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Abstract. In this paper we will present the concepts of the python—
based numerical modeling framework escript. Main application areas for
escript are models based on coupled, non-linear, time-dependent partial
differential equations (PDEs). One objective is to provide a easy-to-use
programming environment for model developers to work independently
form PDE solver libraries. The basic idea is to design an abstraction
layer from particular numerical methods, their data structures and pos-
sibly platform dependent implementations. The second objective is to
provide an environment for the model implementation which allows cou-
pling models in a very easy way and building user interfaces (including
GUIs and web services) automatically. This is achieved through imple-
menting models as python objects where model parameters are repre-
sented as a special type of object attributes. These attributes can be
serialized in XML format and can be linked to attributes of other model
objects.

1 Spatial Functions

The escript [2] package is an extension of python [3]. All computational intensive
tasks such as solving linear partial differential equations (PDEs), visualizations
and data manipulations are implemented in C or C++. Except for data manipu-
lations the escript package does not include implementation for these tasks, and
relies on the program codes optimized for the particular compute architecture
being used.

In escript, functions of spatial coordinates are hold in Data class objects. A
Data class objects has a FunctionSpace object assigned to it, which defines the
Domain of the function and the type of function (for instance its smoothness)
represented by the object. A Domain defines not only the geometry of a domain
but also the discretization method to be used. The FunctionSpace defines how
the function is represented. For examples, in the case of finite elements (FEM)
the Domain would hold references to the tables of node coordinates and elements.
These data are not managed by escript but the PDE solver library. Typically,
in the FEM context, a temperature distribution is given through its values at
nodes and a stress tensor at quadrature points. The coresponding Data class
objects are defined on the same Domain but within different FunctionSpaces,
namely ContinuousFunctionand Function, respectively. The Data class objects



are managed by escript while PDE solver libraries can read from and write
to Data class objects under the assumption that the access does not require
data conversion or communication. Suitable functions for interpolation and data
redistribution which are called by escript to change the FunctionSpace has to
be provided by the solver library.

For each individual data point escript support scalar, vector and tensorial
quantities up to order 4. From python Data objects can be manipulated by ap-
plying unitary operations (for instance cosine ,sine, logarithm) and be combined
by applying binary operations (for instance +, — %, /). If needed escript in-
vokes interpolation to match the FunctionSpace. Operations are implemented
in C/C++ and parallelized using OpenMP (MPT is under construction).

2 Partial Differential Equations

The second key component in escript is the linearPDE class used to define a
general linear, steady, second order PDE for an unknown function u on the PDE
domain. In tensor notation, the PDE has the form
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where u;, denotes the components of the function u and u ; denotes the derivative
of u with respect to the j-th spatial direction. A general form of natural boundary
conditions and constraints can be considered. The functions A, B, C', D, X and Y
are the coefficients of the PDE and are defined by Data objects. When dealing
with non-linear and time-dependent problems, suitable high-level schemes are
used to reduce the problem to linear PDEs that are solved in each iteration
step. The coefficients are updated trough escript. When a solution of the PDE is
requested, escript passes the PDE coefficient to the solver library which returns
a Data object representing the solution by its values, for instance, at the nodes
of a FEM mesh. Currently escriptis linked with the FEM solver library finley [1]
but other libraries and even other discretization approaches can be included.

3 Example

We present a simple example that illustrates how to use escript to solve the
Stokes equation using the iterative penalty method. In each iteration step the
linear PDE
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has to be solved to get new velovity v from the current pressure approximation
p. Then the pressure is updated by

p=p— Peuvgy (3)

The iteration is terminated when vy i is small. In PDE (2) 5 is the viscosity, F'
represents external forces and Pe denotes the penalty factor.



The following python function incompressibleFluid implements the itera-
tion scheme for given Domain object domain, viscosity eta and internal force F.
The function returns velocity v and pressure p:

def incompressibleFluid(domain,eta,F):
E=Tensor4(0,Function(dom))
for i in range(dom.getDim()):
for j in range(dom.getDim()):
E[i,i,j,jl+=Pe
E[i,j,1i,jl+=eta
E[i,j,j,il+=eta
pdel=LinearPDE(domain)
pdel.setValue(A=E,Y=F)
pde2=LinearPDE(domain)
pde2.setValue(D=1.)
pdel.setReductionOn()
p=Scalar(0,ReducedSolution(domain))
while Lsup(vkk)>tol:
mypdel.setValue(X=kronecker (domain)*p)
v=pdel.getSolution()
pde2.setValue(Y=div(v))
vkk=pde2.getSolution()
p—=Pe*vkk
return v,p

As required by the Ladyzhenskaya-Babuska-Brezzi condition the pressure is de-
fined in the FunctionSpace ReducedSolution. The viscosity (and similar the
external force) may be a float object or, for instance if viscosity is depending on
temperature, a scalar Data object. If required, interpolation of the coefficients is
performed to match the FunctionSpace required by the PDE solver library.

4 Managing Models

Models in escript can be implemented as subclasses of the Model class. A par-
ticular model implements a set of methods, for instance the execution of a time
step and calculation of a safe time step size. The function IncompressibleFlow
defined in the previous section would be implemented in three method, namely
initialization phase, update phase and check of the stopping criterion (due to
the limitation of space we cannot present more details.). The model parameters
viscosity, external force, velocity and pressure are defined as attributes of the
class defining the the model.

If the class IncompressibleFlow implements a model of an incompressible
fluid, Temperature implements a model for temperature advection-diffusion,
and MaterialTable is a Model class for a material table providing values for
a temperature-dependent viscosity, a coupling of the temperature and fluid flow
model can be implemented in the following python script:



flow=IncompressibleFlow()
temp=Temperature()
mat=MaterialTable()
flow.eta=Link(mat,"viscosity")
temp.velocity=Link(flow,"v"
mat.temperature=Link(temp,"T")

We assume here that v is the velocity provided by the flow model and T is the
temperature of the temperature model. When IncompressibleFlow references
its attribute eta, it will access, via the Link object, the viscosity provided by
the MaterialTable object at that moment. The capability of escript to know
about the context of data and to invoke data conversion when required is vital
to make this work.

As the order in which the models perform their time steps is critical, the
model execution is handled by an instance of the Simulation class. In the ex-
ample, this will take the form

Simulation([flow,mat,temp]).run()

which will make sure that incompressible flow model updates its velocity before
the temperature model performs the next time step. The viscosity is calculated
from the temperature of the previous time step. Moreover, escript provides a
mechanism to build instances of the Simulation class from files in the XML
dialect ESysXML. Files can be generated through serialization of Simulation
class objects or from a (graphical) user interface or problem solving environment.
A user interface based on GridSphere [4] that allows manipulating and running
ESysXML files via a web and grid service 1s currently under construction.
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