
HPC tools for solving accurately the large dense linear least

squares problems arising in gravity field computations.

Marc Baboulin
∗∗

Abstract

Our work is related to the GOCE1 mission that strives for a very accurate model of the
Earth’s gravity field and of the Geoid. These model parameters are estimated via an incre-
mental linear least squares problem that involves a huge quantity of data (90, 000 parameters
and several million observations). We present a parallel distributed solver based on PBLAS [7]
and ScaLAPACK [6] kernel routines that enables us to update the solution with new GOCE
observations by using a QR factorization algorithm. It uses a recently defined distributed
packed format [2] that minimizes the storage. This solver also implements a condition number
estimate and a Kaula [11] regularization technique that makes the computation more stable.
We provide performance analysis and first results.

Keywords: gravity field computation, scientific computing, dense linear algebra, parallel
distributed algorithms, ScaLAPACK, QR factorization.

1 Physical problem

The GOCE satellite [3, 12] is scheduled for launch in 2007 and will provide a model of the Earth’s
gravity field and of the Geoid with an unprecedented accuracy. It will have applications in many
scientific areas such as solid-Earth physics, geodesy, oceanography, glaciology and climate change.
The model of the gravitational potential will be represented by about 90, 000 spherical harmonic
coefficients up to a degree of 300. In terms of accuracy, the GOCE mission objectives are

- to determine the gravity-field anomalies with an accuracy of 1 mGal (where 1mGal =
10−5m/s2),

- to determine the geoid with an accuracy of 1-2 cm,
- to achieve the above at a spatial resolution better than 100 km.

The gravity gradients are measured by satellite gravity gradiometry, combined with satellite-to-
satellite tracking using GPS (SST-hl). The estimation of the Earth’s gravity field using GOCE
observations is a numerical and computational challenge. The numerical difficulty comes from
the observation noise inherent in instruments used for measurement (gradiometers). Numerical
instability may also result from missing observations at the poles, due to the non-polar orbit of
the satellite.
The computational task is quite challenging because of the huge quantity of daily accumulated
data (about 90, 000 parameters and several million observations) and because of the coupling of
the parameters resulting in completely dense matrices.
Following [5], the Earth’s gravitational potential V is expressed in spherical coordinates (r, θ, λ)
by:

V (r, θ, λ) =
GM

R

lmax∑

l=0

(
R

r

)l+1 l∑

m=0

P lm(cos θ)
[
Clm cosmλ + Slm sin mλ

]
(1)

∗CERFACS, 42 av. Gaspard Coriolis, 31057 Toulouse Cedex, France. Email : baboulin@cerfacs.fr

1Gravity field and steady-state Ocean Circulation Explorer - European Space Agency

1

2

where G is the gravitational constant, M is the Earth’s mass, R is the Earth’s reference radius, the
P lm represent the fully normalized Legendre functions of degree l and order m and C lm,Slm are the
corresponding normalized harmonic coefficients. In the above expression, we have |m| ≤ l ≤ lmax

with lmax ' 300 (about 90, 000 unknowns). For the previous missions CHAMP2 and GRACE3, we
had respectively lmax ' 120 (about 15, 000 unknowns) and lmax ' 150 (about 23, 000 unknowns).
We point out that the number of unknown parameters is expressed by

n = (lmax + 1)2.

We have to compute the harmonic coefficients C lm and Slm as accurately as possible.

