
Cache Oblivious Matrix Operations Using Peano
Curves

Michael Bader and Christian Mayer

Institut für Informatik, Technische Universitüt München, Germany

Abstract. Algorithms are called cache oblivious, if they are designed
to benefit from any kind of cache hierarchy—regardless of its size or
number of cache levels. In linear algebra computations, block recursive
approaches are a common approach that, by construction, lead to in-
herently local data access pattern, and thus to an overall good cache
performance[3].

In this article, we present block recursive approaches that use an ele-
ment ordering based on a Peano space filling curve to store the matrix
elements. We present algorithms for matrix multiplication and LU de-
composition, which are able to minimize the number of cache misses on
any cache level.

1 A block recursive scheme for matrix multiplication

Consider the multiplication of two 3× 3-matrices, such as given in equation (1),
where the indices of the matrix elements indicate the order in which the elements
are stored in memory.

a0 a5 a6

a1 a4 a7

a2 a3 a8


︸ ︷︷ ︸

=: A

 b0 b5 b6

b1 b4 b7

b2 b3 b8


︸ ︷︷ ︸
=: B

=

 c0 c5 c6

c1 c4 c7

c2 c3 c8

 .

︸ ︷︷ ︸
=: C

(1)

The scheme is similar to a column-major ordering, however, the order of the
even-numbered columns have been inverted, which leads to a meandering scheme,
which is also equivalent to the basic pattern of a Peano space filling curve. Now,
if we examine the operations to compute the elements cr of the result matrix, we
note that the operations can be executed in a very convenient order – from each
operation to the next, an element is either reused or one of its direct neighbours
in memory is accessed:



2

c0 += a0b0 c0 += a6b2 −→ c5 += a5b4 c6 += a0b6 −→ c6 += a6b8

↓ ↑ ↓ ↑ ↓
c1 += a1b0 c1 += a7b2 c4 += a4b4 c7 += a1b6 c7 += a7b8

↓ ↑ ↓ ↑ ↓
c2 += a2b0 c2 += a8b2 c3 += a3b4 c8 += a2b6 c8 += a8b8

↓ ↑ ↓ ↑
c2 += a3b1 c3 += a8b3 c3 += a2b5 c8 += a3b7

↓ ↑ ↓ ↑
c1 += a4b1 c4 += a7b3 c4 += a1b5 c7 += a4b7

↓ ↑ ↓ ↑
c0 += a5b1 −→ c5 += a6b3 c5 += a0b5 −→ c6 += a5b7

(2)

An algorithmic scheme with this spatial locality property can be obtained for
any matrices of odd dimensions, as long as we adopt a meandering numbering
scheme. However, cache efficiency requires temporal locality, as well, in the sense
that matrix elements are reused within short time intervals, and will therefore
not be removed from the cache by other data. To achieve temporal locality, we
combine the scheme with a block recursive approach. Consequently, the element
numbering is then also defined by a block recursive meandering scheme.

2 An Element Numbering Based on a Peano Space
Filling Curve

Figure 1 illustrates the recursive scheme used to linearise the matrix elements
in memory. It is based on a so-called iteration of a Peano curve. Four different
block numbering patterns marked as P , Q, R, and S are combined in a way to
ensure a contiguous numbering of the matrix elements – direct neighbours in
memory will always be direct neighbours in the matrix as well.

P

P

P

P

Q Q

R

S

R

P

Fig. 1. Recursive construction of a Peano curve (first two iterations)

3 A Block Recursive Scheme for Matrix Multiplication

Equation (3) shows the blockwise multiplication of matrices stored according to
the proposed numbering scheme. Each matrix block is named with respect to



3

its numbering scheme and indexed with the name of the global matrix and the
position within the storage scheme: PA0 RA5 PA6

QA1 SA4 QA7

PA2 RA3 PA8


︸ ︷︷ ︸

=: A

 PB0 RB5 PB6

QB1 SB4 QB7

PB2 RB3 PB8


︸ ︷︷ ︸

=: B

=

 PC0 RC5 PC6

QC1 SC4 QC7

PC2 RC3 PC8

 .

︸ ︷︷ ︸
=: C

(3)

Analoguous to the 3× 3 multiplication in equation (1), we obtain an execution
order for the individual block operations. The first operations are

PC0 +=PA0PB0 → QC1 +=QA1PB0 → PC2 +=PA2PB0 → . . .

