In-Place Transposition of Rectangular Matrices

Fred G. Gustavson' and Tadeusz Swirszcz?
LT, J. Watson Research Center, Yorktown Heights, NY 10598, USA,
fg2Qus.ibm.com
2 Faculty of Mathematics and Information Science, Warsaw University of Technology,
Warsaw, Poland, Europe,
swirszcz@mini.pw.edu.pl

Abstract. We present Algorithms for In-Place Rectangular Transposi-
tion that are efficient. Some of the Algorithms are new. A main result
is a new In-Place Transposition algorithm that uses no additional stor-
age. Performance result are given and they are compared to Out-of-Place
Transposition algorithms.

1 Description of In-Place Transpositions for Rectangular
Matrices

We present algorithms that require little or no extra storage to transpose a m
by n rectangular (non-square) matrix A in place. We assume that A is stored in
the standard storage format of the Fortran and C programming languages. We
remark that many other programming languages use this same standard format
for laying out matrices. The first author has produced algorithms that require
a bit vector of length mn extra storage to do the transpose inplace. The second
author made a key observation that the bit vector could be removed; however,
at the cost of extra computer operations. Hence this work exhibits an example
of a classic programming principle: “Reducing storage at the cost of increasing
computer operations”.

Matrix AT is an n by m matrix. Now both A and AT are simultaneously
represented by either A or AT. Also, in Fortran, A is stored stride one by column
and AT is stored stride one by rows. A given application determines which
format is best and frequently, for performance reasons, both formats are deemed
necessary.

Currently, in-place transpose algorithms are not present in libraries for Dense
Linear Algebra when m # n.

Our algorithms are based on following the cycles of a permutation P of length
g = mn — 1. This permutation P is defined by the mapping of A;; of AiTj that is
induced by the standard storage layouts of Fortran and C. Thus, if one follows a
cycle of P then one must eventually return to the beginning point of this cycle
of P. By using a bit vector one can tag which cycles of P have been visited and
then a starting point for each new cycle is easily determined. The cost of this
algorithm is easily seen to be O(g) which is minimal.

Now, we go further and remove the bit vector. Thus, we need a method to
distinguish between a new cycle and a previous cycle (the original reason for
the bit vector). Our key observation is that every new cycle has a starting value
that is a minimum. If we transverse a proposed new cycle and we find an iterate
whose value is less than the current starting value we know that the cycle we are
generating has already been generated. We can therefore abort and go onto the
next starting value. On the other hand, if we return to the original starting value,
thereby completing a cycle, where every iterate is larger than this starting value
we are assured that a new cycle has been found and we can therefore record it.
We now give this basic algorithm.

ALGORITHM ITP (m,n,A)
DO cnt = 1, mn-2
k = P(cnt)
DO WHILE (k > cnt)
k = P(k)
END DO
IF (k = cnt) then
Transpose that part
of A which is in the
new cycle just found
ENDIF
END DO

Clearly, the algorithm IPT just described contains redundant computation
in the inner while loop. We have been able to remove much of the redundancy.
In this regard, here are some observations. Many times the basic algorithm IPT
completes while cnt is still on the first column of A; i.e. before cnt reaches m.
However, the existence of small cycles causes cnt to become much larger before
IPT completes. Other observations will now follow.

A standard programming technique called BABE (Burn At Both End) can
be used to speed up the inner while loop of ITP. Use of BABE allows one to use
functional parallelism, [1]. More importantly, no matrix elements are accessed
during the inner while loop and so no cache misses occur. In fact the inner while
loop consist entirely of register based fixed point instructions and hence the inner
loop will perform at the peak rate of any processor. The actual transposition
part of IPT runs relatively slow in comparison to the inner loop processing. Any
cycle of P usually accesses the elements of A in a completely random fashion.
Hence, a cache miss almost always occurs for each element of the cycle and thus
the whole line of the element is brought into cache. The remaining elements in
the line usually never get used. On the other hand, an out-of-place transpose
algorithm allows one to bring the elements of A into and out of cache in a fairly
structured way. This again illustrate the principle of “trading storage at the cost
of increasing performance”.

