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Abstract. We will present two implementations of dense matrix mul-
tiplication based on two different nonlinear array layouts: one based on
a hypermatrix data structure (HM) where data submatrices are stored
using a recursive layout with two orientations; the other based on a sim-
ple block data layout with square blocks (SB) where blocks are arranged
in column-major order. We will show that the iterative code using SB
outperforms a recursive code using HM and obtains competitive results
on a variety of platforms.

1 A bottom-up approach

We have studied two data structures for dense matrix computations: a Hyper-
matrix data structure [1] and a Square Block Format [2]. In both cases we drive
the creation of the structure from the bottom: the inner kernel fixes the size of
the data submatrices. Then the rest of the data structure is produced in accor-
dance. We do this because the performance of the inner kernel has a dramatic
influence in the overall performance of the algorithm. Thus, our first priority is
using the best inner kernel at hand. Afterwards, we can adapt the rest of the
data structure (in case hypermatrices are used) and/or the computations.

Inner kernel based on our Small Matrix Library (SML) In previous
papers [3, 4] we presented our work on the creation of a Small Matrix Library
(SML): a set of routines specialized in the efficient operation on matrices which
fit in the first level cache. The advantage of our method lies in the ability to
generate very efficient inner kernels by means of a good compiler. Working on
regular codes for small matrices, most of the compilers we have used in different
platforms create very efficient inner kernels for matrix multiplication. We use the
matrix multiplication routine within our SML as the inner kernel of our general
matrix multiplication codes.
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Hypermatrix structure We have used a data structure based on a hyperma-
trix (HM) scheme [1], in which a matrix is partitioned recursively into blocks of
different sizes. The HM structure consists of N levels of submatrices, where N is
an arbitrary number. In order to have a simple HM data structure which is easy
to traverse we have chosen to have blocks at each level which are multiples of the
lower levels. The top N-1 levels hold pointer matrices which point to the next
lower level submatrices. Only the last (bottom) level holds data matrices. Data
matrices are stored as dense matrices and operated on as such. Hypermatrices
can be seen as a generalization of quadtrees. The latter partition each matrix
precisely into four submatrices [5]. We have used a HM on dense Cholesky fac-
torization and matrix multiplication with encouraging results. In [6] we showed
that the use of orthogonal blocks was beneficial to obtain performance. However,
this approach presents some overhead following pointers and recursing down to
the data submatrix level. There are also difficulties in the parallelization [7]. For
these reasons we have also experimented with a Square Block Format.

Square Block Format The overhead of a dense code based on hypermatrices
due to the recursivity and indexing, together with the difficulties to produce
efficient parallel codes based on this data structure, has led us to experiment
with a different data structure. We use a simple Square Block Format (SB) [2].
It corresponds to a 2D data layout of submatrices stored in column-major order
(see figure 1). The shaded area represents padding introduced to force data
alignment.
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Fig. 1. Square Block Format.

Using this data structure we were able to improve the performance of our
matrix multiplication code, obtaining very competitive results. Our code imple-
ments tiling. We use a code generator to create different loop orders. We present
the results obtained with the best loop order found.



2 Results

We present results for matrix multiplication on three platforms. The matrix
multiplication used is C = C − AT

× B. Each of the following figures shows
the results of DGEMM in ATLAS, Goto or the vendor BLAS, and SB using
our SML. Goto BLAS [8] are known to obtain excellent performance. They are
coded in assembler and targeted to each particular platform. The dashed line
at the top of each plot shows the theoretical peak performance of the processor.
Some plots show the performance obtained with the dense codes based on the
hypermatrix (HM) scheme. As can be seen on the plots SB outperforms HM.

Fig. 2. Performance of dense matrix multiplication on an Intel Pentium 4 Xeon and
an Itanium 2 processor.

Fig. 3. Performance of dense matrix multiplication on a Power 4 processor.

For the Intel machines (figure 2) we have included the Mflops obtained with
a version of the ATLAS library where the hand-made codes were not enabled at
ATLAS installation time1. We refer to this code in the graphs as ’nc ATLAS’.
We can observe that in both cases ATLAS performance drops heavily. SB with

1 Directory tune/blas/gemm/CASES within the ATLAS distribution contains about 90
files which are, in most cases, written in assembler, or use some instructions written
in assembler to do data prefetching. Often, one (or more) of these codes outperform
the automatically generated codes. The best code is (automatically) selected as the



SML kernels obtain performance close to that of ATLAS on the Pentium 4 Xeon,
similar to ATLAS on the Itanium2, and better than ATLAS on the Power4. For
the latter we show the Mflops obtained by the vendor DGEMM routine which
outperform both ATLAS and SB (figure 3). We can see that even highly opti-
mized routines provided by the vendor can fail under certain circumstances. For
instance, some large leading dimensions can be particularly harmful and produce
lots of TLB misses if data is not precopied. At the same time, data precopying
must be performed selectively due to the overhead incurred at execution time [9].
These problems can be avoided using nonlinear array layouts.

3 Recursive+HM vs Iterative+SB: Conclusions

The results obtained with an iterative code working on a Square Block Format
outperform the recursive code which uses a hypermatrix. Our results agree with
those presented in [10]. We would like to implement a dense Cholesky factoriza-
tion using an iterative approach and a Square Blocked Lower (or Upper) Packed
Format [2]. We plan to do it straightaway.
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