
Minimal Data Copy For Dense Linear Algebra

Factorization

Fred G. Gustavson

IBM’s T. J. Watson Research Center, Yorktown Heights, NY 10598, USA,
fg2@us.ibm.com

Abstract. We describe a new result that shows that representing a ma-
trix A as a collection of square blocks will reduce the amount of data ref-
ormating required by dense linear algebra factorization algorithms from
O(n3) to O(n2).

1 Description of a Fortran and C Inefficiency for Dense

Linear Agebra Factorizations

The current Most Commonly Used (MCU) Dense Linear Algebra (DLA) algo-
rithms for serial and SMP processors have a performance inefficiency and hence
they give sub-optimal performance. We show that standard Fortran and C two
dimensional arrays are the main reason for the inefficiency. We show how to cor-
rect these performance inefficiencies by using New Data Structures (NDS) along
with so-called kernel routines. The NDS generalizes the current storage layouts
for both the Fortran and C programming languages.

The BLAS(Basic Linear Algebra Subroutines) were introduced to make the
algorithms of DLA performance-portable. However, a relationship exists between
the Level 3 BLAS used in most of level 3 factorization routines. This relationship
introduces a performance inefficiency in block based factorization algorithms and
we will now discuss the Level 3 BLAS, DGEMM (Double precision GEneral Matrix
Matrix) to illustrate this fact.

In [5, 2] design principles for producing a high performance “Level 3” DGEMM

BLAS are given. A key design principle for DGEMM is to partition its matrix
operands into submatrices and then call an L1 kernel routine multiple times on
its submatrix operands. Another key design principle is to change the data format
of the submatrix operands so that each call to the L1 kernel can operate at or
near the peak Million FLoating point OPerations per Second (MFlops) rate. This
format change and subsequent change back to standard data format is a cause of
a performance inefficiency in DGEMM. The DGEMM interface definition requires that
its matrix operands be stored as standard Fortran or C two-dimensional arrays.
Any DLA factorization algorithm (DLAFA) of a matrix A calls DGEMM multiple
times with all its operands being submatrices of A. For each call data copy
will be done; the principle inefficiency is therefore multiplied by this number of
calls. However, this inefficiency can be eliminated by using the NDS to create a

2

substitute for DGEMM, e.g. its analogous L1 kernel routine, which does not require
the aforementioned data copy.

This paper describes a new concept which we call the L1 cache / L0 cache
interface [1]. The L0 cache is the register file of a Floating Point Unit. Today,
many architectures possess special hardware to support the streaming of data
into the L1 cache from higher levels of memory [4]. In fact with a large enough
floating point register file it may be possible to do, say, a L2 or L3 cache blocking
for a DGEMM kernel; ie, completely bypass the L1 cache. This is the case in [1]
where a 6 by 6 register block for the C matrix can be used as this processor
has 32 dual SIMD floating point registers. To do L0 register blocking we can
concatenate tiny submatrices to faciltate streaming; ie, to reduce the number of
streams. In effect, at the L0 level we have a concatenation of tiny submatrices
behaving like a single long stride one vector that passes through L1 and into L0
in an optimal way. Sections 2 and 2.1 gives details about this technique. Using
this extra level of blocking does not negate the benefits of using square blocks
SB’s. It is still essential that NB2 elements of a SB be contiguous. However, the
SB’s are now no longer Fortran or C arrays which we define as simple.

2 The Need to Reorder a Contiguous Square Block

NDS represent a matrix A as a collection of SB’s of order NB. Each SB is contigu-
ous in memory. In [3] it is shown that a contiguous block of memory maps best
into L1 cache as it minimizes L1 and L2 cache misses as well as TLB misses for
matrix multipy and other common row and column matrix operations. When us-
ing standard full format on a DLAFA one does an O((N/NB)2) amount of data
copy in calling DGEMM in an outer do loop: j=1,N,NB. Over the entire DLAFA
this becomes O(N3).

On some RISC processors there are floating point multiple load and store
instructions associated with the multiple floating point operations; see [1]. A
multiple load / store operation usually requires that its multiple operands be
contiguous in memory. Some newer processors with multiple floating point op-
erations require their operands to be contiguous; eg, [1]. So, data that enters
L1 may also have to be properly ordered to be able to enter L0 in an optimal
way. Unfortunately, layout of a SB in standard row / column major order may
no longer lead to an optimal way. In some cases it is sufficient to reorder a SB
into submatrices which we call register blocks. Doing this produces a new data
layout that will still be contiguous in L1 but can also be loaded into L0 from L1
in an optimal manner. Of course, the order and size in which the submatrices
(register blocks) are chosen will be platform dependent.

