentation and Monitoring. (In: Proceedings

of 11th Workshop on Compilers for Parallel Computers, 2004) 61–74
6. B. Mohr, A. Malony, S. Shende, F. Wolf: Design and Prototype of a Performance

Tool Interface for OpenMP. Journal of Supercomputing 23 (2002) 105–128
7. E. Kereku, M. Gerndt: The Monitoring Request Interface (MRI). (In: Proceedings

of IPDPS 06, Rhodos Island) to appear.

