Automated Performance Analysis using ASL
Performance Properties

Karl Firlinger and Michael Gerndt

Institut fiir Informatik,
Lehrstuhl fiir Rechnertechnik und Rechnerorganisation,
Technische Universitat Miinchen
{Karl.Fuerlinger, Michael.Gerndt}@in.tum.de

Abstract. We present our approach for automating performance analy-
sis of parallel applications based on the idea of ASL performance proper-
ties. Our tool Periscope automatically searches for inefficiencies specified
as ASL properties, leveraging a set of agents arranged in a hierarchy.

1 Introduction

Performance analysis of applications can be a complicated and time-consuming
task. Tools and methodologies have therefore been developed that try to auto-
mate the process of locating inefficiencies in applications and explaining their
reason. With growing size and complexity of applications and high-performance
computing systems, automation becomes essential, as manual analysis becomes
increasingly infeasible. In this work we present our approach, and our tool
Periscope, for automated performance analysis based on the notion of ASL per-
formance properties.

The rest of this paper is organized as follows: Sect. 2 introduces the concept of
ASL performance properties and gives some examples. Sect. 3 then outlines our
properties-based performance analysis tool Periscope. In Sect. 4 we present re-
sults from conducting a performance analysis with Periscope on several OpenMP
benchmarks. We discuss related work in Sect. 5 and conclude in Sect.6.

2 Performance Properties

Performance properties formalize what can be regarded as a situation of inef-
ficient execution, given a set of performance observations (measurements) for
an application. A property’s specification is given in a formal language called
ASL (Apart Specification Language) and has three main constituents: condition
checks the existence of the property, confidence quantifies the certainty that
the property holds and severity denotes how large the negative impact on the
performance is.

An example for a property describing imbalance in a parallel loop is shown
in Fig. 1. The specification of severity, confidence, and condition can refer to

property ImbalanceInParallelLoop(ParPerf pd) {
let
imbal = pd.exitBarT[0]+...+pd.exitBarT[pd.threadC-1];

condition : (pd->reg.type==L00P || pd->reg.type==PARALLEL_LOOP &&

(imbal > 0);
confidence : 1.0;
severity : imbal / RB(pd.exp);

}

Fig. 1. The ASL specification of the ImbalanceInParallelLoop property.

elements of a data model (ParPerf in this case), that depend on the particular
programming model and the instrumentation used. In Fig. 1, ParPerf contains
summary data for OpenMP regions, type denotes the type of the construct that
the region represents, exitBarT refers to the summed time spent in the exit
barrier of the construct and threadC gives the number of threads executing the
region. The ParPerf structure has a number of other entries and a several other
properties can be formulated using these entries. A more detailled discussion can
be found in [1].

3 The Periscope Tool

Periscope is a tool which automatically searches for performance properties dur-
ing the execution of a target application (online operation). Performance data is
analyzed on-the-fly by distributed components of Periscope called agents. The
agents are arranged in a hierarchy, as shown in Fig. 2. On the lowest level,
node-level agents are responsible for the detection of properties on a single node
(assuming a clustered architecture composed of several SMP nodes). The higher
level agents aggregate the results of the lower-level agents and pass it on to-
wards the root of the agent tree (the tool’s front-end). The front-end displays
the search results to the user and takes a user’s commands such as to display
the agent hierarchy graph and to control the search process for performance
properties.

4 Evaluation

To evaluate the usability of the Periscope approach we have analyzed inefficien-
cies in size “C” version of the OpenMP version of the NAS parallel benchmarks.
The NAS benchmark suite consists of five kernels (EP, MG, CG, FT, and IS)
and three simulated CFD applications (LU, BT, and SP).

The following table shows which performance properties were discovered in
each of the NAS benchmarks, the numbers count the different instances a prop-
erty was detected.

/= = = =
= /= . |3 =
Node]| Node| \ Node\\ l / Nodgj

Intermediate E
Agents

! | .
Tool Front-End ' Master
/ Agent

E Spare Nodes for PerformanceE
Analysis.
Interactive Host

Target Application
Process

Node-Level
Agent

oo

Fig. 2. Periscope agents are arranged in a hierarchy. At the lowest level, node-level
agents detect performance properties. Intermediate agents integrate the results of the
node-level agents. A single master agent forms the connection to the tool’s front-end.

