
Towards a Standard Performance Tool Interface for
Global Address Space Languages

Adam Leko1, Dan Bonachea2, Hung-Hsun Su1, Hans Sherburne1,
Bryan Golden1, and Alan D. George1

1 Department of Computer and Electrical Engineering
University of Florida

{leko,su,sherburne,golden,george}@hcs.ufl.edu

2 Department of Computer Science
University of California at Berkeley
bonachea@cs.berkeley.edu

Abstract. Due to the wide range of compilers and the lack of a standardized
performance tool interface, writers of performance tools face many challenges
when incorporating support for global address space languages such as Unified
Parallel C (UPC), Titanium, and Co-Array Fortran (CAF). This extended ab-
stract summarizes our Global Address Space Performance tool interface
(GASP), which is flexible enough to be adapted into current global address
space compiler and runtime infrastructures with minimal effort while allowing
tools to gather much information about the performance of global address space
programs.

1 Introduction

Global address space (GAS) languages such as Titanium [1], Unified Parallel C
(UPC) [2], and Co-Array Fortran (CAF) [3] offer parallel programmers several advan-
tages over languages that require programmers to manually specify communication
between nodes. The global address space provides a convenient environment similar
to threaded programming on shared-memory machines, but comes at the cost of in-
creased complexity in GAS compiler and runtime systems. This approach gives paral-
lel programmers a much-needed increase in productivity; however GAS compilers
handle low-level communication and performance is often sensitive to data locality.

The difficulty of performance analysis for GAS programs has been aggravated by
the lack of performance analysis tools supporting GAS languages. The relative youth
of GAS languages compared with other programming models such as MPI is partly
responsible for the lack of tool support, but tool developers face a major roadblock
even if they wish to add GAS support in their tools: there is no standard performance
tool interface that can be used to portably gather performance information from GAS
programs at runtime. The extensive and almost exclusive use of the MPI profiling

interface [4] by MPI performance tools illustrates the utility of a common perform-
ance tool interface.

One alternative to a standard tool interface would be to have each tool rely upon its
own instrumentation method. For instance, one tool developer could create a source
instrumentation system to support UPC, while others could use DynInst [5] or other
binary patching tools to insert instrumentation code directly in Titanium executables.
This approach has several drawbacks, however. First of all, it results in a large
amount of duplicated effort, since the absence of a standard interface would result in
each tool developer independently creating their instrumentation systems from the
ground up. Second, creating and testing instrumentation systems is not a trivial task,
especially when multiple platforms have to be supported. Finally, because of the extra
levels of abstractions that GAS languages offer to users, it may not be possible to gain
complete information about a program’s performance by simply inserting instrumenta-
tion code at the source or binary levels. Software caching systems, for instance, add a
dynamic aspect to a program’s performance, and tools that rely upon traditional in-
strumentation alone will not have access to detailed information such as the cache
miss or hit ratios for particular memory regions.

To rectify this situation, we developed GASP (Global Address Space Performance
tool interface), a performance tool interface for GAS languages. In a nutshell, we are
trying to help programmers answer the question “How can I make my GAS program
run faster?” by providing tool developers with a consistent interface so that their per-
formance tools can help users identify and fix performance bottlenecks.

2 Overview of GASP

The GASP interface defines a standard method of interaction between a user’s code, a
performance tool, and a GAS compiler and/or runtime system. This interaction is
event-based and comes in the form of “callbacks” to a standard function provided by
tool writers. The callbacks may come from instrumentation code placed directly in an
executable, from an instrumented runtime library, or any other method. This simple
callback scheme affords developers of GAS systems much flexibility in how instru-
mentation may be performed on user programs, which is critical because GAS systems
may differ wildly in their implementation, even when compared to other GAS systems
supporting the same language.

Events which may generate callbacks include global address space put/get commu-
nication operations, various language-appropriate synchronization operations, calls to
standard language libraries (allocation, bulk data movement, collectives, etc), entry
and exit of user-defined functions, and even programmatically-defined application-
specific events. Applications are permitted to lexically or dynamically select specific
program regions to be instrumented, and specific tools may direct the compiler’s in-
strumentation process to reduce overhead for irrelevant callbacks. Space restrictions
do not allow us to give an in-depth discussion of the form and semantics of each call-
back here, but these details can be found in [6].