2.1 A DGEMM kernel based on Square Block Format Partitioned into
Register Blocks

In this contrbution register blocks can be considered as submatrices of a SB. This
fact is very important as it means one can address these blocks in Fortran and

3

C. To see this let A, B and C be three SB’s and suppose we want to apply DGEMM

to A, B and C. We partition A, B and C into conformable submatrices that are
register blocks. Let the sizes of the register blocks be kb×mb, kb×nb and mb×nb.
Thus AT , B and C are matrices of register blocks of sizes k1 × m1, k1 × n1 and
m1 × n1 respectively. The DGEMM kernel we want to compute C = C − AT B as
matrix multiply is stride one across the rows and columns of A and B respec-
tively. Next, consider a fundamental building block of this DGEMM kernel which
consists of multiplying k1 register blocks of AT by k1 register blocks of B and
summing them to form the update of a register block of C. The entire kernel will
therefore consist of executing m1×n1 fundamental building blocks in succession
to obtain a near optimal kernel for DGEMM. If we use simple SB format we would
need mb rows of AT and nb columns of B and C to execute the fundamental
building block. This would require mb+2nb stride one streams of matrix data to
be present and working during the execution of a single building block. Many ar-
chitectures do not possess special hardware to support this number of streams.
Now the minimum number of streams is three; one each for matrix operands
A, B and C. Is three possible? An answer emerges if one is willing to change
the data structure away from simple SB order. Initially, a register block of C
is placed in mb × nb floating point registers T(0 : mb − 1, 0 : nb − 1). An inner
do loop on l=0:K-1,kb consists of performing kb sets of mb × nb independent
dot products on T. For a given single value of l vectors u, v of lengths mb, nb
from A and B respectively are used to update T = T − uvT . This update is a
DAXPY outer product update. However, and this is important, since the T’s are
in registers there are no loads and stores of the T’s. The entire update is T = T−
AT(0 : K− 1, i : i+ mb− 1) × B(0 : K− 1, j : j+ nb− 1). If A and B were simple
SB’s we would need to access vectors u, v with stride NB and also there would
be mb + nb streams. Luckily, if we transpose K × mb AT and K × nb B we will
simultaneously access u, v stride one, just get two streams and be able to address
A, B in the standard way. These two transpositions accomplishes a matrix data
rearrangement that allows for an excellent L1 / L0 interface of matrix data for
the DGEMM kernel fundamental building block computation.

3 Benefits of SB and SB Packed Formats

We believe a main use of SB formats is for symmetric and triangular arrays. We
call these formats SB Packed (SBP). An innovation here is that one can translate,
verbatim, standard packed or full factorization algorithms into a corresponding
SBP format algorithm by replacing each reference to an i, j element of A by a
reference to its corresponding SB submatrix. Another key feature of using SB’s
is that SBP format supports Level 3 BLAS. Hence, old, packed and full codes
are easily converted into square blocked, packed, level 3 code. Therefore, one
keeps “standard packed or full” addressing so the library writer/user can handle
his own addressing in a Fortran/C environment.

4

3.1 Data Copy of DLAFA can be O(N2)

Our proof sketch is for Cholesky factorization. However, what we say about
Cholesky factorization applies to many other DLAFA’s. There are many Cholesky
DLAFA’s. We only mention left and right looking which do the least, most
amount of computation in the outer do loop stage j, respectively. The result
we now give holds generally for Right Looking Algorithm (RLA)s for DLAFAs.
And similar results hold for Left Looking Algorithms (LLAs). Here we shall be
content with demonstrating that the Cholesky RLA on SBP format can be done
by only using O(N2) data copies. The O(N3) part of the block Cholesky RLA
has to do with the Schur Complement Update (SCU); ie, the inner DGEMM do

loop over variable k. We assume each call to DGEMM will do data copy on each of
its three operands A, B and C. Now the number of C SB’s that get SCUed over
the entire RLA is n1(n1 − 1)(n1 − 2)/2 where n1 = dN/NBe and N is the order of
A. It is therfore clear that O(N3) data copies will occur.

In Section 2.1 we indicated that it is now usually necessary to reformat each
SB every time DGEMM is called if simple SB’s are used. We now demonstrate
that we can reduce this data copy cost to O(N2). What we intend to do is to
store the C operands of DGEMM in the register block format that was indicated
in Section 2.1. Hence, the format of these C operands is then fixed throughout
this algorithm and no additional data copy occurs for them during the entire
execution of this RLA. And clearly, an initial formatting cost, if necessary, is
only O(N2). Now we examine the A and B operands of the SCU for the outer
loop variable j. SB’s A(j : n1, j) whose total is n1−j are needed for the SCU as
they constitute all the A, B operands of the SCU at iteration j. Summing from
j=1 to j = n1 we find just n1(n1− 1)/2 SB’s in all that need reformatting (data
copying) over the course of this entire RLA. And since there are both A and B
operands we may have to double this amount to n1(n1 − 1) SB’s. However, in
either case this amount of data copy is clearly O(N2).

References

1. S. Chatterjee et. al. Design and Exploitation of a High-performance SIMD Floating-
point Unit for Blue Gene/L. IBM Journal of Research and Development, Vol. 49,
No. 2-3, March-May 2005, pp. 377-391.

2. J. A. Gunnels, F. G. Gustavson, G. M. Henry, R. A. van de Geijn. A Family of
High-Performance Matrix Multiplication Algorithms. Computational Science - Para

2004, J. J. Dongarra, K. A. Madsen, J. Wasniewski, eds., Lecture Notes in Computer
Science 3732. Springer-Verlag, pp. 256-265, 2004.

3. N. Park, B. Hong, V. K. Prasanna. Tiling, Block Data Layout, and Memory Hier-
archy Performance. IEEE Trans. Parallel and Distributed Systems, 14(7):640-654,
2003.

4. B. Sinharoy, R.N. Kalla, J.M Tendler, R.G. Kovacs, R.J. Eickemeyer, J.B. Joyner.
POWER5 System Microarchitecture IBM Journal of Research and Development,
Vol. 49

5. R. C. Whaley, A. Petitet, J. J. Dongarra. Automated Empirical Optimization of
Software and the ATLAS Project. Parallel Computing, 2001(1-2), pp. 3-35.