If we only consider the ordering scheme of the matrix blocks, we obtain eight
different types of block multiplications:

P +=PP Q+=QP R +=PR S +=QR
P +=RQ Q+=SQ R +=RS S +=SS .

(4)

All eight types of block multiplication lead to multiplication schemes similar
to that given in equation (2), and generate inherently local execution orders.
Thus, we obtain a closed system of eight block multiplication schemes which
can be implemented by a respective system of nested recursive procedures. The
resulting algorithm has several interesting properties concerning cache efficiency:

1. the number of cache misses on an ideal cache can be shown to be asymptot-
ically minimal [1];

2. on any level of recursion, after a matrix block has been used, either itself
will be directly reused or one of its direct neighbours in space will be used;
as a result:

3. precise knowledge for prefetching is available.

4 A Block Recursive Scheme for LU Decomposition

Based on the presented numbering scheme, we can also try to set up a block
recursive algorithm for LU decomposition. Hence, consider the following decom-
position of block matrices: PL0 0 0

QL1 SL4 0

PL2 RL3 PL8


︸ ︷︷ ︸

=: L

 PU0 RU5 PU6

0 SU4 QU7

0 0 PU8


︸ ︷︷ ︸

=: U

=

 PA0 RA5 PA6

QA1 SA4 QA7

PA2 RA3 PA8

 .

︸ ︷︷ ︸
=: A

(5)

Again, we obtain a set of block operations, which we can try to put into an
execution order that preserves locality. However, in contrast to matrix multi-
plication, we now have to obey certain precedence rules. Unfortunately, these
precedence rules deny us a scheme that is strictly memory local – however, we
can still try to minimise the non-localities, which may lead us to the following
scheme:



4

1) PL0 PU0 = PA0 – LU decomp.

2) QL1 PU0 = QA1 – solve for QL1

3) PL2 PU0 = PA2 – solve for PL2

4) PL0 PU6 = PA6 – solve for PU6

5) PL0 RU5 = RA5 – solve for RU5

6) RA3 -= PL2RU5 – matr. mult.

7) SA4 -= QL1RU5 – matr. mult.

8) SL4 SU4 = SA4 – LU decomp.

9) QA7 -= QL1PU6 – matr. mult.

10) PA8 -= PL2PU6 – matr. mult.

11) RL3 SU4 = RA3 – solve for RL3

12) SL4 QU7 = QA7 – solve for QU7

13) PA8 -= RL3QU7 – matr. mult.

14) PL8 PU8 = PA8 – LU decomp.

We note that an additional LU decomposition scheme has to be derived for S-
numbered blocks: SL4 SU4 = SA4. In addition, there are two further types of
schemes to be derived (analogous to LU decomposition):

1. Solve a matrix equation such as QL P = QA for the matrix QL, where P
is an already computed upper triangular matrix; in the same manner solve
PL P = PA, RL S = RA, and SL S = SA for PL, RL, and SL, respectively.

2. Solve a matrix equation such as P PU = PA for the matrix PU , where P
is an already computed lower triangular matrix; in the same manner solve
P RU = RA, S QU = QA, and S SU = SA, for RU , RU , and RU , respectively.

Finally, we again obtain a system of nested block recursive schemes to com-
pute the LU decomposition of a matrix. With respect to locality properties, the
scheme is not quite as nice as that for matrix multiplication. However, it still
leads to a cache oblivious algorithm.

5 Performance, Conclusion

Implementations of the presented algorithmic schemes show that the cache obliv-
ious approach is very successful regarding its core target: it leads to excellent
cache hit rates, which are more than competitive with current BLAS/LAPACK
implementations. However, the recursive approach does not combine well with
processor features such as streaming SIMD extensions (SSE), and similar. Hence,
on the last level of recursion, strongly processor specific implementations are re-
quired. At least until there is something like a processor oblivios approach for
this kind of optimization.

References

1. Bader, M., Zenger, C.: Cache oblivious matrix multiplication using an element or-
dering based on a Peano curve. Linear Algebra and its Applications, submitted.

2. Bader, M., Zenger, C.: A Cache Oblivious Algorithm for Matrix Multiplication
Based on Peano’s Space Filling Curve. Proc. of the PPAM 2005, accepted.

3. Gustavson, F. G.: Recursion leads to automatic variable blocking for dense linear-
algebra algorithms. IBM Journal of Research and Development 41 (6), 1999.