One can compute the number of one cycles in P for any matrix A. This is a
ged computation and there are 1+ ged(m — 1,n — 1) one cycles. Since non-trivial

one cycles always occur in the interior of A; ie, for large values of cnt, knowing
their number can drastically reduce the cost of running IPT. To see this, note
that the outer loop of IPT runs from 1 to mn — 2. If one records the total cycle
count tcc then one can leave the outer loop when tcc=mn. We now call the
modification of IPT that uses the gcd logic and tcc count our basic algorithm
IPT.

Let k = P(k) and | = ¢ — k. One can show that P(l) = ¢ — k. Thus, let
cnt generate a cycle and suppose that iterate [= ¢ — ent does not belong to
this cycle. Then ¢ — cnt also generates a cycle. This result shows that a duality
principle exists for P. The criterion for cnt is j > cnt for every j in the cycle.
For ¢ — cnt the criterion is j < ¢ — ¢nt for every j in the companion cycle.

The value ¢ is the key to understanding P and hence our algorithm. Let k
be the storage location of A;;,0 < k < ¢. One can show P(k) = mod(nk,q).
P(k) is the storage location of A;;. Suppose d is a divisor of ¢. The, every iterate
of d also divides g. Hence, when cnt starts at d one can alternatively look at
k = mod(nk,q/d) where cnt begins at 1. So, we can partition 0 < k < ¢ into
a disjoint union over the divisors of d of ¢q. For each d, we can apply a suitable
variant of algorithm IPT, called algorithm ITP1, as a subroutine that is called
for each d of ¢q. This master algorithm drastically reduces the operation count of
the inner while loop of algorithm ITP.

1.1 Mathematical Description of Algorithm IPT

In Fortran the (i,5) element of A is stored at memory location k = i + j * m.
Likewise, the (i, j) element of AT is stored at memory location k =i + j * n. In
both cases k takes on values 0,1,...,q where ¢ = mn — 1.

Let P be the permutation of elements of the set {0,1,...,q} determined by
the transposition of A. One can show that P(k) = mod(kn,q) for k =0,1,...,q
where P(0) = 0 and P(q) = ¢. Now P = 01 0030...00, where we have excluded
one-element cycles.

Let s; be the smallest element of the cycle ;. Since disjoint cycles are com-
mutative, we can assume that s; < s2 < ... < s,. Now 0 is a one cycle so s; = 1.
Each cycle is a sequence o; = (s;, P(s;),..., P ~1(s;)), where)\; is the smallest
positive integer such that P*i(s;) = s;. The number); is the length of the cycle.

The first nontrivial cycle is o1 This is the longest cycle.

Any cycle looks as follows: ¢ = (8, mod(sm,q), ..., mod(sm)‘fl,q)). It
can be proved that As is a divisor of A;.

It follows immediately that s; < P!(s;) for l = 1,...); — 1. Hence a number
1 <k < q—1isin a cycle g;, where s; < k if and only if there exists a number
I such that P!(k) < k. This allows us to skip previously obtained cycles.

It can be proved that the number of cycles with the length equal to 1is d+1,
where d is the greatest common divisor of m — 1 and n — 1. So if we want to
transpose a matrix we can act as follows:

1° We perform the first cycle o7 starting from 1 and we evaluate its length
Al

2° For any integer k > 1 we verify whether P(k) = k or there exists a number {
such that P!'(k) < k. If the answer is "yes’, we skip k. Otherwise we perform the
cycle starting from k and we evaluate its length. Then we add obtained length
to the sum of all previously obtained lengths. If the sum reaches ¢ — d, the
transposition is finished.

References

1. R. C. Agarwal, F. G. Gustavson, M. Zubair. Exploiting functional parallelism of
POWER2 to design high-performance numerical algorithms. IBM Journal of Re-
search and Development, Vol. 38, No. 5, Sep. 1994, pp. 563,576.

