
The design of an out-of-core multifrontal solver

for the 21st century

John K. Reid and Jennifer A. Scott

Computational Science and Engineering Department,
Rutherford Appleton Laboratory,

Chilton, Oxfordshire, OX11 0QX, England, UK
{j.k.reid, j.a.scott}@rl.ac.uk

Extended Abstract

The popularity of direct methods for solving large sparse linear systems of equa-
tions Ax = b stems from their generality and robustness. Indeed, if numerical
pivoting is properly incorporated, direct solvers rarely fail for numerical reasons;
the main reason for failure is a lack of memory. Although increasing amounts
of main memory have enabled direct solvers to solve many problems that were
previously intractable, their memory requirements generally increase much more
rapidly than problem size so that they can quickly run out of memory. Buying
a machine with more memory is an expensive and inflexible solution since there
will always be problems that are too large for the chosen quantity of memory.
Using an iterative method may be a possible alternative but for many of the
“tough” systems that arise from practical applications, the difficulties involved
in finding and computing a good preconditioner can make iterative methods in-
feasible. Another possibility is to use a direct solver that is able to hold its data
structures on disk, that is, an out-of-core solver.

The advantage of using disk storage is that it is many times cheaper than
main memory per megabyte, making it practical and cost-effective to add tens
or hundreds of gigabytes of disk space to a machine. By holding the main data
structures on disk, properly implemented out-of-core direct solvers are very re-
liable since they are much less likely than in-core solvers to run out of memory.

The idea of out-of-core linear solvers is not new (see, for example, [3],[6] and,
recently, [2], [7]). Our aim is to design and develop a sparse symmetric out-of-
core solver for inclusion within the mathematical software library HSL [5]. Our
new solver, which is called hsl ma77, implements an out-of-core multifrontal
algorithm and is designed for the efficient solution of both positive-definite and
indefinite sparse linear systems with one or more right-hand sides. Input of the
system matrix A may be by rows or by square symmetric elements.

The multifrontal method is a variant of sparse Gaussian elimination and
involves the matrix factorization

A = (PL)D(PL)T ,

where P is a permutation matrix and L is a unit lower triangular matrix. In the
positive-definite case, D is diagonal; in the indefinite case, D is block diagonal



2 J.K. Reid and J.A. Scott

with blocks of size 1 × 1 and 2 × 2. Solving Ax = b is completed by performing
forward elimination followed by back substitution. The basic multifrontal algo-
rithm for element problems is summarised below. The assemblies can be held

Given a pivot sequence:
do for each pivot

Assemble all elements that involve the pivot into a full matrix (the frontal

matrix)
Perform static condensation, that is, eliminate the pivot variable and any

others that do not appear in any elements not yet assembled;
Treat the reduced matrix as a new element (a generated element)

end do

as a tree, called an assembly tree. Each node of the assembly tree represents an
element. When a pivot is eliminated and a generated element created, a node is
added to the tree whose children are the elements that involve the pivot (these
may be original elements and/or generated elements).

The multifrontal method can be extended to non-element problems by re-
garding row i of A as a packed representation of a 1 × 1 element (the diagonal
aii) and, for each aij 6= 0, a 2 × 2 element of the form

A(ij) =

(

0 aij

aT
ij 0

)

.

When i is chosen as pivot, the 1×1 element plus the subset of 2×2 elements A(ij)

for which j has not yet been selected as a pivot must be assembled. Rows that
have an identical pattern may be treated together by grouping the corresponding
variables into so-called supervariables.
The efficiency of the multifrontal method depends on the implementation details,
including:

– The choice of pivot order.
– Merging nodes to increase the pivot block size.
– The ordering of the children at each node.
– Use of dense linear algebra computations to perform static condensations.

We briefly discuss each of these in the context of hsl ma77.

Pivot order

Although finding a good pivot order has been a subject of much research during
the last 20 years, there is no one algorithm that produces the best ordering for all
problems. Thus an early design decision for hsl ma77 was that the pivot order
must be supplied by the user. Several stand-alone packages already exist that
can be used, including a number of HSL routines. Statistics on the number of



Out-of-core multifrontal solver, Extended Abstract 3

entries in the factors and the number of floating-point operations (based on the
sparsity pattern) are returned by the analyse phase and these allow the user to
compare the effectiveness of different ordering algorithms.

Merging of nodes

Merging a parent and child reduces data movement and increases the pivot block
size, allowing better use of cache. However, merging nodes may result in more
fill in the factors and more floating-point operations. In hsl ma77, if the list
of uneliminated variables at a generated element is contained within the list of
variables at its parent, the two nodes are merged. A parent and one of its children
are also merged if both involve fewer than a prescribed number of eliminations.
The user is able to choose the value of this node amalgamation parameter.

