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Abstract. A parallel program complex for 3D viscous gas flow sim-
ulation is presented. This complex is based on explicit finite difference
schemes, which are constructed as an approximation of conservation laws
(control volume method) and oriented on use of locally refined grids.
Special algorithm and utility for nested grid partitioning was created.
The principle of program construction permits to introduce new types of
boundary conditions and change as finite difference scheme as governing
equation system. Introducing new face types and writing new subrou-
tines for flux calculations may reach it. This opens wide perspectives for
the further development of program complex presented. The scalability
of program complex was investigated on 2D and 3D subsonic and su-
personic problems. The calculations were held on different cluster type
multiprocessor computer systems. The parallelization efficiency was more
than 90% for 40 processors and more than 60% for 600 processors.

1 Introduction

Essentially unsteady and turbulent regimes of viscous gas flows have received
increasing attention from researches, motivated in part from the importance of
unsteadiness in industrial problems arising in turbomachinery and aeronautics.
Unsteady flow phenomena which occur frequently behind relatively slender, bluff
structures are of great practical interest. In the case of symmetric geometry at
relatively small Reynolds numbers numerical simulation based on 2D unsteady
Navier - Stokes equations is quite successful. At high Reynolds numbers, which
are more relevant in practice, 3D stochastic turbulent fluctuations are super-
imposed on the quasi-periodic 2D unsteady motion. So numerical simulation
must be three-dimensional even for simple flow geometry. The numerical simula-
tion of a detailed structure of unsteady viscous compressible 3D flows with high
Reynolds numbers is possible only by use of high performance parallel computer
systems. This demands the development of the specialized parallel software. This
software must have a good scalability (with respect as to the number of proces-
sors as to the problem size), portability and robustness.

2 Choice of Numerical Method

Use of parallel computer systems with distributed memory architecture deter-
mines the choice of numerical method. The opinion is widely spread that we



2

have to use only implicit schemes for viscous gas flow simulation because of
their good stability properties. In the case of essentially unsteady flow we have
to receive detailed information about high frequency oscillations of gas dynamic
parameters. This fact limits the time step acceptable by the accuracy require-
ments. For many interesting problems these limitations neutralize the advantages
of implicit schemes. So for such problems the explicit difference schemes seem
to be preferable because of their simplicity for program realization, especially
for parallel implementation. Our program complex is based on explicit finite
difference schemes, which are constructed as an approximation of conservation
laws (control volume method). The explicit kinetically consistent finite difference
(KCFD) schemes [1] were selected for realization. They have soft stability condi-
tion (τ ∼ h) giving the opportunity to use very fine meshes to study the fine flow
structure. KCFD schemes belong to the class of kinetic schemes. Nowadays the
kinetic or Boltzmann schemes are very popular in computational fluid dynam-
ics [2] – [4]. The successful experience in solving various gas dynamic problems
by means of KCFD schemes showed that they describe viscous heat conducting
flows as good as schemes for Navier-Stokes equations, where the latter are appli-
cable. In addition to this KCFD schemes permit to calculate oscillating regimes
in super- and transonic gas flows, which are very difficult for modeling by means
of other algorithms.

The situations frequently occur during numerical modeling a large amount
of modern problems of mathematical physics, when high accuracy resolution of
the solution particularities in small regions is needed. These peculiarities may
be the result of as physical processes as problem geometry. This problem may
be avoided by use of unstructured meshes, but the convenience and simplicity
of difference schemes on regular grids enforced us to use multiblock grids where
different subregions have their own grids. A variant of such approach, the use
of nested (or locally refined) grids is chosen. Parallel realization of explicit finite
difference schemes for the numerical solution of gas dynamic problems on nested
grids was discussed in [5].

3 Parallel Implementation

The basic idea for the program complex constructing was to simplify ultimately
the parallel program providing its lucidity. For this reason all complicated logical
communications and other sophisticated but not time-consuming operations are
addressed to sequential preprocessing utilities as far as possible. The program
complex structure is defined by four relatively independent tasks:

– problem/model formulation including description of computation field ge-
ometry, initial and boundary conditions specification and grid generation;

– grid partitioning and data preprocessing;
– main computational block execution;
– data postprocessing.
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As a rule only third of these tasks must be parallel. Separate sequential
programs may execute all other jobs.

