
A Modular Software for Particle Simulations
in Space Physics

Mats Holmström1

Swedish Institute of Space Physics (IRF), PO Box 812, SE-981 28 Kiruna, Sweden
matsh@irf.se

http://www.irf.se/~matsh/

Abstract. We present extensions of the flash solver for handling two
types of particle simulations that often are used in space physics sim-
ulations — hybrid simulations of space plasmas and direct simulation
Monte Carlo (DSMC) methods for particle collisions. Flash is an open
source parallel solver for general hydrodynamic problems. We present
the design of the software modules and show the results of performance
measurements. It is found that the particle extensions scales as well with
the number of processors as the rest of the flash code.

1 Overview

In many regions of space collisions between particles are not frequent enough
to justify a fluid approximation such as magnetohydrodynamics (MHD). That
collisions are rare imply that the ions or neutrals are not thermalized (they have
non-Maxwellian velocity distributions) and that kinetic effects are important
(such as the finite gyro radius of ions in a magnetic field). One example of such
a problem is the neutral particles in a planetary exosphere (outermost part of the
atmosphere). There the neutrals travel along ballistic orbits and are affected by
radiation pressure, photo-ionization, charge exchange with ions, and infrequent
collisions. Another example is the interaction between the solar wind and Mars.
There the ions move from the Lorentz force of the magnetic and electric fields,
and the gyro radius of solar wind protons is of the same order as the planet’s
radius. Also, the low ion densities makes the solar wind essentially collisionless.
In both these examples, particle methods can be used to self consistently solve
for the motion of particles affected by fields and collisions. For charged particles
we can use hybrid methods, where the electrons are represented as a massless
fluid, and ions are represented as particles. One also needs to store the magnetic
field on a grid, and it is self consistently updated from the motion of the ions.
Collisions between particles can be handled by the direct simulation Monte Carlo
(DSMC) method, where the computational domain is divided into cells, and
collision pairs are randomly drawn in each cell with probability proportional to
their crossections and relative velocities. Note that the DSMC method also easily
handles collisions that change the participating particles, e.g., charge exchange
or chemical reactions.

2

The drawback of particle methods is that they are computationally expensive.
To minimize the statistical fluctuations inherent in averaging discrete particle
populations over grid cells we need to have a sufficient number of particles in
each cell. The spatial resolution of the simulation is determined by the size of
the grid cells, and this size in turn limits the size of the time step. But, since
all computations are local, these types of particle simulations are suitable for
parallelization. The requirements for hybrid and DSMC simulations are similar
in that we need to be able to represent and move particles, and that we need to
have a grid. By using an adaptive, non-uniform, grid we can gain computational
efficiency by having small cells only where it is needed (where we have many
particles). It is also possible to introduce adaptivity by joining and splitting
particles.

However, the requirement of the software to be parallel and handle an adap-
tive grid makes it non-trivial. Therefore we have chosen to extend an existing
software (Flash)[2] with the necessary modules to be able to do hybrid and
DSMC simulations.

Flash is a general parallel solver for compressible flow problems. It is written
in Fortran 90, well structured into modules, and open source. The paralleliza-
tion is to a large extent handled by the Paramesh[3] library that implements
a block-structured adaptive cartesian grid with the Message-Passing Interface
(MPI) library as the underlying communication layer. Although flash was origi-
nally written to solve fluid flow problems, there is now support for particles also.
However, most of the support for particle simulations is for gravitational in-
teraction, i.e. N-body problems with a gravitational potential on the grid. The
particle simulations considered here (hybrid and DSMC) have local instead of
global couplings between the particles and require support for slightly different
operations, e.g., accurate update of the magnetic field on the grid from computed
currents, and iteration over the particles in each cell for the selection of colli-
sion pairs. The different operations performed during one time step of a DSMC
simulation are shown in Figure 1.

Here we describe the extensions we have made to the flash code to allow
hybrid and DSMC simulations. The additional modules were written in a general
way to be useful in any type of particle simulations involving local interactions.
In fact, there is also a clear separation from the flash code itself to make
possible the use of another software for handling parallelization and the adaptive
grid. This separation and layering of the software is illustrated in Figure 2.
Also, we have kept in mind the possibility of future inclusions of fluid flows
coupled to the particles, e.g., a more realistic electron fluid. We have previously
developed modules for MHD simulations of the interaction between solar-system
objects and the solar wind[1], and combining these two models enables a coupling
between particle and fluid simulations. An example of such a coupled simulation
is the MHD flow around Mars, coupled to a particle model of Mars’ exosphere
that is a computationally easier problem than a full hybrid simulation.

3

Redistribute Particles
Update Grid

Compute
Accelerations

Sort
Particles

Collide
Particles

Move
Particles

Add/Delete
Particles

FLASH

Gravity, Radiation pressure, ...

High order symplectic
time integrator

Sources/Sinks

Each Particle to the correct Block/Processors
Refine or Coarsen Blocks. Redistribute Blocks

Particle – Cell map

DSMC

5)

6)4)

1)

2)

3)

Fig. 1. An illustration of a DSMC particle simulation cycle that is performed for each
time step.

FLASH
Dependent

FLASH
Independent

G
en

er
al

S
pe

ci
fic

AdvanceParticles.F90
ParticlesFLASH.F90

ParticleTools.F90

ExosphereFLASH.F90 Exosphere.F90

FLASH

Exosphere/Particles

Wrapper

Layers

Fig. 2. An illustration of the software design. To the left it is shown that the modules
and subroutines can be sorted along two dimensions. Along the y-axis: General for all
particle simulations, and problem specific for a specific class of problems, e.g., exosphere
simulations. Along the x-axis: The interaction with the library handling the adaptive
grid and the parallelization. Either routines are specific for the used library (flash
in the present work) or they can be used with any library. To the right we show this
layering that separates all flash-dependent parts of the software.

4

We present the design of the software modules and show the results of per-
formance measurements. It is found that the particle extensions scales as well
with the number of processors as the rest of the flash code.

The physical problems that are investigated so far using the developed soft-
ware is the exosphere of Mars (DSMC) and the interaction between the solar
wind and Mars (hybrid) with the goal of coupling the two models.

2 Acknowledgements

The software used in this work was in part developed by the DOE-supported ASC
/ Alliance Center for Astrophysical Thermonuclear Flashes at the University of
Chicago.

References

1. A. Ekenbäck, and M. Holmström, MHD modeling of the interaction between the
solar wind and solar system objects. in PARA 2004, J. Dongarra, K. Madsen, and J.
Waśniewski, Eds., Lecture Notes in Computer Science 3732, Springer-Verlag, 2005
(554–562)

2. B. Fryxell et al., FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling
Astrophysical Thermonuclear Flashes. Astrophysical Journal Suppl. 131 2000 (273–
)
http://flash.uchicago.edu/

3. P. MacNeice, K.M. Olson, C. Mobarry, R. deFainchtein, and C. Packer, PARAMESH
: A parallel adaptive mesh refinement community toolkit. Computer Physics Com-
munications 126 2000 (330–)
http://sourceforge.net/projects/paramesh/

