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Abstract. We describe a new algorithm for computing the singular
value decomposition of a real bidiagonal matrix, which uses ideas devel-
oped by Großer and Lang that extend the MRRR algorithm by Dhillon
and Parlett for the tridiagonal symmetric eigenproblem. This new algo-
rithm inherits all the favorable properties of the MRRR algorithm, like
speed, accuracy, easy parallelization and especially adaptivity (i.e. for a
bidiagonal matrix of dimension n, k ≤ n singular triplets can be com-
puted with O(kn) operations). It is planned that this algorithm will be
included in the next release of the LAPACK library.

Background and Outline of this presentation

For computing the singular value decomposition (bSVD) of a real square bidiag-
onal matrix B ∈ Rn the standard approach is to reduce the problem to the sym-
metric tridiagonal eigenproblem (tSEP). To this end, one can use the so-called
normal equations BT B and BBT or the Golub-Kahan-Matrix TGK, which is a
symmetric tridiagonal matrix resulting from permuting the Jordan-Wielandt-
Form of B:

TGK = PT

(
0 B

BT 0

)
P.

For tSEP, a valuable theoretical improvement has been made by the quite
recent discovery of the algorithm of Multiple Relatively Robust Representations
(MRRR, or MR3) by Dhillon and Parlett [1–5]. In short this algorithm can be
described as a variant of inverse iteration [6]. For eigenvalues whose relative
distance to the rest of the spectrum is large enough so-called twisted factoriza-
tions are used to compute the corresponding eigenvector accurately. For each
of the remaining clusters of eigenvalues the algorithms chooses a shift close to
the cluster and proceeds recursively for the eigenpairs within the cluster (note
that absolute distances between eigenvalues are shift-invariant, whereas relative
distances are not). Thus the computational flow can be described as traversing
a special tree-like structure, the representation tree. Two additional ingredients
of the algorithm guarantee that the eigenvectors which are computed from a
(successively) shifted version of the original matrix are indeed worth the effort
and not spoiled by the shifting process. Firstly, to compute the shifted matrices,
highly accurate algorithms based on the dqds transformation [7, 8] are employed,
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which are mixed relatively stable. And secondly, the algorithm makes sure that
the matrices encountered in the tree define the eigenpairs of interest to high
relative accuracy, i.e., that they are Relatively Robust Representations.

In order to enjoy the benefits of the MRRR algorithm also when solving
the bSVD, Großer discovered in his thesis [9] that due to numerical problems
it is not sufficient to apply MRRR to the Golub-Kahan-Matrix or the normal
equations BT B and BBT in a black box fashion. In essence, the shifting process
inherent in MRRR destroys in both cases necessary information for the singular
value decomposition of the matrix B. To overcome these problems, Großer and
Lang proposed so called coupling relations [10, 11] which allow to run MRRR
implicitly on all three matrices in parallel, but without spoiling the SVD of B.

In an ongoing research project we are working on the refinement and exten-
sion of this approach. The task to fuse the MRRR algorithm with the couplings
into an efficient and robust implementation alone is not trivial, but so far the
result can be favorably compared to the Divide & Conquer algorithm [12]. Fur-
ther research focuses on optimization, theoretical foundation and simplification
of the method and the incorporation of additional techniques like the submatrix
method by Parlett [13]. It is planned that the algorithm will be incorporated
into the next release of the LAPACK [14] library.

The first part of this talk will give a gentle overview of the MRRR algorithm
and the coupling approach for the bSVD. The second part will delve deeper
into theoretical background and techniques for practical realisation of the algo-
rithm. Finally, we will present up to date results of numerical tests comparing
our implementation to the QR and Divide & Conquer implementations from
LAPACK.
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