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Abstract. The chemical master equation (CME) describes the proba-
bility for each internal state of the cell or rather the states of a model
of the cell. The number of states grows exponentially with the number
of chemical species in the model, since each species corresponds to one
dimension in the state space.

Two different approaches to handling this difficulty are compared: nu-
merical solution of the Fokker-Planck approximation of the CME, by a
finite volume method and the Stochastic Simulation Algorithm (SSA).
Both methods have their advantages. The convergence rate of SSA is
independent of the number of dimensions and the algorithm is rather
simple to implement. The Fokker-Planck approach can be more efficient
for low-dimensional problems and high accuracy.

1 Stochastic models in molecular biology

Even though, to science, the biological cell is just an extraordinary complex
and exquisite system of chemical reactions, the tools usually apt for analyzing
chemistry is not always sharp enough to properly describe biochemical dynamics.
Some of the assumptions that usually can be made for chemical systems are no
longer valid. Biological cells are small and many chemical species are present
in very low copy numbers. Due to the inherent discreteness of molecules and
the randomness of the encounters between molecules that lead to reactions, the
relative variation in copy numbers may become large and it is necessary to
account for the stochasticity of the internal state of the cell.

Even though this aspect of in vivo biochemistry isn’t new [2], the importance
of the fluctuations in copy numbers in the cell has been stressed during the last
years due to improved experimental techniques as well as an increased effort to
model single cell processes [3].
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2 The chemical master equation

The chemical master equation (CME) is used to describe the variation in chem-
ical species [1]. It is assumed that the content of the cell is well mixed, that is,
there is a sufficiently long time between reactive collision to ensure that each
pair of molecules is equally likely to be the next to collide. The prerequisite for
the master equation is that the chemical system can be described as a Markov
process, which essentially means that the progress of the system depends only
on the present state (chemical composition) of the cell.

Let the molecular species in the model be denoted X;,7 = 1... N, where
N is the number of components and let x; be the copy number of molecules of
species X;. The state of the cell is determined by a vector of the copy numbers
of each species x = (x1, To,...,zn)7. A reaction is specified
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where x,. is the state of the system before the reaction and w,(x) is the reaction
propensity, that is the probability for reaction per time unit. Summing over all
reactions we now can write the CME:
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The CME state that the change in probability for state x is simply the probability
to reach state x from any other state x, (first sum), minus the probability to
leave state x for any other state (second sum).

The size of the state space grows exponentially with the number of compo-
nents in the model. There are no analytical solutions for the master equation
but for some simple cases. Even low-dimensional problems will be very cumber-
some to solve numerically. Two approaches to handling the huge state space are
compared here.

The most common strategy is to apply a Monte Carlo method, in this context
the Stochastic Simulation Algorithm (SSA) [4] is a natural choice. SSA essentially
simulates the chemical evolution for an ensemble of model instances by randomly
applying the reactions of the system. Data is collected by recording the state
of each instance. The simulated data is then used to compute the probability
distribution. The algorithm is simple to implement, has low memory demands
and a convergence rate that is independent of the dimension of the problem. On
the other hand, that convergence rate is slow.

Another approach is to find a way to approximate the CME so that the
solution can be represented on a smaller space than the original state space.
One alternative is to approximate CME with a partial differential equation, the
Fokker-Planck equation (FPE) [1]
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The FPE is discretized and solved on a grid that is considerably coarser than
the state space [6].

3 Computational efficiency

The convergence rate of solution by the FPE approximation is derived in [7] and
SSA have the convergence rate usually associated with Monte Carlo methods
[5]. For a certain error € the computational work for the SSA is

Wssa(e) = Cssae?,
while the work for the FPE is
Wrpe(e) = Crpr 67<%+%),

where Css4 and Crpp are independent of €, IV is still the dimension of the prob-
lem and 7 and s are the order of accuracy of the space- and time-discretization
respectively [7].

Since the work for the FPE approach grows so rapidly with IV a paralleliza-
tion will not achieve so much more than the possibility to treat problems with
one additional dimension. For SSA the impact of parallelization is not quite as
clear since it depends on how Csg4 depends on N. That dependence is in fact
very problem dependent, since it essentially is determined by the size of the
subspace that is sampled by SSA.

The results for some test problems that all have properties that are trouble-
some for SSA are shown in Figure 1. The FPE is discretized by a second order
finite volume scheme in space. These are steady state solutions which reduce
the FPE computational work to Wrpg(€) = Crpg e [7]. Figure 1 illustrates
the SSA insensitiveness of the dimension and how the initially attractive conver-
gence rate of the FPE gets worse with increasing dimension. For low dimension
and high accuracy FPE is much more efficient.
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Fig. 1. The computational work using FPE (top) and SSA (bottom) to solve the CME
for some different test problems in 2D (4,x,V), 3D (%) and 4D (-). The dashed lines
are reference lines with slopes —1 (no symbol), —3/2 (o) and —2 (0O).
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