Ordering the children

At each node of the assembly tree, all the children must be processed and their
generated elements computed before the frontal matrix at the parent can be
factorized. However, the children can be processed in any order and this can
significantly effect the total storage required. The simplest strategy is to wait
until the last child of a node has been processed and then allocate the frontal
matrix and assemble all the generated elements from its children into it. This
requires the generated element from each child to be stacked and there may
be many child elements that are nearly as big as the parent. To reduce storage
requirements, Guermouche and L’Excellent [4] propose computing, for each node,
the optimal point at which to allocate the frontal matrix and start the assembly.
Given a parent node i with ni children, let fi be the memory needed for the
frontal matrix at node i, let the size of the generated element at the jth child
be gj and let the storage required to generate child j be sj . Then, if the frontal
matrix is allocated and the assembly started after p children have been processed,
Guermouche and L’Excellent show that the storage needed to process i is

si = max

(

max
j=1,p

(

j
∑

k=1

gk + sj − gj

)

, fi +

p
∑

k=1

gk, fi + max
j>p

sj

)

.

Their algorithm for finding the split point, that is, the p that gives the smallest
si, then proceeds as follows: for each p (1 ≤ p ≤ ni), order the children in
decreasing order of sj , then reorder the first p children in decreasing order of
sj − gj . Finally, compute the resulting si and take the split point to be the p

that gives the smallest si. They prove this gives the optimal si. This algorithm
is implemented within the analyse phase of hsl ma77.

Dense linear algebra

For fast performance, it is essential that efficient implementations of the dense
linear algebra computations that lie at the heart of the factorization and solve
phases are employed. Recently, Andersen et. al. [1] proposed a block hybrid
storage format that aims to minimise storage requirements and to reduce caching
overhead. They showed how the Cholesky factorization and solution of dense
systems can be efficiently implemented using this format. Their kernels cannot



4 J.K. Reid and J.A. Scott

be used directly within hsl ma77 since, at each stage, a partial factorization
must be performed. Reid has developed a separate HSL package hsl ma54 that
modifies the kernels of [1] to perform a partial Cholesky factorization. hsl ma54

is employed within hsl ma77. The blocksize is a parameter that the user of
hsl ma77 can tune for optimum performance. So far, kernels for the positive
definite case have been written; further work on the kernels for the indefinite
case is still to be completed.

Out-of-core working

As already noted, the most important feature of hsl ma77 is that it is an out-
of-core solver. It allows the matrix factor and the multifrontal stack, as well as
the original matrix data, to be held in direct-access files. All input and output
to disk is performed through a set of Fortran subroutines that manage a virtual
memory system so that actual i/o occurs only when really necessary. This set
of subroutines is available within HSL as the package hsl of01. Handling i/o
through a separate package was part of the original element out-of-core solver
of Reid [6] and our approach is essentially a modification of that used by the
earlier code. We note that, because i/o can add a significant overhead, the user
can request that arrays be used instead of direct-access files. In this case, the
code works in-core but if the workspace supplied by the user is found to be too
small, a switch to using files is automatically made.

Summary

We are currently performance testing hsl ma77. Results so far are encouraging;
results for a range of practical problems will be included in our talk. The packages
hsl of01, hsl ma54, and hsl ma77 will be included within the next release of
HSL.

References

1. B.S. Andersen and J.A. Gunnels and F.G. Gustavson and J.K. Reid and J. Was-
niewski A fully portable high performance minimal storage hybrid format Cholesky
algorithm. ACM Transactions on Mathematical Software, 31, 201–208, 2005.

2. F. Dobrian and A. Pothen. A comparison between three external memory algo-
rithms for factorising sparse matrices. in ‘Proceedings of the SIAM Conference on
Applied Linear Algebra’, 2003.

3. I.S. Duff. Design features of a frontal code for solving sparse unsymmetric linear
systems out-of-core. SIAM J. Scientific and Statistical Computing, 5, 270–280,
1984.

4. A. Guermouche and J.-Y. L’Excellent. Optimal memory minimization algorithms
for the multifrontal method. Technical Report RR5179, INRIA, 2004.

5. HSL. A collection of Fortran codes for large-scale scientific computation, 2004. See
http://hsl.rl.ac.uk/.

6. J.K. Reid. TREESOLV, a Fortran package for solving large sets of linear finite-
element equations. Report CSS 155, AERE Harwell, 1984.

7. V. Rotkin and S. Toledo. The design and implementation of a new out-of-core
sparse Cholesky factorization method. ACM Transactions on Mathematical Soft-

ware, 30(1), 19–46, 2004.


