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Abstract. The aim of this paper is to show that the performance of
distributed algorithms for solving triangular systems of linear equations
can be improved by using a new data distribution of triangular matri-
ces which provides steady distribution of sub-blocks among processes.
The results of experiments performed on a cluster of Itanium 2 proces-
sors and on Cray X1 are also presented. The new method is faster than
corresponding PBLAS routines P TRSV and P TRSM.

1 Introduction

The problem of solving triangular systems of linear equations belongs to the most
important tasks of computational linear algebra and a large number of papers
have appeared for handling such systems on distributed memory architectures
[5–7]. The most popular solvers, namely P TRSV and P TRSM for solving Ax = b
and AX = B (for multiple right hand sides) respectively, belongs to Level 2 and
Level 3 PBLAS library designed as a part of Scalapack [2]. They use the block-
cyclic data distribution of matrices onto rectangular process grids. The general
class of such distributions can be obtained by matrix partitioning like

A =

 A11 . . . A1m

...
...

Am1 . . . Amm

 (1)

where each sub-block Aij is mb ×mb. These blocks are mapped to processes by
assigning Aij to the process whose coordinates in a P ×Q grid are

loc(Aij) = ((i− 1) mod P, (j − 1) mod Q) . (2)

When A is a triangular matrix, then only lower (or upper) triangle is distributed
and it looks like in Figure 1. It is clear that the block size mb should be small
enough to provide steady distribution. On the other hand, mb should be large
enough to utilize cache memory and provide reasonable performance of BLAS
operations performed on sub-blocks of A [3].
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Fig. 1. Block-cyclic distribution of a lower triangular matrix over a 2 × 2 processor
grid.

2 New data distribution

In [8] we introduced a new method distribution symmetric and triangular matri-
ces on orthogonal memory multiprocessors. This method can be adopted for dis-
tributing sub-blocks Aij onto P × 1 processor grid. Let us assume that m = 2P .
Then

loc(Aij) =
{

i− 1 for i = 1, . . . , P
2P − i for i = P + 1, . . . , 2P.

(3)

Figure 2 shows the example of such distribution for P = 4. Note that each
processor holds exactly the same number of sub-blocks of A. Our algorithm
which uses (3) is based on the fan-out method presented in [5]. It solves systems
of linear equations AX = B, where A ∈ Rm×m and B ∈ Rm×n, just like the
Level 3 PBLAS routine P TRSM. Note that for n = 1, it performs the same
computational task as the Level 2 PBLAS routine P TRSV.
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Fig. 2. New distribution of a lower triangular matrix over 4 processors.

3 Implementation, results and future work

The method has been implemented in Fortran and tested on a cluster of 16
Itanium 2 processors using Intel Fortran Compiler and Math Kernel Library as
an efficient implementations of BLAS [3] and on four MSPs of Cray X1. In case
of the Itanium cluster, the libraries PBLAS (routines P TRSV and P TRSM) and
BLACS [4] (based on MPI, used for communication) have been downloaded from
the Netlib. On Cray we have used corresponding routines provided by Cray. We



have compared the performance of the new method with the routine P TRSV
(Figure 3) and P TRSM (Figure 4). The new method is much faster than the
routine P TRSV. For systems with multiple right hand sides it is also faster than
P TRSM for smaller values of n.

In the final version of the paper we are going to present the detailed com-
plexity analysis described in terms of the BSP model of parallel computing [1]
of the new method and compare it with the complexity of the corresponding
Scalapack routines. Such analysis will show when the new method can be faster.
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Fig. 3. The performance of the PBLAS routine PSTRSV and the new method on a
cluster of Itanium 2 (left) and Cray X1 (right) for various matrix sizes (m) and n = 1.
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Fig. 4. The performance of the PBLAS routine PSTRSM and the new method on a
cluster of Itenium 2 (left) and Cray X1 (right) for various number of right hand sides
(n) and m = 16384.


