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Abstract. Recent improvements to the QZ algorithm for solving gen-
eralized eigenvalue problems are summarized. Among the major modi-
fications are novel multishift QZ iterations based on chasing chains of
tiny bulges and an extension of the so called aggressive early deflation
strategy. The former modification aims to improve the execution time of
the QZ algorithm on modern computing systems without changing the
number of floating point operations (flops) significantly. In contrast, the
new deflation strategy results in a considerable convergence acceleration
and consequently in a reduction of both, flops and computing time.

1 Introduction

The QZ algorithm is the most widely used method for computing all n eigenval-
ues λ of a regular matrix pair (A,B) with A,B ∈ Rn×n, which satisfy

det(A− λB) = 0.

The QZ algorithm was developed by Moler and Stewart in [14] and relies on
computing orthogonal matrices Q and Z such that (S, T ) = (QT AZ, QT BZ)
is in real generalized Schur form, i.e., S is quasi-upper triangular with 1 × 1
and 2× 2 blocks on the diagonal, while T is upper triangular. This equivalence
transformation preserves the eigenvalues of (A,B), which then can be easily
extracted from the block diagonals of S and T . The LAPACK [2] implementation
of the QZ algorithm is mainly based on [14], with some improvements proposed
in [10, 16, 18]. It consists of the following subroutines:

DGGBAL performs an optional preliminary balancing step [17] aiming to improve
the accuracy of subsequently computed eigenvalues.

DGGHRD reduces a general matrix pair (A, B) to Hessenberg-triangular form, i.e.,
it computes in a finite number of steps orthogonal matrices Q1 and Z1 such
that H = QT

1 AZ1 is upper Hessenberg while T = QT
1 BZ1 is upper triangular.
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DHGEQZ reduces (H, T ) further, by applying single- and double-shift QZ itera-
tions combined with deflations, to real generalized Schur form.

DTGSEN and DTGEVC post-process the output of DHGEQZ to compute selected eigen-
vectors and deflating subspaces [9] of (A,B).

Additionally, there are a number of support and driver routines for solving gen-
eralized eigenvalue problems. The focus of the improvements summarized in the
following are the QZ iterations and deflations implemented in DHGEQZ, see also [1,
8]. Improvements to DGGBAL, DGGHRD and DTGSEN, which are also considered for
inclusion in the next LAPACK release, can be found in [6, 11–13, 15].

2 Multishift QZ Iterations

Given a matrix pair (H,T ) in Hessenberg-triangular form, with T nonsingular,
an implicit double-shift QZ iteration starts with computing the vector

v = (HT−1 − σ1I)(HT−1 − σ2I), (1)

where I denotes the n × n identity matrix and σ1, σ2 ∈ C are suitably chosen
shifts. Next an orthogonal matrix Q (e.g., a Householder reflector [7]) is com-
puted such that QT v is mapped to a scalar multiple of the first unit vector e1.
This transformation is applied from the left to H and T :

H ← QT H, T ← QT T.

The Hessenberg-triangular structure of the updated matrix pair is destroyed in
the first three rows and the rest of the implicit QZ iteration consists of reducing
it back to Hessenberg-triangular form without touching the first row of H or T .
Due to the special structure of (H, T ), this process requires O(n2) flops and can
be seen as chasing a pair of 3 × 3 bulges along the subdiagonals of H and T
down to the bottom right corner, see [14, 18]. If the shifts are chosen to be the
eigenvalues of the 2 × 2 lower bottom submatrix pair of (H, T ) then typically
the (n− 1, n− 2) subdiagonal entry of H converges to zero. Such a subdiagonal
entry is explicitly set to zero if it satisfies

|hj+1,j | ≤ u(|hjj |+ |hj+1,j+1|), (2)

where u denotes the unit roundoff. This criterion not only ensures numerical
backward stability but may also yield high relative accuracy in the eigenvalues
for graded matrix pairs, see [8] for more details. Afterwards, the QZ iterations
are continued on the deflated lower-dimensional generalized eigenvalue problems.

The described QZ iteration performs O(n2) flops while accessing O(n2) mem-
ory. This poor computation/communication ratio limits the effectiveness of the
QZ algorithm for larger matrices. An idea which increases the ratio without
affecting the convergence of QZ iterations, has been extrapolated in [8] from
existing techniques for the QR algorithm, see, e.g., [4]. Instead of only one bulge
pair corresponding to one double shift, a tightly coupled chain of bulge pairs
corresponding to several double shifts is introduced and simultaneously chased.
This allows the use of level 3 BLAS without a significant increase of flops in the
overall QZ algorithm.
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3 Aggressive Early Deflation

Another ingredient, which may drastically lower the number of iterations needed
by the QZ algorithm, is aggressive early deflation introduced in [5] and extended
in [1, 8]. Additionally to the classic deflation criterion (2), the following strategy
is implemented. First, H and T are partitioned

(H, T ) =







H11 H12 H13

H21 H22 H23

0 H32 H33


 ,




T11 T12 T13

0 T22 T23

0 0 T33





 ,

such that H32 ∈ Rm×1 and H33, T33 ∈ Rm×m (typical choices of m are between
40 and 240). Then (H33, T33) is reduced to real generalized Schur form. By
applying the corresponding left orthogonal transformation to H32, a spike is
introduced in H. If the trailing d ≤ m spike elements can be safely set to zero
(see [5] for various criteria) then the bottom right d × d submatrix pair can be
deflated. Otherwise, the Schur form of (H33, T33) is reordered to move other,
untested eigenvalues to its bottom right corner, see [8] for more implementation
details.