Parallel realization is based on geometry parallelism principle. In the case
when the difference scheme is written in the form of conservation laws, the
approximation of gas dynamic equations comes to approximation of conservative
variables (density ρ, momentum ρU and total energy E) fluxes through cell faces.
In order to reach the algorithm homogeneity the boundary conditions of different
types (no slip, symmetry, impermeability, inlet, outlet conditions etc.) are also
written as fluxes of conservative variables through region bound. Each cell face
is supplied by an attribute indicating its type: inner face, various boundary
faces, face between cells of different size (result of local mesh refining), ghost
face i.e. face between ghost cells. This attribute determines which subroutine
must calculate fluxes through the face. The face attributes as well as description
of problem geometry and grid information are contained in a special text file,
which is prepared by sequential preprocessing utility. Another utility divides
3D computational region with rectangular bounds (in i-j-k space) into required
number of rectangular subdomains according to multistep algorithm described in
[5]. As a result this utility creates a text file describing 3D subregions in terms of
grid node numbers, list of neighbors for each subregion and information needed
for organizing of inter processor communications.

According to this the main computational module of parallel program calcu-
lates fluxes through all faces in a subregion addressed to each processor. Having
equal number of nodes in each subdomain the homogeneity of algorithm auto-
matically provides load balancing of processors. Note, that such program con-
struction permits to introduce new types of boundary conditions and change as
finite difference scheme as governing equation system (changing the coordinate
system for example).

4 Program Package Testing

The program complex was tested on different 3D subsonic and supersonic prob-
lems. Locally refined computational grids were used. Total amount of grid cells
was about 8000000. Our results are in a good agreement with the experimental
and computational results of other authors. The scalability of program com-
plex was investigated on different cluster type multiprocessor computer sys-
tems (768-processor MCS-1000M computer system equipped with 667MHz 64-bit
21164 EV67 Alpha processors and 906-processor MCS-15000 computer system
equipped with 2.2GHz PPC970FX processors). The parallelization efficiency was
measured for different number of processors. The results can be found in Table 1.

Because of lack of memory such a large problem can’t be solved on one
processor of MCS-1000M system. That’s why the efficiency for this system was
computed with respect to the calculations held on 2 processors.

The scaling with respect to the problem size was also inspected. Our grid
was doubled in each direction, so total number of cells achieved ∼ 6× 107. Such
problem is too large even for one processor of MCS-15000 system, so the times
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Table 1. Efficiency (%) dependence on the number of processors

N 1 2 10 40 160 320 600

MCS-1000M — 100 97 92.8 79.9 70.1 61.4

MCS-15000 100 98.5 96.3 92 80.1 72.1 62.7

were compared needed for 2000 time steps of our program on these two grids. If
the efficiency doesn’t depend on the problem size, these times must differ by the
factor of 8 from each other. The diminishing of this factor corresponds to the
efficiency increase for large problem. The values of this factor for some numbers
(N) of processors are presented in Table 2.

Table 2. Computational time increase for enlarged grid

N 10 40 100 200 400 600

f 7.96 7.83 7.71 7.48 7.13 6.69

These results show that for N < 100 our factor is really close to 8, but for
greater N it diminishes. This effect is connected with the increase of computa-
tional time with respect to exchange time for each processor. So, increasing of
the total grid nodes number leads to the efficiency growth. For example factor
6.69 for N = 600 means 75% efficiency for ”large” problem in contrast with
62.7% for ”small” one.
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3. E. Oñate and M. Manzam: Stabilization techniques for finite element analysis for
convective-diffusion problem. Publication CIMNE 183 (2000)

4. S. Succi: The lattice Boltzmann equations for fluid dymanics and beyond. Oxford,
Clarendon press. (2001)

5. E.V. Shilnikov: Viscous gas flow simulation on nested grids using multiprocessor
computer systems. In: Proceedings of Parallel Computational Fluid Dynamics Con-
ference (Moscow, Russia, 2003), Elsevier Science BV. (2004) 110–115


