
Parallel multifrontal method with out-of-core techniques

Abdou Guermouche⋆

LaBRI, Bordeaux, France

Abstract. The memory usage of sparse direct solvers can be the bottleneck to solve
large-scale problems. We describe the ongoing work on the implementationof an
out-of-coreextension to a parallel multifrontal solver (MUMPS). We show that larger
problems can be solved on limited-memory machines with reasonable performance,
and we illustrate the behaviour of both the parallelout-of-corefactorization and the
parallelout-of-coresolution steps. We finally give some words on our future work in
the field of sparse parallel out-of-core solvers.

1 Introduction

The solution of sparse systems of linear equations is a central kernel in many simulation
applications. Because of their robustness and performance, direct methods can be preferred
to iterative methods. In direct methods, the solution of a system of equationsAx = b is
generally decomposed into three steps: (i) an analysis step, that considers only the pattern
of the matrix, and builds the necessary data structures for numerical computations; (ii) a
numerical factorization step, building the sparse factors(e.g.,L andU if we consider an
unsymmetricLU factorization); and (iii) a solution step, consisting of a forward elimina-
tion (solveLy = b for y) and a backward substitution (solveUx = y for x). For large
sparse problems, direct approaches often require a large amount of memory, that can be
larger than the memory available on the target platform (cluster, high performance com-
puter, . . .). In order to solve increasingly large problems,out-of-coreapproaches are then
necessary, where disk is used to store data that cannot fit in physical main memory.
Although several authors have worked on sequential or shared-memoryout-of-coresolvers [1,
5, 10], we do not know of anyout-of-coredirect solver for distributed-memory machines.
In this work, we aim at extending a parallel multifrontal solver (MUMPS, for MUltifrontal
Massively Parallel Solver, see [3]), in order to enable the solution of larger problems, thanks
to out-of-coreapproaches. Recent contributions by [8] and [9] for uniprocessor approaches
pointed out that multifrontal methods may not fit well anout-of-corecontext because large
dense matrices have to be processed, that can represent a bottleneck for memory; therefore,
they prefer left-looking approaches (or switching left-looking approaches). However, in a
parallel context, increasing the number of processors can help keeping such large frontal
matrices in-core.
We present in this paper the current state of our work on anout-of-coreextension of the
parallel mutifrontal solverMUMPS and give some words about our ongoing and future work
in the field.

⋆ All members of the currentMUMPS development team have contributed to the work described in
the paper.

2 Memory management in a parallel multifrontal method

In multifrontal methods, the task dependencies are represented by a so-called assembly
tree [4, 6], that is processed from bottom to top during the factorization. At each node of
the tree is associated a so-calledfrontal matrix, or front, and a task consisting in the partial
factorization of the frontal matrix. The partial factorization produces a Schur complement,
or contribution block, which will be used to update the frontal matrix of the parentnode
(see [2], for example, for more details). This leads to threeareas of storage, one for the fac-
tors, one for the contribution blocks, and another one for the current frontal matrix [2]. The
active memory (as opposed to the memory for the factors) thencorresponds to the sum of
the contribution blocks memory (or stack memory) and the memory for the current active
matrix. During the factorization process, the memory required for the factors always grows
while the stack memory that contains the contribution blocks varies: when the partial fac-
torization of a frontal matrix is performed, a contributionblock is stacked which increases
the size of the stack; on the other hand, when the frontal matrix of a parent is formed and
assembled, the contribution blocks of the children nodes can be discarded and the size of
the stack decreases1.

3 Out-of-core multifrontal approach

In the multifrontal method, the factors produced during thefactorization step are not re-
used before the solution step. It then seems natural to first focus on writingthemto disk.
Thus, a firstout-of-corescheme is to write factors to disk as soon as they are computed.
In this context, we designed several mechanisms based on different I/O schemes. The syn-
chronous I/O scheme is directly based on the standard I/O subroutines (eitherfread/fwrite
or read/write). In the other hand, the asynchronous I/O scheme has been designed by asso-
ciating to each process of our application with an I/O threadwhich is in charge of doing all
I/O operations. The I/O thread is designed over the standardPOSIX thread library (pthread
library). Together with these two main schemes, we designeda buffered I/O mechanism (at
the application level) that can work with both schemes.

3.1 Experiments

In order to study the impact of the proposed mechanisms, we experimented them on several
problems extracted from either the PARASOL collection2 or given from other sources. The
tests have been performed on the IBM SP system of IDRIS3 composed of several nodes of
either 4 processors at 1.7 GHz or 32 processors at 1.3 GHz. On this machine, we have used
from 1 to 128 processors with the following memory constraints: we can access 1.3 GB
per processor when asking for more than 128 processors, 3.5 GB per processor for 17-64
processors, 4 GB for 2-16 processors, and 16 GB on 1 processor.
We report in Figure 1(a), a comparison between the time needed for factorizing the ma-
trix when using the synchronous I/O scheme and the asynchronous buffered scheme (the
results are normalized with the time needed for thein-corefactorization). Note that for the
CONESHL MOD the results have been obtained using theCRAY XD1 system atCERFACS
which has local disks per processor.

