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Abstract. We give a variational multiscale interpretation of a method
recently introduced by the authors, the edge stabilization method using
the jump in discrete gradient across element edges (faces in 3D) for
the purpose of stabilization of Galerkin approximations of convection
dominated flows. The ideas are exemplified using convection–diffusion as
a model.

1 Introduction

Consider the solution of the convection–dominated convection–diffusion problem

β · ∇u− ε∇2u + σu = f in Ω, u = 0 on ∂Ω. (1)

The usual variational formulation of this problem is to seek u ∈ H1
0 (Ω) such

that
a(u, v) = (f, v), ∀v ∈ H1

0 (Ω), (2)

where (·, ·) denotes the scalar product in L2 with norm ‖ · ‖, and

a(u, v) := (ε∇u,∇v) + b(u, v), b(u, v) := (β · ∇u + σu, v).

Under the usual assumption

σ − 1
2
∇ · β ≥ c0 > 0

a(u, v) is coercive and (2) has a unique solution.
Standard Galerkin finite element methods consists in choosing a V h ⊂ H1

0 (Ω)
and to seek uh ∈ V h such that

a(uh, vh) = (f, vh), ∀vh ∈ V h. (3)

This yields centered schemes from a finite difference perspective, which are well
known to exhibit poor stability properties.
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2 Gradient jump stabilization

In [1] a method based on the jump in gradients across element edges was proposed
for the purpose of allleviating the convective instability of the Galerkin method.
The idea is to add, to (3), a term of the type

J(uh, vh) =
∑
K

1
2

∫
∂K

γh2
∂K [∇uh] · [∇vh] ds

=
∑
K

1
2

∫
∂K

γh2
∂K [n · ∇uh] [n · ∇vh] ds.

(4)

Here, h∂K is the size of ∂K, [q] denotes the jump of q across ∂K for ∂K∩∂Ω = ∅,
[q] = 0 on ∂K ∪ ∂Ω, n is the outward pointing unit normal to K, and γ is a
constant. It was shown in [1] that the term J(uh, vh) gives control of the quantity
‖h1/2

K β ·∇uh‖2 which is the crucial point in the standard finite element stability
proofs, as used, e.g., for the streamline diffusion methods or the discontinuous
Galerkin methods applied to convective problems. An important step in the
analysis of [1] was the proof that there exists some ζ ≥ ζ0 > 0 such that

‖h1/2
K (πhβ · ∇uh − β · ∇uh)‖2 ≤ ζJ(uh, uh), (5)

where πh is a suitable interpolant (the Clément interpolant in [1]).

3 Subgrid viscosity

Guermond [3] suggested the use of a fine scale viscosity operator acting only on
the fine, unresolved, scales in a computation. He made use of a decomposition
of a given vh ∈ V h into

vh = vH + ṽh, vH ∈ V H , ṽh ∈ Ṽ h,

where Ṽ h represents a space with higher resolution than V H . The decomposition
corresponds to a decomposition of V h into

V h = V H ⊕ Ṽ h.

The idea of [3] was then to apply an artificial viscosity only to the unresolved
scales, viz.: Find uh ∈ V h such that

(c0hK∇ũh,∇ṽh) + a(uh, vh) = (f, vh), ∀vh ∈ V h, (6)

or The decomposition can be defined by hierarchical meshes or, alternatively,
by adding bubble functions, internal to the elements, on a given mesh, in which
case ṽh represents the bubbles. If we additionally consider an orthogonal decom-
position so that (uH − ũh, vH) = 0, ∀vH ∈ V H , or uH = PH ũh, the method can
alternatively be written: find uh ∈ V h such that

(c1∇(I − PH)uh,∇(I − PH)vh) + a(uh, vh) = (f, vh), ∀vh ∈ V h, (7)

yielding control of the term ‖∇(I − PH)uh‖.
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4 Edge stabilization and subgrid viscosity

The subgrid viscosity idea of [3] was subsequently reinterpreted by Layton [5] and
John and Kaya [4], in both cases using a mixed method with auxiliary variables.
In the case of convection–diffusion, Layton [5] introduced the auxiliary variable
p = ∇u. Now, if the discrete space QH for the approximation pH of p has the
property that ∇vh ∈ QH ,∀vh ∈ V h, then pH can be directly eliminated in the
discrete problem, but assume that QH is not big enough to ensure this. Layton
then used the L2–projection PH onto the coarse scale and set pH = PH∇uh and
modified (3) to seeking uh ∈ V h such that

c2 ((∇uh,∇vh)− (PH∇uh,∇vh)) + a(uh, vh) = (f, vh), ∀vh ∈ V h, (8)

an idea remarkably close to that of Codina [2]. By the orthogonality of the
L2–projection, this can be written: find uh ∈ V h such that

c2((I − PH)∇uh, (I − PH)∇vh) + a(uh, vh) = (f, vh), ∀vh ∈ V h, (9)

giving control of the term ‖(I − PH)∇uh‖. This is similar, but not equivalent,
to (7). With specific choices of the discrete spaces, the correspondence can nev-
ertheless become exact, cf. [5].

The same idea was used in [4] for the purpose of large-eddy turbulence mod-
eling.

At this point, we can compare the subgrid viscosity models discussed above
with the gradient jump stabilization method. In the latter case we would choose
V H = V h and thus make the subgrid diffusion act only on the scales that
are not resolved on the space V h. Applying (5) we obtain an interior penalty
interpretation of the control of the term ‖(I − PH)∇uh‖, with PH replaced by
πh,

‖(I − πh)∇uh‖2Ω ≤ C
∑

K∈Th

∫
∂K

hK [∇uh] · [∇uh] ds

and we conclude that a possible subgrid modeling term would be

jT (uh, vh) =
∑

K∈Th

∫
∂K\∂Ω

c3hK [∇uh] · [∇vh] ds

where c3 is at our disposal. Note that the choice c3 = γhK gives us a term which
is asymptotically equivalent to the face penalty operator.

For sufficiently high polynomial degree there exists a C1 subspace of Vh with
approximation properties. It follows that the solution may be decomposed into
one C1 part which is untouched by the stabilizing terms and another C0 part
which is penalized. We conclude that the method enjoys the scale separation
property characteristic for subgrid models as proposed in [3] by polynomial order
rather than by hierarchic meshes.
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