Optimization of Instrumentation in Parallel
Performance Evaluation Tools

Sameer S. Shende, Allen D. Malony, and Alan Morris

Performance Research Laboratory,
Department of Computer and Information Science
University of Oregon, Eugene, OR, USA,
{sameer,malony,amorris}@cs.uoregon.edu

Abstract. Tools to observe the performance of parallel programs typi-
cally employ profiling and tracing as the two main forms of event-based
measurement models. In both of these approaches, the volume of perfor-
mance data generated and the corresponding perturbation encountered
in the program depend upon the amount of instrumentation in the pro-
gram. To produce accurate performance data, tools need to control the
granularity of instrumentation. In this paper, we describe our experi-
ences in the TAU performance system for improving the accuracy of
performance data by limiting the amount of instrumentation. A range of
options are provided to optimize instrumentation based on the structure
of the program, event generation rates, and historical performance data
gathered from prior executions.

Keywords: Performance measurement and analysis, parallel computing,
profiling, tracing, instrumentation, optimization.

1 Introduction

The advent of large scale parallel supercomputers is challenging the ability of
tools to observe application performance. As the complexity and size of these
parallel systems continue to evolve, so must techniques for characterizing the
performance of parallel programs. Profiling and tracing are two commonly used
techniques for evaluating application performance. Tools based on profiling main-
tain summary statistics of performance metrics, such as inclusive and exclusive
time or hardware performance monitor counts [3], for routines on each thread
of execution. Performance evaluation tools either employ sampling of program
state based on periodic interrupts or direct instrumentation. Sampling provides
a fixed overhead, the accuracy of performance data generated depends on the
inter-interrupt sampling interval. Here, we consider direct measurement based
instrumentation techniques where instrumentation hooks are inserted at relevant
program events. As the program executes, events, or actions that take place in
the program are inspected to characterize the program execution. In this pa-
per, we describe our experiences in optimizing program instrumentation in the
TAU performance system [1]. Section §2 describes the motivation for the prob-
lem, Sections §3 and Sections §4 describe how we can limit the instrumentation
based on selective instrumentation and measurement-based approaches.



2 Motivation

Optimizing program instrumentation can help us control the perturbation in-
duced in the program for both tracing and profiling. Trace analysis of a parallel
application is invaluable in improving our understanding of the temporal aspects
of program execution. The ability to zoom into sections of trace files allows us
to see the occurrence of events along a global timeline. Sometimes, trace-based
displays of event streams from multiple processors can immediately highlight the
causes of poor performance. It is not always sufficient to perform trace analysis
on a small set of processors and extrapolate the cause of poor performance on
a larger set, as performance properties may differ as the number of processors
increases. Hence, to identify causes of poor performance, it is important to be
able to observe the performance of a given application on large scale parallel
systems. Balancing the volume of performance data produced and the accuracy
of performance measurements is key to optimizing the instrumentation.

Techniques for improving performance observability fall into three broad cat-
egories:

— Instrumentation - Techniques that reduce the number of instrumentation
points inserted in the program

— Measurement - Techniques that limit the amount of information emitted by
the tool at the instrumentation points, and

— Analysis - Techniques that scale the number of processors involved in pro-
cessing the performance data, and techniques that reduce and reclassify the
performance information.

In this paper, we will limit our discussion to instrumentation and measure-
ment based approaches.

3 Instrumentation

To reduce the volume of trace data, sometimes tracing tools limit program cover-
age by just focusing on a single library for instrumentation. Tools that highlight
MPI performance typically fall into this category. An MPI interposition library
tracks the time spent in all MPI routines. A manual instrumentation API often
accompanies such tools where a user can insert annotations in the source code
to record application events as well. For non-trivial applications, this becomes
quite cumbersome. To aid this process, automated means for inserting program
instrumentation can be utilized as well [5]. This is in the form of compiler flags
or binary instrumentation techniques that instrument all routines within a given
file. This requires specialized knowledge from a user’s perspective as he/she must
decide which files to exclude for instrumentation. Such choices are often a result
of choosing just tracing for performance evaluation.



3.1 Selective Instrumentation

In the TAU project, we use a combination of profiling and tracing to effectively
limit the program instrumentation. Using a variety of instrumentation techniques
such as pre-processing using PDT [2], MPI wrapper interposition library, binary
re-writing and dynamic instrumentation using DyninstAPI [6], a user can in-
strument all routines in a given program. When a fully instrumented program
is executed, it produces profiles. TAU provides a tool, tau_reduce, to analyze the
profiles and apply a set of rules for instrumentation control. The output is a list
of routines that should be excluded from instrumentation.