1 In parallel, the contribution blocks management may differ from a pure stack mechanism.
2 http://www.parallab.uib.no/parasol
3 Institut du D́eveloppement et des Ressources en Informatique Scientifique

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 20 40 60 80 100 120 140

R
at

io
 O

O
C

 /
IC

 fo
r

fa
ct

or
iz

at
io

n
st

ep

Number of processors

Asynchronous OOC / IC
Synchronous OOC / IC

(a) AUDIKW 1.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 2 4 6 8 10 12 14 16

R
at

io
 O

O
C

 /
IC

 fo
r

fa
ct

or
iz

at
io

n
st

ep

Number of processors

Asynchronous OOC / IC
Synchronous OOC / IC

(b) CONESHLMOD.

Fig. 1. Execution times (normalized with respect to thein-corecase) of the synchronous I/O scheme
and asynchronous bufferized I/O scheme (METIS [7]) is used as reordering technique).

First, we have been able to observe that for a small number of processors we use signif-
icantly less memory with theout-of-coreapproach: the total memory peak is replaced by
the active memory peak, with improvement ratios going up to 80%. Thus the factorization
can be achieved on limited-memory machines.
We now focus on performance issues and report in Figure 1 a comparative study of the
in-corecase, the synchronousout-of-corescheme and the asynchronous buffered scheme.
Note that for the buffered case, the size of the I/O buffer is set to twice the size of the largest
factor block (to have a double buffer mechanism). As we can see, the performance of the
out-of-coreschemes is indeed close to thein-core.
Concerning the parallel case, we observe that with the increase of the number of proces-
sors, the gap between thein-coreand theout-of-corecases increases. The main reason is
the performance degradation of the I/O with the number of processors due to the use of
theGPFS file system on the IBM machine. In order to avoid this problem,we have experi-
mented with the CONESHLMOD problem on a machine with local disks. In this case, we
do not have such a performance degradation, as shown in Figure 1(b); on the contrary, the
out-of-coreschemes perform as well or even better than thein-coreone (cache effects re-
sulting from freeing the factors from main memory and using always the same memory area
for active frontal matrices). Finally, concerning the comparison of theout-of-coreschemes,
we can see that the asynchronous buffered approach performsbetter than the synchronous
one. This illustrates that when the overlapping becomes critical, the asynchronous buffered
approach is more appropriate than the synchronous one.

4 Out-of-core solution step

Concerning the solution phase, the size of the memory will generally not be large enough
to hold all the factors. Thus, factors have to be read from disk, and the I/O involved in-
crease significantly the time for solution. Note that we use abasic demand-driven scheme,
relying on the synchronous low-level I/O mechanisms from Section 3. We have observed
that the performance of theout-of-coresolution step is often more than 10 times slower
than thein-corecase. Although disk contention might be an issue on our main target plat-
form in the parallel case, the performance of the solution phase should not be neglected; it

becomes critical in anout-of-corecontext and prefetching techniques in close relation with
scheduling issues have to be studied.

5 Future work

We presented in this paper a first implementation of anout-of-coreextension of the parallel
multifrontal solverMUMPS. The selected approach was to drop factors from memory as
soon as they are computed and to overlap the I/O operations asmuch as possible with
computations. We illustrated the good behaviour of this approach on a small number of
processors and its limitations on larger ones, while first experiments on machines with
local I/O showed no significant I/O overhead during the factorization.
One key point that must be studied is the design of efficientout-of-corestack memory
management. In this context, the contribution blocks can beconsidered as read-once/write-
once data accessed with a near-to-stack mechanism (for the parallel case the accesses are
more irregular). With asynchronous I/O, prefetching algorithms have to be designed. In
addition, the number of contribution blocks (for the parallel case) that a processor has in
memory is closely related to the scheduling decisions made;both the static and dynamic
aspects of scheduling could limit the I/O volume that each processor has to perform and
drive some dynamic decisions with the data that are available in memory (for example, give
a priority to tasks that depend on/consume contribution blocks already in memory).
Concerning the solution step, we presented a preliminary study of a basicout-of-core
scheme and identified that much work remains to be done in order to prefetch the factors
adequately. In addition, in the parallel context, it is important to improve the interaction
between the scheduling algorithms and the prefetching techniques used.

References

1. The BCSLIB Mathematical/Statistical Library. http://www.boeing.com/phantom/bcslib/.
2. P. R. Amestoy and I. S. Duff. Memory management issues in sparse multifrontal methods on

multiprocessors.Int. J. of Supercomputer Applics., 7:64–82, 1993.
3. P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fullyasynchronous multifrontal

solver using distributed dynamic scheduling.SIAM Journal on Matrix Analysis and Applications,
23(1):15–41, 2001.

4. C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton, and H. D. Simon. Progress in sparse
matrix methods for large linear systems on vector computers.Int. Journal of Supercomputer
Applications, 1(4):10–30, 1987.

5. F. Dobrian and A. Pothen. Oblio: a sparse direct solver library for serial and parallel computa-
tions. Technical report, Old Dominion University, 2000.

6. I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparsesymmetric linear systems.
ACM Transactions on Mathematical Software, 9:302–325, 1983.

7. G. Karypis and V. Kumar. METIS – A Software Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices – Version 4.0.
University of Minnesota, September 1998.

8. E. Rothberg and R. Schreiber. Efficient methods for out-of-coresparse Cholesky factorization.
SIAM Journal on Scientific Computing, 21(1):129–144, 1999.

9. Vladimir Rotkin and Sivan Toledo. The design and implementation of a newout-of-core sparse
Cholesky factorization method.ACM Trans. Math. Softw., 30(1):19–46, 2004.

10. S. Toledo. Taucs: A library of sparse linear solvers, version 2.2, 2003. Available online at
http://www.tau.ac.il/˜stoledo/taucs/.