4 Further Improvements

Also described in [8] are more efficient algorithms for deflating infinite eigenvalues
to guarantee the nonsingularity of T assumed in the beginning of Section 2. For a
careful implementation, we will carefully reinvestigate the use of ad hoc shifts to
avoid convergence failures in the QZ algorithm as well as the optimal use of the
pipelined QZ iterations described in [6] to address medium-sized subproblems.

5 Selected Numerical Experiments

To give an indication of the performance of the new QZ algorithm, we summarize
a few of the numerical experiments reported in [8], which were performed on a
dual AMD Opteron 248 (2.2GHz) with 64 kB instruction and 64 kB data L1
Cache (2-way associative) and a 1024 kB unified L2 Cache (16-way associative).
We used the Portland F90 6.0 compiler under Debian GNU/Linux 3.1 with Goto
BLAS 0.94.

First, we tested a random 2000 × 2000 matrix pair reduced to Hessenberg-
triangular form. LAPACK’s DHGEQZ requires 270 seconds, while the multishift
QZ algorithm described in Section 2 with 60 simultaneous shifts requires 180
seconds (on machines with smaller L2 cache this reduction was even more signif-
icant). Applying aggressive early deflation with m = 200 reduced the execution
time further, to remarkable 28 seconds. This significant reduction of execution
time carries over to other, practically more relevant examples. For instance, the
multishift QZ algorithm with aggressive early deflation needed 12 seconds (in-
stead of 147 seconds needed by DHGEQZ) when applied to the 2003×2003 matrix
pair BCSSTK13/BCSSTM13 from the Matrix Market collection [3].



4

References

1. B. Adlerborn, K. Dackland, and B. K̊agström. Parallel and blocked algorithms
for reduction of a regular matrix pair to Hessenberg-triangular and generalized
Schur forms. In J. Fagerholm et al., editor, PARA 2002, LNCS 2367, pp 319–328.
Springer, 2002.

2. E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen.
LAPACK Users’ Guide. SIAM, Philadelphia, PA, third edition, 1999.

3. Z. Bai, D. Day, J. W. Demmel, and J. J. Dongarra. A test matrix collection for
non-Hermitian eigenvalue problems (release 1.0). Tech. Report CS-97-355, Dept. of
Computer Science, Univ. of Tennessee, Knoxville, TN, USA, 1997. Also available
online from http://math.nist.gov/MatrixMarket.

4. K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. I. Main-
taining well-focused shifts and level 3 performance. SIAM J. Matrix Anal. Appl.,
23(4):929–947, 2002.

5. K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. II. Aggressive
early deflation. SIAM J. Matrix Anal. Appl., 23(4):948–973, 2002.

6. K. Dackland and B. K̊agström. Blocked algorithms and software for reduction
of a regular matrix pair to generalized Schur form. ACM Trans. Math. Software,
25(4):425–454, 1999.

7. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, third edition, 1996.

8. B. K̊agström and D. Kressner. Multishift variants of the QZ algorithm with aggres-
sive early deflation. Report UMINF-05.11, Dept. of Computing Science, Ume̊a Uni-
versity, Ume, Sweden, 2005.

9. B. K̊agström and P. Poromaa. Computing eigenspaces with specified eigenvalues
of a regular matrix pair (A, B) and condition estimation: theory, algorithms and
software. Numer. Algorithms, 12(3-4):369–407, 1996.

10. L. Kaufman. Some thoughts on the QZ algorithm for solving the generalized
eigenvalue problem. ACM Trans. Math. Software, 3(1):65–75, 1977.

11. D. Kressner. Numerical Methods and Software for General and Structured Eigen-
value Problems. PhD thesis, TU Berlin, Inst. für Mathematik, Berlin, Germany,
2004.

12. D. Kressner. Block algorithms for reordering standard and generalized Schur forms,
2005. To appear in ACM Trans. Math. Software.

13. D. Lemonnier and P. Van Dooren. Balancing regular matrix pencils, 2004. To
appear in SIAM J. Matrix Anal. Appl.

14. C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigenvalue
problems. SIAM J. Numer. Anal., 10:241–256, 1973.

15. G. Quintana-Ort́ı and E. S. Quintana-Ort́ı. An efficient algorithm for computing
the Hessenberg-triangular form. Technical report ICC 2006-05-01, Universidad
Jaime I, Castellón, Spain, 2006.

16. R. C. Ward. The combination shift QZ algorithm. SIAM J. Numer. Anal.,
12(6):835–853, 1975.

17. R. C. Ward. Balancing the generalized eigenvalue problem. SIAM J. Sci. Statist.
Comput., 2(2):141–152, 1981.

18. D. S. Watkins and L. Elsner. Theory of decomposition and bulge-chasing al-
gorithms for the generalized eigenvalue problem. SIAM J. Matrix Anal. Appl.,
15:943–967, 1994.


