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Abstract. The QZ algorithm reduces a regular matrix pair (H,T) in
Hessenberg-triangular form to a generalized Schur form (.5, T'), which can
be used to address the generalized eigenvalue problem. A novel parallel
implementation of a small-bulge multishift QZ algorithm is presented.
The algorithm chases chains of small bulges instead of only one bulge
in each QZ iteration and makes use of delayed updates, which makes
it more amenable to a parallel setting. In addition, advanced deflation
strategies are used, specifically the so called aggressive early deflation.
Recent progress will be reported including parallel performance results.

1 Introduction

In this paper, we consider parallel variants of the multishift QZ algorithm with
aggressive early deflation discussed in [2]. All variants of the QZ algorithm [9] for
computing the eigenvalues of a regular matrix pair (A, B) € R™"*™ x R™*™ rely
on computing orthogonal matrices @ and Z such that (S,T) = (QTAZ, QT BZ)
is in real generalized Schur form. The parallel reduction from (A4, B) to (S,T)
proceeds in three stages [6]:

(4,B) "2 (1, T) P52 (7, 7) P2 (5, 7).

Stage 1 reduces (4, B) to block upper Hessenberg-triangular form (H,,T) using
mainly level 3 (matrix-matrix) operations. In the second stage, all but one of the
r subdiagonals of H, are set to zero using Givens rotations, leading to (H,T)
in Hessenberg-triangular form. The third stage computes the generalized Schur
form (S,T) by applying QZ iterations to (H,T).

Parallel distributed memory (DM) algorithms and implementations for the
first two stages have been presented in [1]. In this contribution, we consider
the third stage, QZ iterations. Our new parallel variants are based on the LA-
PACK [3] implementation of the QZ algorithm as well as the blocked variants
described in [6, 8]. In order to gain better performance and scalability, we employ
the following extensions:

* This research was conducted using the resources of the High Performance Computing
Center North (HPC2N).
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Fig. 1. lllustration of a multishift QZ step with aggressive early deflation.

— Use of several small bulges introduced and chased down the diagonals of H
and T in a blocked manner.

— Accumulation of orthogonal transformations in order to apply them in a
blocked manner, leading to delayed updates.

— Use of the aggressive early deflation technique which drastically reduces the
number of QZ iterations needed. This method is described in detail in [5, 8.

2 Parallel QZ algorithm

Given a Hessenberg-triangular matrix pair (H,T), a parallel QZ iteration is
divided into three major operations, which are implemented in separate routines:
(1) deflation check; (2) bulge introduction; (3) bulge chasing. In the following,
we give a brief description of these operations.

2.1 Parallel QZ Step — Deflation check

The deflation check routine searches and tests for deflated eigenvalues at the
bottom right corners of H and T using the aggressive early deflation technique,
see [5, 8]. This routine also returns the shifts, calculated eigenvalues from a bot-
tom right submatrix pair of H and 7" within the current deflation window, see
Figure 1, needed to start up a new bulge introduction and chase iteration.

The deflation check is performed by all processors and therefore communica-
tion is required before all processors have the required data. The output of the
deflation check is, beside the deflated window, two orthogonal matrices which
contain the accumulated equivalence transformations. If deflation was success-
ful, these transformations are applied to the right and above the deflation win-
dow. The update is performed in parallel using general matrix multiply and add
(GEMM) operations. Some nearest neighbor communication is required to be
able to perform the multiplications. The subsequent QZ iterations are restricted
to the deflated submatrix pair, also called the active submatriz pair.

2.2 Parallel QZ Step — Bulge introduction

The introduction of bulges takes place at the top left corner of the active sub-
matrix pair. The number of bulges that can be created depends on how many



shifts were returned from the last deflation check. At most #shifts/2 bulges are
created using information from the top left corner of (H,T) to compute the first
column of the shift polynomial.

After a bulge has been introduced it has to be chased down some steps in
order to give room for a new bulge. If N < n bugles are to be introduced the first
bulge is chased N - (ng + 1) positions, where ny is the size of the Householder
transformation, the second (N — 1) - (ng + 1) positions and so forth (ng = 3
in general). The chasing consists of applying Householder transformations to
(H,T) from the left and right. We limit the update of (H,T) to a window of
size NB x N B. The orthogonal updates are also applied to two matrices U and
V', initially set to the identity matrix. This way we can introduce all bulges and
after that update the remaining parts of (H,T) by using GEMM operations
with U and V to complete the calculation of the corresponding equivalence
transformation (QTHZ,QTTZ).

The window of size NB x NB is held by all processors. Communication is
therefore required to send the data to all the processors. The subsequent update
is performed in parallel where every processor updates its corresponding portion
of (H,T). The communication in the update part is limited to nearest neighbor
processors, interchanging matrix border elements (row and column data) to be
able to perform the GEMM operations independently in parallel.

2.3 Parallel QZ Step — Bulge chasing

The introduced bulges are repeatedly moved together within a bulge chasing
window, see Figure 1, of size NB x NB. The movement begins by moving the
first introduced bulge until the bottom of the bulge chasing window. This is then
repeated by moving each bulge the same number of steps. As in the introduction
phase the bulge movement arises from applying pairs of (left and right) House-
holder transformations. Moreover, the update of (H,T) is again limited to the
window of size NB x NB and the update of the remaining parts is performed
afterwards in parallel as described in Section 2.2.

3 Performance results

A preliminary Fortran implementation of the described algorithms has been
developed based on BLACS and ScaLAPACK [4]. In the following, we report
some preliminary results of experiments performed on a Linux cluster consisting
of 190 HP DL145 nodes, with dual AMD Opteron 248 (2.2GHz) and 8 GB
memory per node, connected in a Myrinet 2000 high speed interconnect. The
AMD Opteron 248 has a 64 kB instruction and 64 kB data L1 Cache (2-way
associative) and a 1024 kB unified L2 Cache (16-way associative). Figure 2 gives
a brief but representative impression of the obtained timings. It can be seen
from Figure 2 that the new parallel variant of the QZ algorithm is significantly
faster than the ScaLAPACK implementation of the QR algorithm [7]. (Note
that the traditional QZ algorithm takes roughly twice the computational effort
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Fig. 2. Execution times for ScaLAPACK’s QR for a 4096 x 4096 random Hessenberg
matrix and parallel QZ for a 4096 x 4096 random Hessenberg-triangular matrix pair.

of the QR.) This effect can be contributed to the use of blocking techniques and
aggressive early deflation. However, it can also be seen that the scalability of the
parallel QZ is improvable; this issue will be subject to further investigation.
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