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Abstract. We present a flexible parallel implementation of the exhaus-
tive grid search algorithm for multidimensional QTL mapping problems.
A generic, parallel algorithm is presented and a two-level scheme is in-
troduced for partitioning the work corresponding to the independent
computational tasks in the algorithm. At the outer level, a static block-
cyclic partitioning is used, and at the inner level a dynamic pool-of-tasks
model is used. The implementation of the parallelism at the outer level is
performed using scripts, while MPI is used at the inner level. By compar-
ing to results from the SweGrid system to those obtained using a shared
memory server, we show that this type of application is highly suitable
for execution in a grid framework.

1 Genetic Mapping of Quantitative Traits

Many important traits in animals and plants are quantitative in nature. Exam-
ples include body weight and growth rate, susceptibility to infections and other
diseases, and agricultural crop yield. Hence, understanding the genetic factors
behind quantitative traits is of great importance. The regions in the genome af-
fecting a quantitative trait can be found by analysis of the genetic composition
of individuals in experimental populations. The genetic regions are also known
as Quantitative Trait Loci (QTL), and the procedure of finding these is called
QTL mapping. A review of QTL mapping methods is given in [4].

So far, standard QTL mapping software has used an exhaustive grid search
for solving the global optimization problem arising from the mapping procedure.
This type of algorithm is robust, but the computational requirement grows ex-
ponentially with d, the number of QTL influensing a trait. This has resulted in
that often only mapping of a single QTL (d = 1) can be easily performed. One
of the objectives of the work presented here is to perform a set high-dimensional
QTL mapping computations using the (costly) exhaustive grid search. It is only
for this type of algorithm that it is possible to be completely sure of that the best
model fit is found. The results obtained will in the future be used to evaluate the
accuracy of faster optimization algorithms. Another objective is to implement a
parallel computer code that will provide a basis also for the implementation of
the more efficient optimization schemes in a variety of high performance com-
puting environments.



2 Parallelization of the Exhaustive Search for Multiple
QTL

Since genes on the C' different chromosomes in the organisms are unlinked, the
search space can be divided into n ~ C?/2 independent, cc-bozes, each represent-
ing an independent global optimization problem. This partitioning of the prob-
lem is a natural basis for a straight-forward parallelization of multi-dimensional
QTL searches. This type of parallelization was also used in [3] for mapping of
single QTL. Since the objective function evaluations (model fit computations)
are expensive, the work for performing global minimization in a cc-box is almost
exclusively determined by the number of calls to the objective function evalua-
tion routine. For an exhaustive grid search algorithm, this number is known a
priori. However, since the size of the different cc-boxes varies a lot (the chromo-
somes have very different lengths), the work will be very different for different
boxes. Hence, the two main issues when implementing the parallel algorithm is
load-balancing and granularity for the parallel loop over cc-boxes.

3 Implementation

Our implementation of the exhaustive grid search for multi-dimensional QTL
problems is based on existing serial codes written in both C and Fortran 95.
These codes use the efficient objective function evaluation algorithms described
in [5].

The parallel implementation uses a hybrid, two-level scheme scheme for par-
titioning the tasks corresponding to global optimization in different cc-boxes
over a set of parallel processors. On the outer level a static partitioning of tasks
is used, and on the inner level dynamic partitioning is exploited. For the outer,
static level a separate code partitions the cc-boxes over py different jobs, which
are submitted using batch scripts (in the experiments we use XRSL-scripts which
specifies jobs submitted using the Nordugrid ARC grid middleware [1]. The in-
ner, dynamic level of parallelization is implemented using MPI. Each of the p,
instances of the computational code is executed as a pg + 1-process MPI job,
where the partitioning of the cc-boxes over the processes is performed using a
master-slave scheme?. The master process maintains a queue of tasks, each con-
sisting of global optimization in a single cc-box. These tasks are dynamically
handed out to the pg; worker processes as soon as they have completed their
previous task.

Using a hybrid scheme of the type described above gives us the flexibility to
use only static or dynamic load balancing, or a combination of the two. Also,
since we have used different parallelization tools for the two levels, we can easily
port the code to a variety of different computer systems and configurations.

3 In the special case when pg = 1, a single computational process is initiated and MPI
is not used.



4 Results

Here, we present results for QTL searches where d = 3. In Table 1, we show the
results for a shared memory server, using both static and dynamic partitioning
of the work. In this case, the number of cc-boxes is 1140, and it is easy to balance

Table 1. Timings for d = 3 on the shared memory server. Static and dynamic parti-
tioning of work.

ps (pa = 1)|Speedup|Runtime [s]|[ps (ps = 1)|Speedup|Runtime [s]
1 1 535813 1 1 535730

2 1.99 269450 2 1.97 272242

4 3.94 135905 4 3.84 139439

8 7.78 68979 8 7.49 71561

16 14.97 35804 16 15.18 35287

the load for large numbers of processors. The table show that the performance
of the two schemes is very similar, with a small advantage for the version using
dynamic partitioning.

Next, we present results for the SweGrid system. On this systems, the exper-
iments had to be performed under regular load conditions and using the regular
scheduling policies. Some indication of the load of the SweGrid system can be
given by the idle time, i.e., the time the job has to wait in queue before it is
started. However, the idle time also depends on the scheduling policy of the
queuing systems at the local clusters, especially if MPI-job are used. In Table 2,
timings for the static and dynamic work partitioning schemes are presented. Note

Table 2. Timings for d = 3 on SweGrid. Static and dynamic partitioning of work.

ps (pa = 1)|Speedup|Average idle time [s]|Runtime [s]||pa (ps = 1)|Speedup|Idle time [s]|Runtime s]

1 1 1020 955800 1 1 180 941400
2.03 240 471180 2 2.01 180 469140

4 3.93 360 243240 4 4.00 540 235200

8 7.56 28440 12480 8 8.02 240 117420

16 14.20 240 67320 16 8.99 181160 104760

30 24.36 600 39240 30 29.49 140760 31920

60 47.98 5460 19920 60 43.11 118440 21840

that when using the dynamic scheme, a pg + 1-processor MPI-job is executed on
one of the SweGrid clusters. Since the static work partitioning scheme exploits
XRSL-scripts for executing multiple instances of a serial code, it is similar to
schemes used in other major grid applications, e.g. by the LHC Cern project
[2]. From the results in Table 2, it is also clear that the scheduling policies used
in the queuing systems at the SweGrid clusters favors this type of usage of the




grid. Parallel MPI-jobs often have to wait in queue a long time before they are
started. To some degree, this time could be reduced by giving parallel jobs higher
priorities. However, when the load on the system is high it is probably difficult
to improve the situation very much.

A major aim of this work was to investigate if it possible to solve the multidi-
mensional QTL search problem efficiently on a computational grid. The results
presented above show that this is indeed the case. The speedup achieved when
using the SweGrid system is very similar to when a shared memory server is
used. For our implementation, the static partitioning scheme resulted in shorter
turn-around times than the dynamic scheme. The reason for this is that the
static version uses serial jobs which are efficiently scheduled on available proces-
sor nodes by the Nordugrid middleware, resulting in short queuing times for the
jobs.
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