Parallel multifrontal method with out-of-core techniques

Abdou Guermouchte

LaBRI, Bordeaux, France

Abstract. The memory usage of sparse direct solvers can be the bottleneck ¢o solv
large-scale problems. We describe the ongoing work on the implementsdtiam
out-of-coreextension to a parallel multifrontal solveviyMPS). We show that larger
problems can be solved on limited-memory machines with reasonabtaparice,

and we illustrate the behaviour of both the paradiet-of-corefactorization and the
parallelout-of-coresolution steps. We finally give some words on our future work in
the field of sparse parallel out-of-core solvers.

1 Introduction

The solution of sparse systems of linear equations is aaldwernel in many simulation
applications. Because of their robustness and performadireet methods can be preferred
to iterative methods. In direct methods, the solution of stexsy of equationslx = b is
generally decomposed into three steps: (i) an analysis ttapconsiders only the pattern
of the matrix, and builds the necessary data structuresuorenical computations; (ii) a
numerical factorization step, building the sparse facferg., L andU if we consider an
unsymmetricLU factorization); and (iii) a solution step, consisting ofaafard elimina-
tion (solve Ly = b for y) and a backward substitution (solter = y for z). For large
sparse problems, direct approaches often require a largerdgmf memory, that can be
larger than the memory available on the target platformsely high performance com-
puter, ...). In order to solve increasingly large problems;of-coreapproaches are then
necessary, where disk is used to store data that cannot fiygigal main memory.
Although several authors have worked on sequential or dlraemoryout-of-coresolvers [1,
5, 10], we do not know of angut-of-coredirect solver for distributed-memory machines.
In this work, we aim at extending a parallel multifrontalsai (MUMPS, for MUItifrontal
Massively Parallel Solver, see [3]), in order to enable tieton of larger problems, thanks
to out-of-coreapproaches. Recent contributions by [8] and [9] for unipssor approaches
pointed out that multifrontal methods may not fit well @am-of-corecontext because large
dense matrices have to be processed, that can represetieadxk for memory; therefore,
they prefer left-looking approaches (or switching lefthang approaches). However, in a
parallel context, increasing the number of processors emMieeping such large frontal
matrices in-core.

We present in this paper the current state of our work oonwrof-coreextension of the
parallel mutifrontal solveMUMPS and give some words about our ongoing and future work
in the field.

* All members of the curreUMPS development team have contributed to the work described in
the paper.



2 Memory management in a parallel multifrontal method

In multifrontal methods, the task dependencies are reptedeby a so-called assembly
tree [4, 6], that is processed from bottom to top during ttetoidzation. At each node of
the tree is associated a so-calfeghtal matrix or front, and a task consisting in the partial
factorization of the frontal matrix. The partial factoria produces a Schur complement,
or contribution block which will be used to update the frontal matrix of the paneotle
(see [2], for example, for more details). This leads to tlaeas of storage, one for the fac-
tors, one for the contribution blocks, and another one ferctirrent frontal matrix [2]. The
active memory (as opposed to the memory for the factors) ¢bersponds to the sum of
the contribution blocks memory (or stack memory) and the orgrfor the current active
matrix. During the factorization process, the memory regplifor the factors always grows
while the stack memory that contains the contribution béoekries: when the partial fac-
torization of a frontal matrix is performed, a contributiblock is stacked which increases
the size of the stack; on the other hand, when the frontalixnatia parent is formed and
assembled, the contribution blocks of the children nodesbeadiscarded and the size of
the stack decreaskes

3 Out-of-core multifrontal approach

In the multifrontal method, the factors produced during fhetorization step are not re-
used before the solution step. It then seems natural to dicsisfon writingthemto disk.
Thus, a firstout-of-corescheme is to write factors to disk as soon as they are computed
In this context, we designed several mechanisms basedfenedif /O schemes. The syn-
chronous 1/0O scheme is directly based on the standard I/@stibes (eithefread/fwrite

or read/writé. In the other hand, the asynchronous I/0 scheme has begméddy asso-
ciating to each process of our application with an I/O thneaith is in charge of doing all

I/O operations. The 1/O thread is designed over the starfél@sil X thread library (pthread
library). Together with these two main schemes, we desigradfered I/O mechanism (at
the application level) that can work with both schemes.

3.1 Experiments

In order to study the impact of the proposed mechanisms, perarented them on several
problems extracted from either the PARASOL collectiongiven from other sources. The
tests have been performed on the IBM SP system of IBRtBposed of several nodes of
either 4 processors at 1.7 GHz or 32 processors at 1.3 GHAi®©machine, we have used
from 1 to 128 processors with the following memory constsaime can access 1.3 GB
per processor when asking for more than 128 processors, B jpeGprocessor for 17-64
processors, 4 GB for 2-16 processors, and 16 GB on 1 processor

We report in Figure 1(a), a comparison between the time reéatefactorizing the ma-
trix when using the synchronous 1/0 scheme and the asynocbsobuffered scheme (the
results are normalized with the time needed foritheorefactorization). Note that for the
CONESHL _MOD the results have been obtained using@RAY XD1 system atCERFACS
which has local disks per processor.

Y 1n parallel, the contribution blocks management may differ from a piareksmechanism.
Zhttp://ww. paral | ab. ui b. no/ par asol
3 Institut du Developpement et des Ressources en Informatique Scientifique



g
=)
a

1.7

Iy ' Asyﬁchrondus 00C/IC —— & ' Asynbhronoﬁs 00C/IC ——
@ 161 Synchronous OOC / IC b Synchronous OOC / IC
g s 1y
g 15| g o
S s
S 14t g 0.95
8 8
o 131 o 09
Q E Q
(o) 12 o
o 1 O 085
o + (=}
= g T =
L L
0 20 40 60 80 100 120 140 T2 4 6 8 10 12 14 16
Number olf{wocessors Number of processors
(a) AUDIKW _1. (b) CONESHLMOD.