Naive instrumentation of parallel programs can easily include lightweight
routines that perturb the applcation significantly when measured. If the user
does not specify the rules for removing instrumentation using tau_reduce, TAU
applies a default set (e.g., the number of calls must exceed a million and the
inclusive time per call for a given routine must be less than 10 microseconds to
exclude the routine). The program is then re-instrumented using the ezclude list
emitted by tau_reduce. To ensure that other routines that were above the thresh-
old for exclusion before do not qualify for exclusion after re-instrumentation (due
to removal of instrumentation in child routines), the user may re-generate the
exclude list by re-running the program against the same set of rules. When
any two instrumented executions generate no new exclusions, we say that the
instrumentation fixed-point is reached for a given set of execution parameters
(processor size, input, etc.) and instrumentation rules. The instrumentation is
sufficiently coarse-grained to be accurate and the user may generate traces after
this optimization of program instrumentation. Using both profiling and tracing
together improves the program coverage and reduces the amount of trace data
generated. In the next subsection, we examine how other forms of co-operation
may improve such program coverage while reducing the volume of trace data
generated.

4 Measurement

During program execution, instrumentation may be disabled in the program
based on spatial, context or location based constraints imposed. When an entire
program is instrumented, it may be difficult to reach an instrumentation fixed-
point by re-running the application. The amount of instrumentation may be too
much and the initial run might take a significant amount of time. To optimize the
instrumentation at runtime, TAU uses a scheme to throttle events at runtime.
TAU allows the user to disable the instrumentation at runtime based on rules
similar to the ones employed by the offline analysis of profiles using tau_reduce.
The number of calls to each event is examined and when it exceeds a given user
specified threshold (e.g., 100000 calls), the inclusive per-call value is examined
to compare it with another threshold (e.g., 10 microseconds per call). If it falls
below the threshold, the event is disabled and added to a new profile group
(TAU_DISABLE). Subsequent calls to start or stop that event incur a minimal



overhead of masking two bitmaps and effectively reduce the overhead. This is
useful for disabling events that have a high frequency and low cost of execution.

Other techniques for controlling instrumentation costs include compensation
of instrumentation overhead, APIs for event grouping and control of instrumen-
tation, full program instrumentation control, context based control based on
callpath depths, and callstack based control. In callstack based control, the pro-
gram structure is analyzed at runtime and trace records are emitted for those
events that directly or indirectly call an MPI routine. This generates compact
TAU traces that may be converted to the Epilog format for further analysis by
the Expert [5] tool.

The full paper will highlight these and other techniques for controlling pro-
gram instrumentation.

5 Conclusion

Tool developers attempt to build measurement systems as efficiently as possible,
but to improve the accuracy of performance measurements, it is important to op-
timize the program instrumentation. In this paper, we describe the techniques
for generating coarse grained instrumentation when the entire program is in-
strumented automatically because the accuracy of performance data is inversely
correlated with the degree of performance instrumentation.

6 Acknowledgments

Research at the University of Oregon is sponsored by contracts (DE-FG02-
05ER25663, DE-FG02-05ER25680) from the MICS program of the U.S. Dept.
of Energy, Office of Science.

References

1. A. Malony, S. Shende, “Performance Technology for Complex Parallel and Dis-
tributed Systems,” In G. Kotsis, P. Kacsuk (eds.), Distributed and Parallel Sys-
tems, From Instruction Parallelism to Cluster Computing, Third Workshop on
Distributed and Parallel Systems (DAPSYS 2000), Kluwer, pp. 37-46, 2000.

2. K. Lindlan, J. Cuny, A. Malony, S. Shende, B. Mohr, R. Rivenburgh, C. Rasmussen,
“A Tool Framework for Static and Dynamic Analysis of Object-Oriented Software
with Templates,” SC 2000 conference, 2000.

3. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable Program-
ming Interface for Performance Evaluation on Modern Processors,” International
Journal of High Performance Computing Applications, 14(3):189-204, Fall 2000.

4. D. Reed, L. DeRose, and Y. Zhang, “SvPablo: A Multi-Language Performance
Analysis System,” International Conference on Performance Tools, pp. 352—-355,
September 1998.

5. B. Mohr, F. Wolf, “KOJAK - A Tool Set for Automatic Performance Analysis of
Parallel Programs,” FEuro-Par 2003 conference, August 2003.

6. B. Buck and J. Hollingsworth, “An API for Runtime Code Patching”, Journal of
High Performance Computing Applications, pp. 317-329, 14(4), 2000.