2 Numerical method for gravity field calculations

The gravity field parameters are computed at CNES4 using the orbit determination software
GINS [4]. Measurements which are a function of a satellite position and/or velocity are taken
into account. These observations are obtained via ground stations (Laser, Doppler) or other
satellites (GPS). Then we aim to minimize the difference between the measurements and the cor-
responding quantities evaluated from the computed orbit by adjusting given parameters (here the
gravity field coefficients). This yields to a nonlinear least squares problem that can be solved via a
Gauss-Newton algorithm [10] by solving successively linear least squares problems (LLSP) of the
form

min
x∈Rn

‖Ax − b‖
2

(2)

where b ∈ R
m is the observation vector and A ∈ R

m×n is the data matrix (Jacobian of a nonlinear
least squares problem). Each row of A and b corresponds to one observation, these observations
being collected periodically. The LLSP is currently solved at CNES by the normal equations
method where we solve the linear system of equations AT Ax = AT b.
A parallel distributed solver that performs the assembly of the normal equations and computes a
solution using a Cholesky factorization is described in [1]. We propose here a more reliable way
of solving (2) that consists of using a QR factorization that utilizes Householder transformations.
We can find in [9] a comprehensive presentation of the algorithms available for computing and
updating a QR factorization.
It is appropriate to update the previous QR factorization or at least the R factor with the newly
collected data rather than computing a whole QR factorization involving original data combined
with new data. Such an incremental algorithm is more efficient in terms of computational cost
than performing the QR factorization on the whole matrix.

Let AN and BN be respectively the cumulated parameter matrix and observation vector up to
date N . Let AN and bN be respectively the data matrix and observation vector that has been
collected at date N . If we denote by RN the R-factor obtained at date N , then we observe that

the QR factorization of AN+1 =

(
AN

AN+1

)
produces the same upper triangular factor as does

the factorization of

(
RN

AN+1

)
i.e RN+1.

Furthermore, the storage of the Householder vectors can be avoided by appending the observation
vector bN to the matrix to be factorized and overwriting this vector with the (n + 1)-th column of
the so-obtained triangular factor.
The result is that the updating of the R-factor at date N + 1 is done by performing the QR

factorization of

(
RN B̃N

AN+1 bN+1

)
where B̃N contains the updated values of BK (K ≤ N) resulting

2CHAllenging Minisatellite Payload for Geophysical Research an Application, GFZ, launched July 2000
3Gravity Recovery and Climate Experiment, NASA, launched March 2002
4Centre National d’Etudes Spatiales, Toulouse, France

3

from the N previous QR factorizations. This enables us to obtain the upper triangular matrix(
RN+1 B̃N+1

)
and the solution xN+1 is computed by solving RN+1xN+1 = ZN+1 where

ZN+1 contains the first n elements of B̃N+1.

3 A parallel distributed solver for GOCE calculations

3.1 Parallel implementation

An efficient out-of core implementation for updating a QR factorization is described in [9]. Here,
for faster computation of a partial solution or of the covariance, we deliberately choose to keep the
R factor in-core by storing R compactly.

We suppose that the R factor is partitioned into distributed blocks

B1 B2 B3

0 B4 B5

0 0 B6

. We denote

by b the size of the distributed blocks by Nb the number of block rows in R. Then we store R
using the distributed packed format defined in [2] as

[
B1 B2 B3 B4 B5 B6

]
that we also

denote by B1:6.
The new observations are stored in a block matrix L1:Nb

that contains Nb.b columns and we first
assume that L contains b rows. The updating of R is obtained by successively performing the QR
factorization of each block row of R with L, as described below. At the first step, we factor:

B1:3

L1:3

−→
B̃1:3

L̃1:3

and we advance the updating of the R factor as follows:

B4:5

L̃2:3

−→
B̃4:5

L2:3

and so on until completion.

Let now consider the work array C =

[
Bj:j+Nb−i

L̃i:Nb

]
where j is the index of the i-th diagonal block

in the packed structure. C contains 2b rows and (Nb − i + 1).b columns.
At step i in the R updating, we apply to the matrix C the ScaLAPACK [6] routine PDGEQRF

that has been modified in order to stop the factorization after the first b columns. From [8, p.
213 and 225], the computational cost is about 3bn2 (if n � b). Our algorithm does not take into
account the upper triangular structure of Bj:j . As it will be confirmed on experiments, this can
be compensated by storing more data into L and thus by considering a block matrix C containing
more that 2b rows. As a result, the number of floating-point operations will also decrease.
The initialization of the R factor has been implemented by starting with R = 0 and then by
successively updating the previous rows by a new one until we processed the Nb block rows of R.