Fig. 1. Execution times (normalized with respect to thecore case) of the synchronous I/O scheme
and asynchronous bufferized 1/0 scheETI S [7]) is used as reordering technique).

First, we have been able to observe that for a small numberoakpsors we use signif-
icantly less memory with theut-of-coreapproach: the total memory peak is replaced by
the active memory peak, with improvement ratios going up0#8Thus the factorization
can be achieved on limited-memory machines.

We now focus on performance issues and report in Figure 1 pamtive study of the
in-corecase, the synchronowesit-of-corescheme and the asynchronous buffered scheme.
Note that for the buffered case, the size of the I/O buffeeidstwice the size of the largest
factor block (to have a double buffer mechanism). As we can the performance of the
out-of-coreschemes is indeed close to tihecore

Concerning the parallel case, we observe that with the aseref the number of proces-
sors, the gap between tivecore and theout-of-corecases increases. The main reason is
the performance degradation of the I/O with the number ot@ssors due to the use of
the GPFS file system on the IBM machine. In order to avoid this problara,have experi-
mented with the CONESHIMOD problem on a machine with local disks. In this case, we
do not have such a performance degradation, as shown ineFlgh); on the contrary, the
out-of-coreschemes perform as well or even better thanimheore one (cache effects re-
sulting from freeing the factors from main memory and usimggs the same memory area
for active frontal matrices). Finally, concerning the caripon of theout-of-coreschemes,
we can see that the asynchronous buffered approach perfattes than the synchronous
one. This illustrates that when the overlapping becoméisakithe asynchronous buffered
approach is more appropriate than the synchronous one.

4 Out-of-core solution step

Concerning the solution phase, the size of the memory wilegally not be large enough
to hold all the factors. Thus, factors have to be read frork,diad the 1/O involved in-
crease significantly the time for solution. Note that we ubasic demand-driven scheme,
relying on the synchronous low-level I/O mechanisms frormti®a 3. We have observed
that the performance of thaeut-of-coresolution step is often more than 10 times slower
than thein-corecase. Although disk contention might be an issue on our naaget plat-
form in the parallel case, the performance of the soluticasptshould not be neglected; it



becomes critical in anut-of-corecontext and prefetching techniques in close relation with
scheduling issues have to be studied.

5 Futurework

We presented in this paper a first implementation ofatiof-coreextension of the parallel
multifrontal solverMJMPS. The selected approach was to drop factors from memory as
soon as they are computed and to overlap the 1/0 operationsuak as possible with
computations. We illustrated the good behaviour of thisragagh on a small number of
processors and its limitations on larger ones, while firgegxnents on machines with
local I/0 showed no significant I/O overhead during the feztgion.

One key point that must be studied is the design of efficantof-corestack memory
management. In this context, the contribution blocks cacdnsidered as read-once/write-
once data accessed with a near-to-stack mechanism (foataigh case the accesses are
more irregular). With asynchronous I/O, prefetching aipons have to be designed. In
addition, the number of contribution blocks (for the pagbliase) that a processor has in
memory is closely related to the scheduling decisions mbdit the static and dynamic
aspects of scheduling could limit the I/O volume that eaatessor has to perform and
drive some dynamic decisions with the data that are availabthemory (for example, give
a priority to tasks that depend on/consume contributiooks@lready in memory).
Concerning the solution step, we presented a preliminarglysof a basicout-of-core
scheme and identified that much work remains to be done irr todarefetch the factors
adequately. In addition, in the parallel context, it is irtpat to improve the interaction
between the scheduling algorithms and the prefetchingitquis used.

References

1. The BCSLIB Mathematical/Statistical Library. http://www.boeing.com/phiaibcslib/.

2. P. R. Amestoy and I. S. Duff. Memory management issues in spamdtifrontal methods on
multiprocessorsint. J. of Supercomputer Appli¢cs..64—82, 1993.

3. P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L'Excellent. A fullgynchronous multifrontal
solver using distributed dynamic scheduliSdAM Journal on Matrix Analysis and Applicatigns
23(1):15-41, 2001.

4. C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton, and H. D. 8imBrogress in sparse
matrix methods for large linear systems on vector computérs. Journal of Supercomputer
Applications 1(4):10-30, 1987.

5. F. Dobrian and A. Pothen. Oblio: a sparse direct solver libraryddakand parallel computa-
tions. Technical report, Old Dominion University, 2000.

6. I.S. Duff and J. K. Reid. The multifrontal solution of indefinite spaag@mmetric linear systems.
ACM Transactions on Mathematical Softwa®e302—-325, 1983.

7. G. Karypis and V. Kumar. M S — A Software Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparseidés — Version 4.0
University of Minnesota, September 1998.

8. E. Rothberg and R. Schreiber. Efficient methods for out-of-spegse Cholesky factorization.
SIAM Journal on Scientific Computingl(1):129-144, 1999.

9. Vladimir Rotkin and Sivan Toledo. The design and implementation of acudvef-core sparse
Cholesky factorization method®ACM Trans. Math. Softw30(1):19-46, 2004.

10. S. Toledo. Taucs: A library of sparse linear solvers, versionZ0@3. Available online at
http://www.tau.ac.il/"stoledo/taucs/.



