
New Data Distribution for Solving Triangular
Systems on Distributed Memory Machines ?

Przemys law Stpiczyński

Department of Computer Science, Maria Curie–Sk lodowska University
Pl. M. Curie-Sk lodowskiej 1, 20-031 Lublin, Poland

przem@hektor.umcs.lublin.pl

Abstract. The aim of this paper is to show that the performance of
distributed algorithms for solving triangular systems of linear equations
can be improved by using a new data distribution of triangular matri-
ces which provides steady distribution of sub-blocks among processes.
The results of experiments performed on a cluster of Itanium 2 proces-
sors and on Cray X1 are also presented. The new method is faster than
corresponding PBLAS routines P TRSV and P TRSM.

1 Introduction

The problem of solving triangular systems of linear equations belongs to the most
important tasks of computational linear algebra and a large number of papers
have appeared for handling such systems on distributed memory architectures
[5–7]. The most popular solvers, namely P TRSV and P TRSM for solving Ax = b
and AX = B (for multiple right hand sides) respectively, belongs to Level 2 and
Level 3 PBLAS library designed as a part of Scalapack [2]. They use the block-
cyclic data distribution of matrices onto rectangular process grids. The general
class of such distributions can be obtained by matrix partitioning like

A =

 A11 . . . A1m

...
...

Am1 . . . Amm

 (1)

where each sub-block Aij is mb ×mb. These blocks are mapped to processes by
assigning Aij to the process whose coordinates in a P ×Q grid are

loc(Aij) = ((i− 1) mod P, (j − 1) mod Q) . (2)

When A is a triangular matrix, then only lower (or upper) triangle is distributed
and it looks like in Figure 1. It is clear that the block size mb should be small
enough to provide steady distribution. On the other hand, mb should be large
enough to utilize cache memory and provide reasonable performance of BLAS
operations performed on sub-blocks of A [3].
? The extended abstract prepared for PARA 2006. The work has been sponsored by the

KBN grant 6T11 2003C/06098. The use of Cray X1 from the Interdisciplinary Center
for Mathematical and Computational Modeling (ICM) of the Warsaw University is
kindly acknowledged.

A11

A31 A33 A32

A51 A53 A55 A52 A54

A71 A73 A75 A77 A72 A74 A76

A21 A22

A41 A43 A42 A44

A61 A63 A65 A62 A64 A66

A81 A83 A85 A87 A82 A84 A86 A88

Fig. 1. Block-cyclic distribution of a lower triangular matrix over a 2 × 2 processor
grid.

2 New data distribution

In [8] we introduced a new method distribution symmetric and triangular matri-
ces on orthogonal memory multiprocessors. This method can be adopted for dis-
tributing sub-blocks Aij onto P × 1 processor grid. Let us assume that m = 2P .
Then

loc(Aij) =
{

i− 1 for i = 1, . . . , P
2P − i for i = P + 1, . . . , 2P.

(3)

Figure 2 shows the example of such distribution for P = 4. Note that each
processor holds exactly the same number of sub-blocks of A. Our algorithm
which uses (3) is based on the fan-out method presented in [5]. It solves systems
of linear equations AX = B, where A ∈ Rm×m and B ∈ Rm×n, just like the
Level 3 PBLAS routine P TRSM. Note that for n = 1, it performs the same
computational task as the Level 2 PBLAS routine P TRSV.

A11 A81 A82 A83 A84 A85 A86 A87 A88

A21 A22 A71 A72 A73 A74 A75 A76 A77

A31 A32 A33 A61 A62 A63 A64 A65 A66

A41 A42 A43 A44 A51 A52 A53 A54 A55

Fig. 2. New distribution of a lower triangular matrix over 4 processors.

3 Implementation, results and future work

The method has been implemented in Fortran and tested on a cluster of 16
Itanium 2 processors using Intel Fortran Compiler and Math Kernel Library as
an efficient implementations of BLAS [3] and on four MSPs of Cray X1. In case
of the Itanium cluster, the libraries PBLAS (routines P TRSV and P TRSM) and
BLACS [4] (based on MPI, used for communication) have been downloaded from
the Netlib. On Cray we have used corresponding routines provided by Cray. We

have compared the performance of the new method with the routine P TRSV
(Figure 3) and P TRSM (Figure 4). The new method is much faster than the
routine P TRSV. For systems with multiple right hand sides it is also faster than
P TRSM for smaller values of n.

In the final version of the paper we are going to present the detailed com-
plexity analysis described in terms of the BSP model of parallel computing [1]
of the new method and compare it with the complexity of the corresponding
Scalapack routines. Such analysis will show when the new method can be faster.

References

1. Bisseling, R.H.: Parallel scientific computation. A structured approach using BSP
and MPI. Oxford University Press (2004)

2. Blackford, L., et al.: ScaLAPACK User’s Guide. SIAM, Philadelphia (1997)
3. Dongarra, J., Duff, I., Sorensen, D., Van der Vorst, H.: Solving Linear Systems on

Vector and Shared Memory Computers. SIAM, Philadelphia (1991)
4. Dongarra, J.J., Whaley, R.C.: LAPACK working note 94: A user’s guide to the

BLACS v1.1. http://www.netlib.org/blacs (1997)
5. Heath, M., Romine, C.: Parallel solution of triangular systems on distributed mem-

ory multiprocessors. SIAM J. Sci. Statist. Comput. 9 (1988) 558–588
6. Li, G., Coleman, T.F.: A new method for solving triangular systems on distributed-

memory message-passing multiprocessors. SIAM J. Sci. Stat. Comput. 10 (1989)
382–396

7. Romine, C., Ortega, J.: Parallel solutions of triangular systems of equations. Parallel
Comput. 6 (1988) 109–114

8. Stpiczyński, P.: Parallel Cholesky factorization on orthogonal multiprocessors. Par-
allel Computing 18 (1992) 213–219

 0

 500

 1000

 1500

 2000

 2500

 3000

1638481922048

M
flo

ps

m

n=1

pstrsv, p=16
new, p=16
pstrsv, p=4

new, p=4
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1638481922048

M
flo

ps

m

n=1

pstrsv, p=4
new, p=4

Fig. 3. The performance of the PBLAS routine PSTRSV and the new method on a
cluster of Itanium 2 (left) and Cray X1 (right) for various matrix sizes (m) and n = 1.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000

M
flo

ps

n

m=16384

pstrsm, p=16
new, p=16

pstrsm, p=4
new, p=4

 30000

 32000

 34000

 36000

 38000

 40000

 42000

 44000

 0 500 1000 1500 2000

M
flo

ps

n

m=16384

pstrsm, p=4
new, p=4

Fig. 4. The performance of the PBLAS routine PSTRSM and the new method on a
cluster of Itenium 2 (left) and Cray X1 (right) for various number of right hand sides
(n) and m = 16384.