3.2 Performance results

All the following experiments have been performed on the IBM pSeries 690 (2 nodes of 32 processors
Power-4/1.7 GHz and 64 Gbytes memory per node). We used the PBLAS [7] and ScaLAPACK
libraries provided by the vendor (in particular the Pessl library). Let nL be the number of rows in
the matrix L that contains the new observations for updating the QR factorization. In Table 1, we
update a 25600× 25600 matrix R by 51200 new observations and nL varies from 512 to 25600. As

4

expected, the number of operations decreases as nL increases. This gain in operations is evaluated
by computing the ratio between the operations involved in the updating of R and the operations
required in a QR factorization of the 76800 × 25600 matrix containing the original data and the
new observations. Then if nL increases, the factorization time decreases but the performance is
stable (close to the peak performance of the ScaLAPACK routine PDGEQRF). Choosing the best
size for L corresponds to finding a compromise between performance and storage since large L
demands more storage.

Number of rows in L 512 1024 2048 5120 10240 12800 25600
Storage (Gbytes) 0.72 0.75 0.80 0.96 1.22 1.35 2.00

Flops overhead (vs ScaLAPACK) 1.50 1.31 1.22 1.16 1.14 1.14 1.13
Factorization time (sec) 7577 5824 5255 5077 5001 4894 4981
Performance (Gflops) 3.33 3.61 3.59 3.47 3.44 3.50 3.40

Table 1: Updating of a 25600× 25600 R factor by 51200 new observations (1 × 4 procs).

References

[1] M. Baboulin, L. Giraud, and S. Gratton, A parallel distributed solver for large dense symmetric
systems: applications to geodesy and electromagnetism problems, Int. J. of High Performance
Computing Applications 19 (2005), no. 4, 353–363.

[2] M. Baboulin, L. Giraud, S. Gratton, and J. Langou, A distributed packed storage for large
parallel calculations, Technical Report TR/PA/05/30, CERFACS, Toulouse, France, 2005.

[3] G. Balmino, The European GOCE Gravity Consortium (EGG-C), (April 2001), 7–12, Pro-
ceedings of the International GOCE User Workshop.

[4] G. Balmino, S. Bruinsma, and J-C. Marty, Numerical simulation of the gravity field recovery
from GOCE mission data, (March 8-10, 2004), Proceedings of the Second International GOCE
User Workshop “GOCE, The Geoid and Oceanography”, ESA-ESRIN, Frascati, Italy.

[5] G. Balmino, A. Cazenave, A. Comolet-Tirman, J. C. Husson, and M. Lefebvre, Cours de
géodésie dynamique et spatiale, ENSTA, 1982.

[6] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley, ScaLAPACK user’s
guide, SIAM, 1997.

[7] J. Choi, J. Dongarra, L. Ostrouchov, A. Petitet, D. Walker, and R. Whaley, A proposal for a
set of parallel basic linear algebra subprograms, Tech. report, 1995, LAPACK Working Note
100.

[8] G. H. Golub and C. F. van Loan, Matrix computations, The Johns Hopkins University Press,
1996, Third edition.

[9] B. Gunter and R. van de Geijn, Parallel out-of-core computation and updating of the QR
factorization, ACM Trans. Math. Softw. 31 (2005), no. 1, 60–78.

[10] J. E. Dennis Jr. and R. B. Schnabel, Numerical methods for unconstrained optimization and
nonlinear equations, SIAM, 1996.

[11] W. M. Kaula, Theory of satellite geodesy, Blaisdell Press, Waltham, Mass., 1966.

[12] H. Sünkel, From Eötvös to milligal+, Final Report, ESA/ESTEC Contract No.
13392/98/NL/GD, Graz University of Technology, 2000.