It is worth mentioning that we have attempted to minimize the amount of work end
users need to perform to analyze their programs using GASP-enabled tools. In par-
ticular, we strongly advocate the use of compiler “wrapper scripts” that oversee the
tedious details of instrumenting user code and linking against appropriate performance
tool libraries. We hope that our user-centric view will help reverse the long-standing
trend of users shunning parallel tools in favor of simpler, less scalable methods [7].

3 Experimental Results

To test the feasibility of our GASP interface, we have added experimental support for
GASP in Berkeley UPC [8]. The instrumentation code was added to the UPC runtime
in just a few weeks, illustrating the low implementation overhead of the interface.

We have also created a toy performance tool named “simpleprof” that records the
sum of time spent for each line of UPC code that causes shared memory accesses.
Weighing in at only 300 lines of C and UPC code, this tool is very simple but very
effective at finding time-consuming UPC shared memory accesses.

To obtain a measure of the overhead associated with the profiling interface, we
tested simpleprof with the UPC versions of the NPB 2.4 benchmarks (CG, FT, and IS)
and the UPC version of the Splash-2 LU benchmark on an eight-node dual-Opteron
cluster connected via InfiniBand using the Berkeley UPC vapi conduit. These over-
heads are shown in Figure 1.

In Figure 1, the “-local” and “-func” labels indicate if local shared memory ac-
cesses and function entry/exit events were instrumented (respectively) by the Berkeley
compiler. GASP allows users to specify whether they want these entities to be instru-

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

simpleprof simpleprof-local simpleprof-func simpleprof-func-local

LU
CG
FT
IS

Fig. 1. GASP overhead introduced by the simpleprof tool

mented during compile time, as with some programs (such as programs that call small
functions repeatedly) adding instrumentation code for these types of events can have a
significant impact on execution time.

As is shown by the figure, when combined with an efficient tool our experimental
GASP implementation has minimal overhead. This trend is encouraging, especially
given the fine-grained nature of these UPC programs.

4 Conclusions

From our experimental implementation, we have shown that our GASP interface
represents a feasible method for providing performance tools with a standard method
of interacting with GAS systems. We hope that the GASP interface becomes widely
supported by GAS systems and widely adopted by performance tools, as the interface
itself significantly decreases the barriers to entry associated with supporting GAS
languages in a performance tool.

References

1. K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger,
S. Graham, D. Gay, P. Colella, and A. Aiken, “Titanium: A High-Performance Java Dia-
lect,” Workshop on Java for High-Performance Network Computing, Las Vegas, Nevada,
June 1998.

2. UPC Consortium, “UPC Language Specifications, v1.2,” Lawrence Berkeley National Lab
Tech. rep. LBNL-59208, 2005.

3. B. Numrich and J. Reid, “Co-Array Fortran for Parallel Programming,” ACM Fortran Fo-
rum, 17(2), pp. 1–31, 1998.

4. MPI Forum, “MPI: A message-passing interface standard,” Chapter 8, Tech. rep., Univer-
sity of Tennessee, Knoxville, TN, 1994.

5. B. Buck and J. K. Hollingsworth, “An API for Runtime Code Patching,” The International
Journal of High Performance Computing Applications, 14(4), pp. 317–329, Winter 2000.

6. A. Leko, D. Bonachea, H. Su, B. Golden, H. Sherburne, and A. George, “GASP: A Per-
formance Tool Interface for Global Address Space Languages, v1.4,” HCS Lab Whitepaper,
November 2005.

7. C. Cook, C. Pancake, “What Users Need in Parallel Tool Support,” in Proceedings of the
Scalable High Performance Computing Conference, pp. 40–47, Starkville, Mississippi,
1994.

8. W. Chen, D. Bonachea, J. Duell, P. Husbands, C. Iancu, and K. Yelick, “A Performance
Analysis of the Berkeley UPC Compiler,” 17th Annual International Conference on Super-
computing, San Francisco, CA, June 2003.

