
The Distributed and Unified Numerics

Environment (DUNE)

Peter Bastian1, Markus Blatt1, Andreas Dedner2, Christian Engwer1, Robert
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Abstract. Most finite element or finite volume software is built around
a fixed mesh data structure. Therefore, each software package can only be
used efficiently for a relatively narrow class of applications. For example,
implementations supporting unstructured meshes allow the approxima-
tion of complex geometries but are in general much slower and require
more memory than implementations using structured meshes. In this pa-
per we show how a generic mesh interface can be defined such that one
algorithm, e. g. a finite element discretization scheme, can work efficiently
on different mesh implementations. These ideas have also been extended
to vectors and sparse matrices where iterative solvers can be written in
a generic way using the interface. These components are available within
the “Distributed Unified Numerics Environment” (DUNE).

1 Introduction

There exist many simulation packages for the numerical solution of partial differ-
ential equations (PDEs) ranging from small codes for particular applications or
teaching purposes up to large ones developed over many years which can solve
a variety of problems. Each of these packages has a set of features which the
designers decided to need to solve their problems. In particular, the codes differ
in the kind of meshes they support: (block) structured meshes, unstructured
meshes, simplicial meshes, multi-element type meshes, hierarchical meshes, bi-
section and red-green type refinement, conforming or non-conforming meshes,
sequential or parallel mesh data structures are possible.

Using one particular code it may be impossible to have a particular feature
(e. g. local mesh refinement in a structured mesh code) or a feature may be very
inefficient to use (e. g. structured mesh in unstructured mesh code). If efficiency
matters, there will never be one optimal code because the goals are conflicting.
Extension of the set of features of a code is often very hard. The reason for this
is that most codes are built upon a particular mesh data structure.
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Fig. 1. Encapsulation of data structures with abstract interfaces.

A solution to this problem is to separate data structures and algorithms by
an abstract interface, i. e.

– one writes algorithms based on an abstract interface and

– choses at compile-time exactly the data structure that fits best to the prob-
lem.

Figure 1 shows the application of this concept to two different places in a
finite element code: A discretization scheme accesses the mesh data structure
through an abstract interface. The interface can be implemented in different
ways, each offering a different set of features efficiently. In the second example
an algebraic multigrid method accesses a sparse matrix data structure through
an abstract interface.

Of course, this principle also has its implications: The set of supported fea-
tures is built into the abstract interface. Again, it is in general very difficult
to change the interface. However, not all implementations need to support the
whole interface (efficiently). Therefore, the interface can be made very general.
At run-time the user pays only for functionality needed in the particular appli-
cation.

Another important aspect is that the interface and its implementations are
realized using generic programming techniques. Using static polymorphism in-
stead of dynamic polymorphism allows one to have very small functions in the
interface without introducing a severe performance penalty. We have choosen the
C++ programming language since it is widely available and highly optimizing
compilers exist. Finally, it is important that the interface is designed for code
reuse. Several major finite element packages have been implemented under the
new interface.

This concept of abstract interfaces has so far been realized for two differ-
ent components of the PDE solution process: 1) the mesh interface and 2) the
matrix-vector interface. Both components will be discussed and numerical results
confirming the efficiency of the approach will be presented.



3

2 Mesh Interface

The abstract mesh interface supports a wide range of finite element meshes which
are in common use:

– Fully unstructured grids.
– Elements with arbitrary shape (there is a way to define reference elements)

and arbitrary transformation from the reference element to the actual ele-
ment.

– Full dimension independence. Types of mesh entities are parametrized with
dimension and codimension.

– Meshes on manifolds.
– Conforming and non-conforming meshes.
– Nested local mesh refinement with arbitrary refinement rules (e. g. bisection,

red-green type, hanging nodes)
– Distributed meshes for data parallel computations supporting overlapping

and non-overlapping decompositions.

The following important aspects have been taken into account in the design of
the interface:

– User data associated with mesh entities (e. g. degrees of freedom in the finite
element method) is stored outside the mesh in arrays (contiguous memory
locations). Flexible and effective ways of accessing data from a mesh entity
are provided.

– A grid is viewed as a container of entities. Access to entities is only possible
via iterators. This allows on-the-fly implementation for simple (e. g. struc-
tured) meshes.

– The interface provides only a view on an existing mesh which is expressed
in the code through a consequent use of the const keyword. The only way
to modify a mesh is through nested local mesh refinement.

– Several mesh objects of different type can be instantiated in one executable
in order to couple problems on different meshes.

Currently the following implementations are available:

– SGrid: equidistant structured grid, on-the-fly generation, n-dimensional, all
codimensions are supported.

– YaspGrid: equidistant structured grid, on-the-fly generation, parallel with
arbitrary overlap, n-dimensional with only codimension 0 and n.

– AlbertaGrid: unstructured simplicial mesh in 1, 2 and 3 space dimensions,
local refinement using bisection, adaptation of the finite element toolbox
Alberta [1].

– UGGrid: unstructured multi-element meshes in 2 and 3 space dimensions, red-
green type local mesh refinement, non-overlapping decomposition for parallel
processing, adaptation of the finite element toolbox UG [2].

– ALU3DGrid: unstructured tetrahedral and hexahedral meshes, local mesh re-
finement with hanging nodes, non-overlapping parallel data decomposition,
adaptation of the finite element toolbox ALU3d [3].
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3 Iterative Solver Template Library

Sparse matrices obtained from finite element discretizations exhibit a lot of
structure that is usually not exploited in available sparse matrix packages. In
Fig. 2 several examples are shown: (a) discretization of three-component system
with linear finite elements and point-wise ordering, (b) p-adaptive discontinuous
Galerkin method, (c) system of reaction-diffusion equations, (d) discretization
of Stokes’ equation with equation-wise ordering. The Iterative Solver Template
Library (ISTL), which is the linear algebra and solver part of DUNE, allows
the definition recursively block-structured vectors and matrices at comile-time
through the use of templates.

(a) (c) (d)(b)

Fig. 2. Block structure of matrices arising in the finite element method.

Vectors and matrices are viewed as one- and two-dimensional containers and
provide the same functionality as the sparse BLAS standard. On top of this
interface a variety of Krylov methods (Gradient method, CG, BiCGStab) and
preconditioners ranging from simple Jacobi, Gauß-Seidel and incomplete decom-
positions to overlapping Schwarz and algebraic multigrid methods have been im-
plemented. For parallel computations arbitrary data decompositions are possible
through the concept of a distributed and possibly overlapping index set.

Numerical results confirm that for a standard model problem this very flex-
ible C++ implementation is as fast as a hand-coded C version for this special
problem.
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