’Property \BT CG EP FT IS LU MG SP‘
ImbalanceAtBarrier 1 3
ImbalanceInParallelLoop 12 13 1 8 2 9 12 16
ImbalanceInParallelRegion 6 9 1 2 8 2 5
UnparallelizedInSingleRegion 3
UnparallelizedInMasterRegion| 4 13 2 5
CriticalSectionContention 1

The Imbalance* properties refer to the fact that threads perform a different
amount of work (prior to a barrier, in a parallel loop or in a parallel region,
respectively). The Unparallelized* properties refer to the usage of single and
master constructs resulting in serialization of the execution. CriticalSection-
Contention captures the situation that several threads contend to enter a critical
section, resulting in waiting time for some threads. A number of other properties
were tested but not detected by Periscope in the NAS benchmarks.

The following table shows the five most severe inefficiencies discovered in
the NAS benchmarks by Periscope. Severity referst to the percentage of total
exectution time lost due to the inefficiency.

’Benchmark Property Region Severity (%)‘
MG ImbalanceInParallelLoop mg.f 608--631 8.31
FT ImbalanceInParallelLoop ft.f 606--625 6.76
BT ImbalanceInParallelloop rhs.f 177--290 4.46
BT ImbalanceInParallelloop y_solve.f 40--394 3.53
BT ImbalanceInParallelloop rhs.f 299--351 3.47

5 Related Work

Expert [4] is a tool for automated post-mortem performance analysis of C/C++
and Fortran applications. The execution of an instrumented application gener-

ates a trace file, which is scanned for patterns of inefficient execution by Expert.
The detected inefficiencies are displayed using a viewer with three panes, the
first giving the kind of inefficiency and the other two detailing its location (with
respect to program resources and machine organization). In contrast to Expert,
Periscope is an online tool and performance analysis can be conducted during
the execution of the application. The set of bottlenecks covered by the two tools
is somewhat similar, with Expert having the advantage of having full trace in-
formation available while Periscope’s properties currently rely on profiling data
only.

Paradyn [2] is an automated online performance analysis tool leveraging
dynamic instrumentation techniques. Paradyn looks for performance problems
starting with a root hypothesis. In each step of the search process the cur-
rently tested hypothesis is then refined along one of the dimensions of the W3
(why, where, when) search model. In comparison to Periscope, Paradyn has the
advantage of using dynamic instrumentation and is thus able to tailor instru-
mentation overhead to the current hypothesis. Until recently [3] data analysis
and the search for bottlenecks was performed centrally at the tool’s front-end,
a limiting factor for scalability. In contrast, in Periscope the analysis process is
performed inherently distributed by the node-level agents.

6 Conclusion

We have presented Periscope, our tool for automated performance analysis based
on the idea of capturing situations of inefficient execution in the form of ASL
properties. Using Periscope, developers can quickly locate the most severe ineffi-
ciencies and discover their reasons. We have tested Periscope on several OpenMP
benchmarks and have discovered bottlenecks of up to 8% in overall execution
time.

References

1. Karl Fiirlinger and Michael Gerndt. Performance analysis of shared-memory paral-
lel applications using performance properties. In Proceedings of the 2005 Interna-
tional Conference on High Performance Computing and Communications (HPCC-
05), September 2005. Accepted for publication.

2. Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and
Tia Newhall. The Paradyn parallel performance measurement tool. IEEE Com-
puter, 28(11):37-46, 1995.

3. Philip C. Roth and Barton P. Miller. The distributed performance consultant and
the sub-graph folding algorithm: On-line automated performance diagnosis on thou-
sands of processes. 2005. Submitted for Publication.

4. Felix Wolf and Bernd Mohr. Automatic performance analysis of hybrid
MPI/OpenMP applications. In Proceedings of the 11th Euromicro Conference on
Parallel, Distributed and Network-Based Processing (PDP 20083), pages 13-22. IEEE
Computer Society, February 2003.

